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Abstract

Neural networks are susceptible to data inference attacks such
as the membership inference attack, the adversarial model
inversion attack and the attribute inference attack, where the
attacker could infer useful information such as the member-
ship, the reconstruction or the sensitive attributes of a data
sample from the confidence scores predicted by the target clas-
sifier. In this paper, we propose a method, namely PURIFIER,
to defend against membership inference attacks. It transforms
the confidence score vectors predicted by the target classi-
fier and makes purified confidence scores indistinguishable in
individual shape, statistical distribution and prediction label
between members and non-members. The experimental re-
sults show that PURIFIER helps defend membership inference
attacks with high effectiveness and efficiency, outperforming
previous defense methods, and also incurs negligible utility
loss. Besides, our further experiments show that PURIFIER is
also effective in defending adversarial model inversion attacks
and attribute inference attacks. For example, the inversion er-
ror is raised about 4+ times on the Facescrub530 classifier,
and the attribute inference accuracy drops significantly when
PURIFIER is deployed in our experiment.

Introduction
Machine learning has been provided as a service by many
platforms, transforming various aspects of daily life such
as handling users’ sensitive data. Users access these mod-
els through prediction APIs which return a confidence score
or a label. Many studies have indicated that the prediction
information of a sample could be exploited to perform data
inference attacks to get information about this sample (Shokri
et al. 2017; Yang et al. 2019; Song and Shmatikov 2020). Data
inference attacks could be largely divided into two categories.
The first kind of attack aims at inferring distributional infor-
mation about a class by observing the prediction changes of
different samples (An et al. 2022; Mehnaz et al. 2022), while
the second kind of attack is to infer the individual information
of a sample by observing its specific output such as the mem-
bership inference attacks (Nasr, Shokri, and Houmansadr
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2018; Salem et al. 2018; Hui et al. 2021; Yeom et al. 2018; Li
and Zhang 2021; Li, Li, and Ribeiro 2021), adversarial model
inversion attacks (Yang et al. 2019) and attribute inference
attacks (Song and Shmatikov 2020). In this paper, we focus
on the second type of data inference attack.

Among these data inference attacks, membership inference
attack (Shokri et al. 2017) is one of the most important and
exemplary attacks, where the adversary is asked to deter-
mine whether a sample is in the target model’s training set.
Many studies acknowledge that the confidence scores tell
more prediction information beyond the label and thus they
should be provided in the output. Therefore, a number of
approaches have been proposed to defend the membership in-
ference attack while preserving the confidence scores (Shokri
et al. 2017; Salem et al. 2018; Nasr, Shokri, and Houmansadr
2018; Abadi et al. 2016; Jia et al. 2019; Tang et al. 2022). On
the other hand, some studies believe that removing the con-
fidence information in the output is a way of defending the
membership inference attack. However, these defenses are
broken by label-only attacks (Yeom et al. 2018; Choquette-
Choo et al. 2021; Li, Li, and Ribeiro 2021), whereby only
the predicted label is exploited to infer the membership.

The major cause of membership inference attacks is
that the outputs are distinguishable for members and non-
members. For example, a model always behaves more con-
fidently on predicting the training data (members) than pre-
dicting the testing data (non-members). The prediction differ-
ences between members and non-members exist in individual
shape, statistical distribution and prediction label. (1) The
target classifier often assigns a higher probability to the pre-
dicted class when given a member, making confidence scores
distinguishable in individual shape. This is exploited by many
attacks (Salem et al. 2018; Nasr, Shokri, and Houmansadr
2018) (2) Confidence scores in members and non-members
are also distinguishable in statistical distribution. Our ex-
periments show that confidence scores on the members are
more clustered in the encoded latent space, while those on
non-members are more scattered. BlindMI (Hui et al. 2021)
exploits this difference to infer membership. (3) In addition,
the confidence scores on members and non-members are dif-
ferent in prediction label. Members have a higher probability
of being correctly classified than non-members, which leads
to the difference in classification accuracy and is exploited
by label-only attacks (Yeom et al. 2018; Li and Zhang 2021;
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Li, Li, and Ribeiro 2021).
In this paper, we propose a defense method, namely PU-

RIFIER, against the membership inference attack. The main
idea is to directly reduce the distinguishability of confidence
scores on members and non-members by transforming the
confidence score vectors as if they were predicted on non-
members. It takes as input the prediction produced by the
target model and outputs a transformed version. First, we
train PURIFIER on the confidence scores predicted by the tar-
get model on non-members to reconstruct these vectors using
a novel training strategy. This encourages PURIFIER to learn
the individual shape of these non-member confidence scores
and eventually to generate confidence scores as if they were
drawn from the learned pattern, reducing distinguishability of
confidence scores in individual shape. Second, we use Con-
ditional Variational Auto-Encoder (CVAE) as a component
of PURIFIER to introduce Gaussian noises to the confidence
scores, such that the statistically clustered confidence scores
can be scattered and become indistinguishable from those on
non-members, reducing distinguishability in statistical distri-
bution. Third, to decrease the distinguishability in prediction
labels, PURIFIER intentionally modifies the predicted labels
of members while preserving those of non-members, which
results in a reduction of classification accuracy gap between
members and non-members.

Although PURIFIER is designed to defend the membership
inference attacks, it turns out to be also effective in defending
the adversarial model inversion attack and the attribute in-
ference attack. In the adversarial model inversion attack, the
adversary aims at inferring a reconstruction (Yang et al. 2019;
Fredrikson, Jha, and Ristenpart 2015; Hitaj, Ateniese, and
Perez-Cruz 2017) of the input. In the attribute inference at-
tack, the adversary could infer additional attribute beyond the
original input attributes of this sample (Song and Shmatikov
2020). We believe that the purification process contributes to
the removal of the redundant information, and preserves only
the essential information for the prediction task. As a result,
the adversary can obtain no more useful information than the
prediction itself from the purified prediction results.

We extensively evaluate PURIFIER on various benchmark
datasets and model architectures. We empirically show that
PURIFIER can defend data inference attacks effectively and
efficiently with negligible utility loss. PURIFIER can reduce
the membership inference accuracy. For example, the NSH
attack (Nasr, Shokri, and Houmansadr 2018) accuracy drops
from 70.36% to 51.71% in our experiments, which is signif-
icantly more effective than previous defenses. PURIFIER is
also effective against adversarial model inversion attack. For
instance, the inversion loss on the FaceScrub530 dataset is
raised 4+ times (i.e. from 0.0114 to 0.0454) after applying
PURIFIER. Furthermore, PURIFIER can reduce the attribute
inference accuracy from 31.06% to 20.94% (almost random
guessing) on one of evaluated datasets.

Contributions. In summary, we make the following con-
tributions in this paper.
• To the best of our knowledge, our work is the first to study

membership inference attacks comprehensively from the
perspectives of individual shape, statistical distribution
and prediction label.
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Figure 1: Architecture of PURIFIER.

• We design PURIFIER to defend against membership in-
ference attacks by reducing the distinguishability of the
confidence scores in terms of the above three aspects with
negligible utility loss. PURIFIER is shown to be also effec-
tive in defending other data inference attacks.

• We extensively evaluate PURIFIER and compare it with ex-
isting defenses. Our experimental results show that PURI-
FIER outperforms existing defenses in both effectiveness
and efficiency.

Problem Statement
We focus on classification models of neural networks, i.e., a
machine learning classifier F is trained on its training dataset
Dtrain to map a given sample x to a specific class based on
the confidence vectors F (x) which is the classifier output.

We consider the data inference attacks designed to infer
useful information about a specific sample x based on the
target classifier’s output F (x), for example, the membership
inference attack, adversarial model inversion attack and at-
tribute inference attack. We do not consider the data inference
attacks (An et al. 2022; Mehnaz et al. 2022) which infer dis-
tributional information about a class through observing the
output changes of F on different x in this paper.

x, F,Daux −→ {useful information of x}

We focus on the black-box settings, where the attacker can
only query the classifier F with its data sample x and obtain
the prediction scores F (x). We also assume that the attacker
has an auxiliary dataset Daux to assist its attacks such as a
set of data drawn from a similar data distribution as the target
classifier’s training data distribution.

Approach: PURIFIER
We propose PURIFIER as a defense against data inference
attacks. Since membership inference attack is one of the most
typical instances of data inference attacks, we design PURI-
FIER against it as the point of penetration and evaluate its
defense performance against other data inference attacks. The
main idea of PURIFIER is to transform the confidence score
vectors in such a way that they appear indistinguishable on
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members and non-members. We focus on reducing the three
underlying distinguishabilities of confidence scores between
members and non-members: individual shape, statistical dis-
tribution and prediction label.

PURIFIER consists of a confidence reformer G and a la-
bel swapper H , as shown in Figure 1. G takes as input the
original confidence score vectors and reforms them as if they
were predicted on non-members, achieving indistinguishabil-
ity of individual shape and statistical distribution. We design
G as a CVAE, with the predicted label being the condition.
In this way, G is able to learn the overall distribution of the
confidence scores from all classes by setting the condition
to the corresponding class. The label swapper H takes the
reformed confidence scores from G, and modifies the pre-
dicted labels of members to reduce the gap of classification
accuracy between members and non-members, achieving
indistinguishability of prediction label.

Achieving Individual Indistinguishability
In order to achieve the indistinguishability of individual shape
between members and non-members, PURIFIER reforms the
confidence scores by confidence reformer G, which is a
CVAE. G takes the confidence score F (x) as input, with
the corresponding label l being the condition. F (x) first goes
through the encoder, where it is mapped to the encoded latent
space r. The decoder then maps the confidence score back
from the latent space r, and the reformed confidence score
G(F (x)|l) is obtained. G is trained on the confidence scores
predicted by F on the defender’s reference dataset Dref ,
which consists of non-member samples. As a result, G learns
the pattern of individual shape on non-members. The reform-
ing process of G could remove difference in the individual
shape of F (x), achieving individual indistinguishability.

In order to preserve the classification accuracy, we train G
to also produce the label predicted by F by adding a label loss.
Formally, G is trained to minimize the following objective
function.

L(G) = E
x∼pr(x)

[R((G(F (x)|l), F (x)) + λL((G(F (x)|l), l)]

(1)

where pr(x) represents the conditional probability of x
for samples in Dref , l represents the label of F (x) (i.e.,
l = argmax(F (x))). R is a reconstruction loss function
(L2 norm) and L is the cross entropy loss function. The
parameter λ controls the balance of the two loss functions
during training.

Achieving Statistical Indistinguishability
We can observe the statistical distribution of F (x) by plot-
ting F (x) on the encoded latent space r. Figure 5 shows an
example of such statistical distribution on CIFAR10 dataset,
where different colors represent different labels. We can ob-
serve that confidence scores are clustered into several groups
according to their labels. However, the members are more
clustered while non-members are not, which indicates that
the distribution of members and non-members is different.

To mitigate the difference in statistical distribution be-
tween members and non-members, confidence reformer G

introduces Gaussian noises in the latent space r, where the
label l is used as the condition. During the training process,
the reconstruction loss R encourages the decoder of G to gen-
erate confidence scores that are similar to the non-member
ones on Dref (non-members) with the same label l. How-
ever, noises introduced in the latent space r will increase the
reconstruction error. As a result, G learns a robust latent rep-
resentation that could preserve the statistical distribution of
the non-members of label l even if noises are added. During
the inference process, the added noises breakdown the clus-
tering of confidence scores on members, while the decoder
generates the reformed versions that are similar to the ones
on Dref , mitigating the difference in statistical distribution.

Achieving Label Indistinguishability
To cope with the difference in prediction label, we design
a label swapper H , which modifies the prediction labels of
members to reduce the gap in classification accuracy between
members and non-members. After training the confidence
reformer G, we randomly select training data to replace their
predicted labels with the second largest predicted labels at
a certain swap rate pswap = (acctrain − acctest)/acctrain,
where acctrain and acctest are the training and the test accu-
racy of the target classifier respectively. Note that we fix the
data at the training stage whose labels will be modified, so
when attackers use the same data to query the final model,
they will get the same output. Hence PURIFIER can defend the
replay attack where attackers exploit the differences between
the outputs of multiple same queries to the target model.

Given an input sample x, H first identifies if x is a selected
member. In order to identify members, the label swapper
stores information of the original training data. However,
it is challenging for the label swapper to efficiently store
and index the member information in the run time. To this
end, Label swapper stores F (x) where x ∈ Dswap as the
identifiers to form a prediction indexing set Pindex whose
dimension is much smaller than the training data Dtrain. In
order to tolerate small perturbations of members added by
attackers to indirectly infer membership of a target member
sample x ∈ Dswap, H uses k nearest neighbor (kNN) to
identify these suspicious members and swaps their labels.

Training and Inference Process of PURIFIER

The training process of PURIFIER is detailed in Algorithm
1. For each epoch, we first draw a mini-batch of data points
{(xrefj

, yref )}qj=1
from the reference set Dref . Then we

query the target classifier F to obtain the confidence scores
crj and the labels lrj (Line 1-5). After that, the loss is calcu-
lated on the objective function 1 and gradient descent is used
to update the parameters θ of confidence reformer G (Line
6-7). When the training of G is finished, we select the data
from Dtrain at rate pswap randomly to form Dswap (Line
10-11). After that, we query the target classifier F to get
the confidence cj of the sample (xtrainj

, ytrainj
) ∈ Dswap.

The original confidence score cj is added to the prediction
indexing set Pindex and later used by the label swapper to
achieve indistinguishability of prediction label (Line 12-15).

In the inference stage, given an input sample x, we first
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Algorithm 1: Training process of PURIFIER.
Input: The reference dataset Dref , the training dataset

Dtrain, the target classifier F , size of mini-batch q,
size of the data need to be modify the labels t,
number of epochs P , learning rate η, label loss
coefficient λ

Output: Model parameters θ of label reformer Gθ , The
prediction indexing set Pindex

1 θ ← initialize(Gθ) ;
2 for p = 1 to P do
3 for each mini-batch {(xrefj

, yrefj
)}q

j=1
⊂ Dref do

4 crj ← F (xrefj );
5 lrj ← onehot(argmax(crj ));
6 g ← ∇θ

1
q

∑q
j=1R(Gθ(crj |lrj ), crj ) +

λL(Gθ(crj |lrj ), lrj );
7 θ ← updateParameters(η, θ, g)
8 end
9 end

10 Pindex ← ∅;
11 Dtrain ← shuffle(Dtrain);
12 Dswap ← {(xtrainj , ytrainj )}

t

j=1
⊂ Dtrain;

13 for each (xtrainj , ytrainj ) ∈ Dswap do
14 cj ← F (xtrainj );
15 Pindex ← Pindex ∪ {cj};
16 end
17 return Gθ , Pindex

query the target classifier F to get the confidence score c and
the predicted label l. Then, we input c into the confidence
reformer G, with l being the condition, to get the purified
confidence vector p. At this stage, p is indistinguishable in in-
dividual shape and statistical distribution. The label swapper
H checks if c has a match in Pindex using kNN and swaps
the label of p if c is matched. This ensures indistinguishabil-
ity in terms of prediction label. Finally, PURIFIER returns the
purified confidence scores p.

Experimental Setup
Datasets & Models
Membership inference attack. We use CIFAR10 (Shokri
et al. 2017; Salem et al. 2018; Li and Zhang 2021), Pur-
chase100 (Shokri et al. 2017; Nasr, Shokri, and Houmansadr
2018; Salem et al. 2018; Li and Zhang 2021) and Face-
Scrub530 (Yang et al. 2019) datasets which are widely
adopted in previous studies on membership inference attacks.

Model inversion attack. We use the same datasets as
membership inference attacks.

Attribute inference attack. We use the same dataset UTK-
Face (Zhang, Song, and Qi 2017) as in a previous study (Song
and Shmatikov 2020) where the attacker infers additional at-
tribute (i.e., race of five possible values) beyond the original
gender classification task.

We attach the details of the datasets to Appendix, includ-
ing the introduction, pre-processing and data allocation. We
also further elucidate the target classifier and PURIFIER on
different datasets in the Appendix, including their model
architectures and hyper-parameters.

Existing Attacks
In our experiments, we implement the following attacks.

Membership inference attack. We implement the atttacks
including ① NSH attack (Nasr, Shokri, and Houmansadr
2018), ② Mlleaks attack (Salem et al. 2018), ③ Adaptive
attack (Salem et al. 2018) (where the attacker knows all the
details about the defense mechanism), ④ BlindMI attack (Hui
et al. 2021), ⑤ Label-only attack (Yeom et al. 2018; Li and
Zhang 2021). Model inversion attack. The attacker uses an
inversion model to reconstruct x according to the F (x) (Yang
et al. 2019). Attribute inference attack. The attacker trains
a classification on Daux to infer additional sensitive attribute
beyond the original input attributes of the given sample (Song
and Shmatikov 2020).

We attach the details of the attack above-mentioned meth-
ods, including their implementations, to the Appendix. We
also attach the results of Gap attack to the Appendix.

Metrics
We use the following 4 metrics to measure the utility, defense
performance and efficiency of a defense method.

①Classification accuracy: It is measured on the training
and test set of the target classifier. ②Inference accuracy:
This is the classification accuracy of the attacker’s attack
model in predicting the membership/sensitive attribute of
input samples. ③Inversion error: Following (Yang et al.
2019), We measure the inversion error by computing the
mean squared error between the original input sample and the
reconstruction. ④Efficiency: We measure the efficiency of a
defense method by reporting its training time and test time
relative to the original time required by the target classifier.

Experimental Results
PURIFIER is Effective in Membership Inference
Effectiveness. Table 1 presents the defense performance of
PURIFIER against different membership inference attacks.
For each classification task, PURIFIER decreases the attack
accuracy as well as preserves the classification accuracy. PU-
RIFIER reduces the accuracy of NSH attack significantly for
different datasets. For instance, it reduces the accuracy of
NSH attack from 69.34% to 51.56% in FaceScrub530 dataset.
As for Mlleaks attack, the model defended with PURIFIER re-
duces the attack accuracy to nearly 50%. Compared with the
pure Mlleaks attack, the performance of the adaptive attack
does not show a large difference where PURIFIER reduces the
accuracy to nearly 50%. PURIFIER is also effective against
BlindMI attack. For example, PURIFIER reduces the accuracy
of BlindMI from 62.61% to 50.00% in FaceScrub530 dataset.

Comparison with other defenses. We compare PURI-
FIER with following defenses. ①Min-Max (Nasr, Shokri, and
Houmansadr 2018). ②MemGuard (Jia et al. 2019). ③Model-
Stacking (Salem et al. 2018). ④MMD Defense (Li, Li, and
Ribeiro 2021). ⑤SELENA (Tang et al. 2022). ⑥One-Hot
Encoding. ⑦Random Noise. We attach the details to the Ap-
pendix.

Table 2 shows the defense performance of PURIFIER and
other methods. PURIFIER achieves the best defense perfor-
mance against most of the attacks, including the NSH attack
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Dataset Defense
Utility Membership Inference Attack Accuracy/AUC Inversion Error

Train acc Test acc. NSH Mlleaks Adaptive BlindMI Label only attacks
L2 normTransfer Boundary

CIFAR10 None 99.99% 95.92% 56.03% 56.26% N.A. 54.76% 0.5048 0.5214 1.4357
Purifier 97.60% 95.92% 51.65% 50.26% 50.23% 50.64% 0.4974 0.4949 1.4939

Purchase100 None 100.00% 84.36% 70.36% 64.43% N.A. 69.82% 0.5431 N.A. 0.1426
Purifier 86.59% 83.23% 51.71% 50.09% 50.13% 50.96% 0.4978 N.A. 0.1520

FaceScrub530 None 100.00% 77.68% 69.34% 75.04% N.A. 62.61% 0.5869 0.7739 0.0114
Purifier 77.58% 77.52% 51.56% 51.04% 50.00% 50.00% 0.4983 0.6185 0.0454

Table 1: Defense performance of PURIFIER against various attacks. Results of Transfer attack and Boundary attack are reported
in AUC. Note that the N.A. means that setting is not applicable.

Dataset Defense Training acc. Test acc. NSH Attack Mlleaks Attack BlindMI Attack Inversion Error
Purifier 97.60% 95.92% 51.65% 50.26% 50.64% 1.4939

Min-Max 99.40% 94.38% 53.97% 52.93% 53.52% 1.4770
MemGuard 99.99% 95.92% 53.63% 52.24% 52.03% 1.4439

Model-Stacking 95.80% 92.12% 51.93% 51.01% 52.69% 1.4723
MMD Defense 99.99% 87.44% 59.50% 57.60% 58.92% 1.4414

SELENA 98.40% 93.90% 52.14% 52.35% 51.08% 1.4350
One-Hot Encoding 99.99% 95.92% 52.17% 50.00% 51.88% 1.4414

CIFAR10

Random Noise 99.99% 95.92% 55.97% 50.01% 51.69% 1.4342
Purifier 86.59% 83.23% 51.71% 50.09% 50.96% 0.1520

Min-Max 99.89% 82.03% 65.13% 63.95% 57.39% 0.1428
MemGuard 100.00% 84.36% 62.28% 57.86% 61.35% 0.1426

Model-Stacking 81.84% 69.68% 61.16% 55.53% 60.36% 0.1472
MMD Defense 100.00% 82.65% 69.48% 69.89% 66.62% 0.1439

SELENA 83.24% 79.53% 51.90% 52.97% 53.04% 0.1440

Purchase100

One-Hot Encoding 100.00% 84.36% 57.65% 50.00% 57.67% 0.1524
Random Noise 100.00% 84.36% 60.06% 50.02% 54.44% 0.1409

Purifier 77.58% 77.52% 51.56% 51.04% 50.00% 0.0454
Min-Max 98.99% 68.31% 65.56% 69.84% 66.16% 0.0182

MemGuard 100.00% 77.68% 62.48% 60.06% 62.72% 0.0117
Model-Stacking 86.30% 57.05% 62.00% 51.86% 60.62% 0.0417
MMD Defense 100.00% 77.38% 64.88% 67.95% 63.55% 0.0111

SELENA 81.06% 72.05% 51.68% 51.23% 54.05% 0.0131

FaceScrub530

One-Hot Encoding 100.00% 77.68% 57.87% 50.00% 61.23% 0.0420
Random Noise 100.00% 77.68% 56.85% 50.04% 60.83% 0.0175

Table 2: Defense performance of PURIFIER and other defense methods.

and the BlindMI attack. For the Mlleaks Attack, PURIFIER
can achieve the second best performance only to One-Hot
Encoding and Random Noise. PURIFIER also achieves a bet-
ter security-utility tradeoff. It imposes a reduction in test
accuracy of about 1%. In comparison, Model-Stacking and
SELENA can mitigate membership inference attacks to some
extent, but they incur an intolerable reduction in model’s test
accuracy. For One-Hot Encoding and Random Noise, their
transformation on confidence vectors leads to a large degree
of semantic information loss. MemGuard can mitigate attacks
with negligible decline in test accuracy. However, its defense
performance is not as good as that of PURIFIER.

PURIFIER is Effective in Adversarial Model
Inversion
Effectiveness. We further investigate the defense perfor-
mance of PURIFIER against adversarial model inversion at-
tack. We train an inversion attack model on top of each
classifier with or without defense on FaceScrub530 dataset.
Although PURIFIER is designed to protect models from mem-

bership inference attacks, it turns out that PURIFIER is also
effective in mitigating model inversion attack. Figure 2 shows
the results of our experiment on adversarial model inversion
attack on FaceScrub530. We quantify the inversion quality by
reporting the average facial similarity scores compared with
the ground truth using the Microsoft Azure Face Recognition
service (Microsoft 2022), which is shown on left side of Fig-
ure 2. The less the number is,the less similarity reconstructed
samples share with the original samples.

We report all the inversion error under three datasets in
Table 1. As shown in Table 1 and Figure 2, the inversion loss
on the FaceScrub530 dataset is raised 4+ times (i.e. from
0.0114 to 0.0454) after applying PURIFIER, indicating the
performance reduction of the inversion attack is significant.
Note that the effect of defense against the adversarial model
inversion attacks on Purchase100 and CIFAR10 seems less
significant compared with FaceScrub530 This is because the
inversion attack does not pe rform well on these classifiers
even though without any defense.

Comparison with other defenses. PURIFIER also
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Test DataTrain Data

NO Defense 
(0.24)

SELENA 
(0.24)

MemGuard 
(0.17)

Min-Max 
(0.29)

Model-Stacking 
(0.17)

Purifier 
(0.14)

Figure 2: Model inversion attack against the FaceScrub530
classifier defended by different approaches.

Dataset Defense Utility Attack AccuracyTrain acc Test acc

UTKFace None 99.92% 83.08% 31.06%
Purifier 84.20% 82.78% 20.94%

Table 3: Attribute inference attack against the UTKFace clas-
sifier with and without PURIFIER.

achieves the best performance in defending model inver-
sion attack on CIFAR10 and Facescrub530. Table 2 shows
that PURIFIER has the largest inversion error, quantitatively
demonstrating that PURIFIER achieves better defensive per-
formance against adversarial model inversion attack than
other defenses. Figure 2 depicts the reconstructed samples
from confidence vectors given by each defense model on
FaceScrub530 dataset. With PURIFIER as defense, recon-
structed images are much less similar to the ground truth
image and look more blurred. Other defense methods, how-
ever, could not protect the model from adversaries recovering
small details of the original image. It can be quantitatively
verified by similarity scores gathered from Microsoft Azure
Face Recognition service. For instance, the average similarity
score of reconstructed images of MemGuard-defended mod-
els is 0.17, which is larger than that of PURIFIER (i.e., 0.14).
PURIFIER achieves the smallest similarity scores among
other defense methods, indicating that PURIFIER can defend
against adversarial model inversion attack effectively.

PURIFIER is Effective in Attribute Inference
Effectiveness. We deploy PURIFIER under the attribute in-
ference attack and find that PURIFIER is also effective in
mitigating it. We train an attribute inference classifier on
UTKFace dataset to predict the race of the given sample.
Table 3 shows the results of our experiment. The attribute
inference accuracy on the UTKFace dataset is reduced to
20.94% (almost random guessing) after applying PURIFIER.

Efficiency
Figure 3 presents the efficiency of PURIFIER compared with
other defenses. We attach the experimental equipment to Ap-
pendix. The training time of PURIFIER is only 0.423 times of
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Figure 4: Distribution of the target classifier’s confidence
in predicting the correct class(first row) and the prediction
uncertainty(second row) on members and non-members of
the training set on Purchase100.

the target classifier, which outperforms all the other methods.
The testing time of PURIFIER is 18.06 times as much as the
target classifier, which is considered acceptable compared to
MemGuard whose testing time is 7,000+ times more than the
original classifier.

Analysis of Purified Confidence Scores
In this subsection, we analyze how the purified confidence
scores affect membership inference attacks.

Individual indistinguishability of purified confidence.
PURIFIER reshapes the confidence score vectors according to
the pattern of non-members. We examine the indistinguisha-
bility of the confidence scores on members and non-members
by plotting the histogram of the target classifier’s confidence
in predicting the correct class and the prediction uncertainty
in Figure 4. The prediction uncertainty is measured as the
normalized entropy −1

log(k)

∑
i ŷi log(ŷi) of the confidence
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Original member lantents. Original non-member lantents. 

Purified member lantents. Purified non-member lantents. 

Figure 5: The statistical distribution of latent vectors in the
CIFAR10 dataset. Different colors stand for latent vectors
with different labels.

vector y = F (x), where k is the number of classes. As Fig-
ure 4 shows, PURIFIER can reduce the gap between the two
curves. Similar results can be obtained on other classifiers
and attached to the Appendix. The results of the maximum
and average gaps are also listed in the Appendix. PURIFIER
successfully reduces the gaps between the target classifier’s
confidence in predicting the correct class and the prediction
uncertainty for members and non-members, which suggests
it can reduce individual differences between them.

Statistical indistinguishability of purified confidence.
We present the statistical distribution of confidence score
vectors in the encoder latent space of the confidence reformer.
Figure 5 visibly displays the differences in the CIFAR10
dataset between members and non-members in the latent
space. As illustrated in the first row, members cluster to-
gether based on their labels while non-members are more
scattered on the map. The second row of Figure 5 also shows
the statistical distribution of members and non-members pro-
cessed with PURIFIER in the latent space. When processed
with PURIFIER, Gaussian noises are added to the confidence
score vectors, making the member latent vectors to be more
scattered. This demonstrates that PURIFIER can reduce the
statistical differences while preserving semantic utility.

Label indistinguishability of purified confidence. PURI-
FIER uses label swapper to identify and swap the predicted
labels of members. label swapper incurs a negligible reduc-
tion in test accuracy. At the same time, swapping the labels
of the member samples reduces the training accuracy so that
the gap between the accuracy of members and non-members
is minimized, which is shown in Table 1. Many label-only
membership inference attacks are less effective under PURI-
FIER with label swapper. This reflects that purified member
confidence vectors are less distinguishable from those of the
non-members in terms of the label.

Discussion
Assuming the reference data are considered as members, we
present the inversion error and the inference accuracy on the
reference set for each defense and attach the results to the
Appendix. The Results show that PURIFIER can still preserve
the defense effect against data inference attacks.

We also investigate the effect of the PURIFIER ’s training
data by using different in-distribution and out-of-distribution
data to train PURIFIER. The results show that PURIFIER can
still mitigate the attacks, but at the cost of sacrificing the
utility significantly when using out-of-distribution data. We
attach the results to the Appendix.

Furthermore, we investigate the effectiveness of PURIFIER
to detect the members with perturbation and attach the result
to Appendix. It shows that PURIFIER can accurately detect
the members with perturbation ∥η∥∞ < 1e − 10 on Face-
Scrub530 dataset.

Related Work
Data Inference Attacks
In data inference attacks, the attacker aims at inferring infor-
mation about the data that the target model operates on. Xiao
et al. (Xiao et al. 2019) studied the adversarial reconstruction
problem. They studied the prediction model which outputs
40 binary attributes. Our paper, on the contrary, studies black-
box classifiers whose output is constrained by a probability
distribution. Jia and Gong (Jia and Gong 2018) proposed the
adversarial formulation for privacy protection. They aimed
at protecting the privacy of users’ sensitive attributes from
being inferred from their public data. Our work investigates
inference attacks that leverage prediction results of machine
learning models to infer useful information about the input
data.

Secure & Privacy-Preserving Machine Learning
A number of studies made use of trusted hardware and crypto-
graphic computing to provide secure and privacy-preserving
training and the use of machine learning models. These tech-
niques include homomorphic encryption, garbled circuits and
secure multi-party computation (Liu et al. 2017; Bonawitz
et al. 2017; Phong et al. 2018; Dowlin et al. 2016; Mohas-
sel and Zhang 2017; Dwork and Feldman 2018) and secure
computing using trusted hardware (Ohrimenko et al. 2016;
Juvekar, Vaikuntanathan, and Chandrakasan 2018). Although
these methods protect the data from direct observation by the
attacker, they do not prevent information leakage via model
computation.

Conclusion
In this paper, we propose PURIFIER to defend data inference
attacks. PURIFIER learns the pattern of non-member confi-
dence score vectors and purifies confidence score vectors to
this pattern. It makes member confidence score vectors indis-
tinguishable from non-members in terms of individual shape,
statistical distribution and prediction label. Our experiments
show that PURIFIER is effective and efficient in mitigating ex-
isting data inference attacks, outperforming previous defense
methods, while imposing negligible utility loss.
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