Q,g_‘; ACSAC 2021

TEEKAP: Self-Expiring Data Capsule using
Trusted Execution Environment (TEE)

Mingyuan Gao, Hung Dang and Ee-Chien Chang

_l' National University
79/ of singapore

Motivating Example

Bob wants to do a joint computation on
D using his function F
)

Bob (Data User)

)

Alice (Data Owner)

F o D can only be accessed
@ @ D — < / > <— Input: X by approved functions in‘(
PPV . |
Sonsitive bata b | a privacy-preserving way!
F(D.x) Functional Access

* No involvement during * Not allowed to see the data D
the computation! '+ Not allowed to use other functions to access D
Send-and-Forget - D becomes inaccessible automatically
R after the usage Self-expiry
- 2

Do we have an existing solution to this?

Three related privacy-preserving techniques:

. ! Protect data-in-use |
. Allow users to do compute a function over 5; using hardware-based !

computations on the|r inputs while keeplng ' Trusted Execution
' . encrypted data those inputs private ' Environment (TEE)

Security Goals Fully Homomorphic | Secure Multi-Party Confidential
fy Encryption (FHE) Computation (MPC) Computing (CC)

Functional Access

Self-Expiry x X X
Send-and-Forget v X v

We propose a data-sharing platform that
attains all the three security goals!

a 2
Data Owner Data User

/ Data-sharing Platform
N\
@ o Functional Access @

Sensitive Data D Expiry

e Send-and-Forget
4

w
1

Our platform is based on the TEE technology!

Trusted Execution Environment (TEE) 101

TEE is an up-and-coming security technology.

 Avaultin the CPU for sensitive code and
data, aka secure enclave.

Intel SGX (2015) AMD SEV (2017) Apple M1 (2020)
* The computation in the vault is verifiable!

Proof

Cran on D and produced R
without anyone seeing or
manipulating the computation!

build up the platform
Enforcing functional access using TEE

TEEs allow for the secure and verifiable
processing of data on untrusted machines!

@
o G
ﬂ Data User Input:

Data Owner

F(D %)

S

Sensitive Data D

Functional Access to D

build up the platform
Assume we have a Trusted Third Party

Access Checker

‘(C) Encryption Key
P
ﬂ v =| Access History

Data Owner

S

Sensitive Data D

Self-Expiry
Send-and-Forget

F(D %)

Functional Access to D

build up the platform

From Trusted Third Party to Access Committee

|
i @ @ Independen’r : ccess Committee Jury i i
I @ and Mu’rually o Access Checker
l Dls’rrus’rlngl ‘(O Encrvotion Ke
O@] [L e o

! @

g

e e e e e e e e e = - - 1 v =| Access History
Attain the “trust” using Sata U
ara user .
a cluster of nodes Input: x

* To gain access to D, the F TEE has to get

approval from a majority of the nodes

F(D %)

* Aslong as the majority of nodes are not
compromised, Jury can enforce self-expiry
and send-and-forget.

* Functional Access to D

build up the platform

How Jury combat the rollback attacks on TEE Self-Expiry

- Send-and-Forget

* Bind all the steps in the functional access Y0

into a single session, |
 Uniquely identified by a random number Access Committee Jury

generated by Jury! 1

Obtained legal access!

TEE is vulnerable to

. Restore TEE ‘:)
Rollback Attacks!
t]_ t2

At t,, is At t,, the restored TEE can
sealed to disk be fed with a different x

 Functional Access

F(D %)

TEEKAP: our data-sharing platform

« Eligible Function F

« Expiry Conditions

Access Committee Jury

) @

Requesf Ace
ess

Data Owner

@ Encapsulate
&

PCU/QTe
Sensitive Data D Data Capsule\)

(ciphertext of D + Metadata)

Data User

Approved Function F

f(l;,x)

When the expiry conditions are Functional access to D!

met, D expires automatically!
10

Evaluation

* We built a protype using Intel SGX
* We conducted experiments with realistic deployment settings
* We focus on latency and throughput of the platform, as well as its scalability

G Single Datacenter == Two Datacenters Gaw Single Datacenter == Two Datacenters

G Single Datacenter &= Two Datacenters Gaa Single Datacenter &= Two Datacenters

— — 3 100 4) 150 e 5

: g sOp[HE E == < = EEEE LB
= = LO000G | S ve <] s =
£ £ : o = — 100 | |::: =
e = ? 60| |:: = ? o 3
e & £ = — 2 S
8 8 8 i = @ =
3 3 500 R o T = —] 8 e S
& 3t =Sl = g 0rf: E
& 20 ' = I

Nis SRS SIS LEEEEEE R LEE EEEE EE

5 * 1 33 5 9 17 33 5 9 17 33
n n
(a) PROCESSREQUEST (b) ENCAPSULATE (a) PROCESSREQUEST (b) ENCAPSULATE

Figure 4: Latency of ProcessReQUEsT and ENcapsULATE with respect to different Figure 2: Throughput of PRocessREQuEST and ENcAPSULATE with respect to differ-
JURry sizes (n) on Azure. ent Jury sizes () on Azure.

11

Conclusion

* We proposed and formulated the problem of
self-expiring data encapsulation that supports

" Functional access
" Generic user-defined expiry conditions

* We built a prototype system, conducted
empirical experiments and demonstrated the
efficiency of our proposal

12

Mingyuan Gao: mingyuan.gao@u.nus.edu
Hung Dang: hungdang@irics.vn

Ee-Chien Chang: changec@comp.nus.edu.sg

