CS6204
Advanced Topics in Networking

Assoc Prof. Chan Mun Choon
School of Computing

National University of Singapore

Aug 14, 2015

CS6204

Lecturer

Chan Mun Choon
Office: COM2, #04-17
Email: chanmc@comp.nus.edu.sg

URL: http://www.comp.nus.edu.sg/~chanmc

CS6204 2

mailto:chanmc@comp.nus.edu.sg

Course Description

This graduate (PhD) level course covers a broad range of the
latest developments in computer networking and
telecommunications in terms of new techniques and
technologies, trends, open research issues and some

related new principles and approaches in networking.

CS6204 3

Course Pre/co-requisites

CS5229 Advanced Computer Networks
Or

Permission from Lecturer

CS6204 4

Topics Covered

Software Defined Network (SDN) — 6 weeks

* Topology design, resource allocation, policy
verification/checking, transport protocols (TCP)

Wireless Communication — 6 weeks

* Backscatter

* Cellular network scheduling and power saving
* Mobile Sensing

* Wireless Sensor Network Protocol

* Delay/Disruption Tolerant Network Protocols

CS6204 5

Evaluation

Weekly paper reviews (week 3 onwards): 35%
1 Paper presentation (week 3 onwards): 25%

Term paper
o Abstract: 5%
o Full paper: 35%

> No final exam

CS6204 6

Term Paper

* Individual work
* Student pick his/her topic
* Two categories
* Survey paper
* Solve a “small” problem (preferred)

* Abstract: 1 — 2 pages (due week 9)
* Full paper: 4-8 pages (due week 13)
* ACM Proceedings Format, two column, 10 point font

CS6204 7

General Information

IVLE: CS6204
> General information

> Reading list, lecture notes

o Discussion forum

CS6204 8

A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks

Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti

Abstract—The idea of programmable networks has recently
re-gained considerable momentum due to the emergence of
the Software-Defined Networking (SDN) paradigm. SDN, often
referred to as a “radical new idea in networking”, promises
to dramatically simplify network management and enable in-
novation through network programmability. This paper surveys
the state-of-the-art in programmable networks with an emphasis
on SDN. We provide a historic perspective of programmable
networks from early ideas to recent developments. Then we
present the SDN architecture and the OpenFlow standard in

narticnlar. disense enrrent alternatives for imnlementation and

The idea of “programmable networks™ has been proposed as
a way to facilitate network evolution. In particular, Software
Defined Networking (SDN) is a new networking paradigm
in which the forwarding hardware is decoupled from con-
trol decisions. It promises to dramatically simplify network
management and enable innovation and evolution. The main
idea is to allow software developers to rely on network
resources in the same easy manner as they do on storage
and computing resources. In SDN, the network intelligence is

IEEE Communications Survey and Tutorials, Vol. 16,

Issue 3, August 2014.

CS6204 9

Why SDN?

Additional Reference:

* Scott Shenker, et.al. The Future of
Networking, and the Past of Protocols
(opennetsummit.org/archives/oct11/shenk
er-tue.pdf)

An Example Transition:
Programming

Machine languages: no abstractions
> Mastering complexity was crucial

Higher-level languages: OS and other abstractions
° File system, virtual memory, abstract data types, ...

Modern languages: even more abstractions
> Object orientation, garbage collection,...

Abstraction is the key to extracting simplicity

CS6204 11

Key to Internet Success: Layers

Applications
...builton...

email WWW phone...

Reliable (or unreliable) transport ksmw HTTP nrp..*}

. bullton... TCP UDP...

Best-effort global packet delivery D

_..built on... Ahemet ppF\

Best-effort local packet delivery (csma async sonet. .|

copper fibre radio...

..builton...

Physical transfer of bits

CS6204 12

Problems

Networking:

- Teach big bag of protocols
- Notoriously difficult to manage

- Evolves very slowly

How about the other fields in “systems” such OS,
DB, computer architecture....?

CS6204 13

Unix as an Application Program

David Golub, Randall Dean, Alessandro Forin, Richard Rashid

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

1. Abstract

Since March of 1989 we have had running at CMU a computing environment in which the functions of a
traditional Unix system are cleanly divided into two parts: facilities which manage the hardware resources
of a computer system (such as CPU, /O and memory) and support for higher-level resource abstractions
used in the building of application programs, e.g. files and sockets. This paper describes the
implementation of Unix as a multithreaded application program running on the Mach kernel. The
rationale, design, implementation history and performance of the system is presented.

Golub, David B., et al. "UNIX as an Application Program."
UsSENIX summer. 1990.

CS6204 14

Desirable Features

* |dea:
* Operating system: decouple policy and mechanism

* Network: decouple control plane and data plane

* Programmable Network
* Simplify network management

* enable evolution and innovation

* Commoditizing network hardware
* Eliminate (special purposes) middleboxes
* Support “third-party” apps

CS6204 15

Brief History

Open Signaling (1990s)
* Make ATM, Internet and mobile networks more open,
extensible, and programmable

* Separation between hardware and control software

* Access to the network hardware via open programmable
network interfaces.

* Focuses on connection-oriented network services in the
early days
* General Switch Management Protocol (GSMP), IETE Working Group

* Example of such interfaces?

CS6204 16

Brief History (2)

Active Networks (1990s)

* user programmable switches, with inband data
transfer and out-of-band management channels

* Capsules or program fragments that can be
carried in user messages and executed by the
routers

What are the research issues?

CS6204 17

Brief History (3)

DCAN (1990s)

> Control and management functions of many
devices should be decoupled from the devices
and delegate to external entities dedicated to
that purpose

> Multiple heterogeneous control architectures are
allowed to run simultaneously over a single ATM
switch

CS6204 18

Traditional vs SD Network

SN SDN Controller ' Middlebox (e.g. Firewall)
Forwarding device with Fisssd Forwarding device with
:X: decoupled control :)C embedded control Scc’:rn’zle

Traditional Network Software-Defined Network
(with distributed control and middleboxes) (with decoupled control)

CS6204 19

OpenFlow Architecture

CONTROLLER

OpenFlow Protocol

I OPENFLOW CLIENT
OPENFLOW
FLOW TABLE SWITCH
RULE ACTIONS | STATISTICS
- PORT [PORT PORT]
1 | 2 N_|

—]

Forward to port(s)
IP src/dst , MAG sro/dst, Forward to the controller ,
Transport Src/Dst, VLAN ... Modify header fields Packets, Bytes, Duration

Drop

CS6204 20

Applications

Network OS

ecoupled
Control Logic

A

Secure

y Channel processing
Abstraction Layer ¢ Hybl’ld SWitCheS:

« Supports multiple
tables and pipeline

!

switches that have
both OpenFlow and

—

Flow Table

‘ non-OpenFlow ports

SWITCH

CS6204 21

Example of a
Controller:
Floodlight

Learning PortDown OpenStack
Switch Reconciliation Quantum Plugin
Firewall || VNF || Hub Circuit Pusher
JAVA AP RE Si AP
Module Thread Packet Jython Web U Unit
Manager Pool Streamer || Server Tesis
Device || [CPOOV I |jnk Flow
Manager/ || -. Storage Memory
Manager : Discovery [| Cache
Routing
Counter
: Controller
Switches Memory ParfMaon Trace Store
OpenFlow Services

CS6204

22

Some Design Issues

Ternary Content Addressable Memory (TCAM) has been used to support
rule lookup and is expensive and power-hungry

> The number rules that can be supported is a bottleneck to the
scalability

The use of a single controller impose limitations on the scalability in
terms of network size and number of request processed

o Earlier controller running on desktop: 11,000 request/sec, response
time 1.5ms

> Recent controller running on 8-core processor: 1.6M request/sec,
response time 2ms

Placement of controller and bandwidth of control links

CS6204 23

SDN Applications

* Enterprise Networks: many middleboxes functions
have been implemented using SDN including NAT,
firewall and load balancers.

* Data Centers: reduce energy consumption, load
balancing

* Wireless Access Networks

* Optical Networks

CS6204 24

B4: Experience with a Globally-Deployed
Software Defined WAN

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,

Urs Holzle, Stephen Stuart and Amin Vahdat
Google, Inc.
b4-sigcomm@google.com

ABSTRACT

We present the design, implementation, and evaluation of B4, a pri-
vate WAN connecting Google’s data centers across the planet. Bg
has a number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, ii) elastic traf-
fic demand that seeks to maximize average bandwidth, and iii) full
control over the edge servers and network, which enables rate limit-

ing and demand measurement at the edge. These characteristics led
toy a Software Defined Netwarkine architecrtiire ngino OnenFlow tn

Such overprovisioning delivers admirable reliability at the very real
costs of 2-3x bandwidth over-provisioning and high-end routing
gear.

‘We were faced with these overheads for building a WAN connect-
ing multiple data centers with substantial bandwidth requirements.
However, Google’s data center WAN exhibits a number of unique
characteristics. First, we control the applications, servers, and the
LANs all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies

ACM SIGCOMM 2013

CS6204 25

Google’s Deployment

CS6204 26

Google’s Data Center

* Massive data transfer

* Elastic traffic demand

* Full control over Edge servers and networks

* B4 has been deployed for more than 3 years. Among
the first and largest SDN deployment,

* Carries more traffic than Google’s public facing WAN

CS6204 27

Traditional Approach

Treat all bits the same

30% ~ 40% average utilization

Cost of bandwidth, High-end routing gear

Traffic Priority

* User data copies to remote data centers for
availability/durability (lowest volume, most latency
intensive, highest priority)

* Remote storage access for computation over
distributed data sources

* Large-scale data push synchronizing state across
multiple data centers (highest volume, least latency
intensive, lowest priority)

CS6204 29

|‘| Gateway Cental TE n global

Server

lllllllllllllllllllllll

i i i i

I ﬂuﬂmaT RAP|TE Agant Paxos E i Site B J : Site C i
L} i i

|g.l f i i

] I ! i

: Controllers

Figure 2: B4 architecture overview.

CS6204 30

Traffic Engineering States

* Network Topology

* Flow Group (FG): aggregates flows into groups based on
{source, dest, QoS} tuple

* Tunnel: a site level path, e.g. sequence of sites {A->B->C}

* Tunnel Groups (TG): maps FGs to a set of tunnels with
weights

CS6204 31

Traffic Engineering Algorithm

Target: Achieve max-min fairness.

Tunnel Selection selects the tunnels to be considered for
each FG.

Tunnel Group Generation allocates bandwidth to FGs using
bandwidth functions to prioritize at bottleneck links.

Tunnel Group Quantization changes split ratios in each FG
to match the granularity supported by switch hardware
tables.

CS6204 32

Tunnel Selection

Find the k shortest tunnels in the topology graph.

Example: Assume k =3,

FG[1]:A—=>B "/A\
- T[1][1]=A > B

- T[1][2]=A=> C> B 5) 5
- T[1][38]=A>D->C->B Ji\

FG[2]: A > C =

C TRI[A]=A = C \c

- TRIR2]I=A>B->C

- T[2][3]=A> D> C

Use of Equal-cost multi-path routing (ECMP)

CS6204 33

Tunnel Group Generation

Allocate bandwidth to FGs based on demand and priority.

1.Initialize each FG with their most preferred tunnels.

2.Allocate bandwidth by giving equal fair share to each
preferred tunnel.

3.Freeze tunnels containing any bottlenecked link.

4.If every tunnel is frozen, or every FG is fully satisfied, end.

5.Select the most preferred non-frozen tunnel for each non-
satisfied FG, goto?2.

CS6204 34

1 A-B

2 A=C

3 A=D-=>C->B A->D-=>C

25

20

15

10

e P57 = App3

FG2
prefer

A=C 0.9
A=C 3.33

1.67

=] = Appl + App2

FG1 FG2

get/need get/need
10/ 20 0.45 / inf
833/10 1.21/inf

1.67/1.67 3.34/inf

CS6204

Freeze tunnels

Bottle
neck
links

A=B

A-=B, A=B-=>C

A>C A-C-B,A>C

all all

Result:

FG1 (20/20):

A=B: 10
A=>C—=>B:8.33
A=D—=>C—->B: 1.67
FG2 (5/inf):

A=C: 1.67
A=B-=>C:0
A=D—=>C: 3.34

35

Evaluation

(a) TE Algorithm (b) Topology

Avg. Daily Runs | 540 | Sites 16

Avg. Runtime 0.3s || Edges

Max Runtime 0.8s || (Unidirectional) | 46

(c) Flows (d) Topology Changes

Tunnel Groups 240 || Change Events 286/day
Flow Groups 2700 || Edge Add/Delete 7/day
Tunnels in Use 350
Tunnels Cached 1150

Table 3: Key B4 attributes from Sept to Nov 2012.

CS6204

36

Impact of Failure

Failure Type Packet Loss (ms)
Single link 4
Encap switch 10
Transit switch neighboring an encap switch 3300
OFC o)
TE Server 0
TE Disable/Enable 0

Table 5: Trathc loss time on failures.

CS6204 37

16 %4 16 % 1
E14% - —l 2 14 %]
o 12 % - E]lﬁ/”’_‘__.
= .
S 10 % 1 Eww
-Eﬂ 8%l . Eﬂ 8%l .
E h % - E &%t 4
& a []]
S 4% = 4%
8 24 1ose 2| -
0%, 3 3 1 6 2 D% s s Ule 132 Lied
Maximum # of Paths Path Split Quantum

(a) (b)

Figure 13: TE global throughput improvement relative to shortest-
path routing.

CS6204 38

Link Utilization

100

9% tilzation
n
—
|

05:00 12:00 15:00 2000 0000

gl

0000 0400

CS6204 39

Packet Loss

O e e e)) 3
HIPRIALOPRI packets . ;
LOPRI-Dropped-Fraction +
HIPRI-Oropped-Fraction —— -
0.2 F ' 1 0.2

HIPRIALOPRI packets

Fraction of dropped paclets

CS6204 40

% Link: Utilization

23:00

19:00

11:00

S B i
15:00

Figure 15: Per-link utilization in a trunk, demonstrating the effec-
tiveness of hashing.

CS6204 41

