
TEEKAP: Self-Expiring Data Capsule using 
Trusted Execution Environment (TEE)

Mingyuan Gao, Hung Dang and Ee-Chien Chang

ACSAC 2021



2

Alice (Data Owner) Bob (Data User)

Sensitive Data D

Input: x𝓕

𝓕(D,x)

Bob wants to do a joint computation on 
D using his function 𝓕

D

Motivating Example

• Not allowed to see the data D

• Not allowed to use other functions to access D

• D becomes inaccessible automatically         
after the usage

• No involvement during 
the computation! 

Functional Access

Self-expiry
Send-and-Forget

D can only be accessed  
by approved functions in 
a privacy-preserving way!



3

Do we have an existing solution to this?

Security Goals Fully Homomorphic 
Encryption (FHE)

Secure Multi-Party 
Computation (MPC)

Confidential 
Computing (CC)

Functional Access

Self-Expiry

Send-and-Forget

Three related privacy-preserving techniques:

Allow parties to jointly
compute a function over 
their inputs while keeping 
those inputs private

Allow users to do 
computations on 
encrypted data

Protect data-in-use 
using hardware-based
Trusted Execution 
Environment (TEE)



4

Data Owner Data User

Data-sharing Platform

We propose a data-sharing platform that
attains all the three security goals! 

Functional Access

Self-Expiry

Send-and-Forget

1

2

3

Sensitive Data D

Our platform is based on the TEE technology! 



TEE is an up-and-coming security technology.
• A vault in the CPU for sensitive code and 

data, aka secure enclave.
• The computation in the vault is verifiable!  

5

Trusted Execution Environment (TEE) 101

Apple M1 (2020)AMD SEV (2017)Intel SGX (2015)

Code C

Data D
Result R

Proof

C ran on D and produced R 
without anyone seeing or 
manipulating the computation!



6

F TEE

build up the platform
Enforcing functional access using TEE

Sensitive Data D

D

𝓕

Input: x

𝓕(D,x) 

Data Owner

Data User

TEEs allow for the secure and verifiable 
processing of data on untrusted machines!

Functional Access to D



7

F TEE

build up the platform
Assume we have a Trusted Third Party

Sensitive Data D

D

𝓕

Input: x

𝓕(D,x) 

Data User

Trusted Third Party

• Functional Access to D

Data Owner

• Self-Expiry

• Send-and-Forget

Access History

Encryption Key

Access Checker



8

F TEE

build up the platform
From Trusted Third Party to Access Committee

D

𝓕

Input: x

𝓕(D,x) 

Data User

Access History

Encryption Key

Access Checker

Access Committee Jury

…

1

n

2 Independent
and Mutually 

Distrusting 
Nodes

3

1
Access Checker2 Access Checkern…

• To gain access to D, the F TEE has to get 
approval from a majority of the nodes 

• As long as the majority of nodes are not 
compromised, Jury can enforce self-expiry 
and send-and-forget. 

Attain the “trust” using 
a cluster of nodes

• Functional Access to D



9

F TEE

D

𝓕

Input: x

𝓕(D,x) 

Access Committee Jury

• Self-Expiry

• Send-and-Forget

• Functional Access

TEE is vulnerable to 
Rollback Attacks!

State 1

At t1, State 1 is 
sealed to disk

t1                                                               t2 

Obtained legal access!

Restore TEE

At t2, the restored TEE can 
be fed with a different x

• Bind all the steps in the functional access 
into a single session, 

• Uniquely identified by a random number
generated by Jury!

build up the platform
How Jury combat the rollback attacks on TEE



10

Access Committee Jury

Encapsulate

Sensitive Data D Data Capsule

(ciphertext of D + Metadata)

Reg
ist

er

𝓕(D,x)

Input: x

Approved Function F

𝓕
Data Owner Data User

Request Access

Circulate

• Eligible Function F
• Expiry Conditions
• e.g., after 100 accesses

TEEKAP: our data-sharing platform

Functional access to D!When the expiry conditions are 
met, D expires automatically!



Evaluation

• We built a protype using Intel SGX
• We conducted experiments with realistic deployment settings
• We focus on latency and throughput of the platform, as well as its scalability

11



Conclusion

• We proposed and formulated the problem of 
self-expiring data encapsulation that supports 
§ Functional access
§ Generic user-defined expiry conditions 

• We built a prototype system, conducted 
empirical experiments and demonstrated the 
efficiency of our proposal

12



Mingyuan Gao: mingyuan.gao@u.nus.edu

Hung Dang: hungdang@irics.vn

Ee-Chien Chang: changec@comp.nus.edu.sg


