
1

The Future of Networking,

and the Past of Protocols

Scott Shenker

with Martín Casado, Teemu Koponen, Nick McKeown
(and many others….)

2

Software-Defined Networking

•  SDN clearly has advantages over status quo

•  But is SDN the “right” solution?

• My talk: Not what SDN is, but why SDN is

3

Key to Internet Success: Layers

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

4

The Importance of Layering

•  Decomposed delivery into fundamental components

•  Independent but compatible innovation at each layer

•  An amazing success…

• …but an academic failure

5

Built an Artifact, Not a Discipline

•  Other fields in “systems”: OS, DB, etc.
-  Teach basic principles
-  Are easily managed
-  Continue to evolve

•  Networking:

-  Teach big bag of protocols
-  Notoriously difficult to manage
-  Evolves very slowly

6

Why Does Networking Lag Behind?

•  Networks used to be simple

•  New control requirements led to great complexity

•  Fortunately, the infrastructure still works...

-  Only because of your great ability to master complexity

•  This ability to master complexity is both a blessing…
- …and a curse!

7

A Simple Story About Complexity

•  ~1985: Don Norman visits Xerox PARC
-  Talks about user interfaces and stick shifts

8

What Was His Point?

•  The ability to master complexity is not the same as
the ability to extract simplicity

• When first getting systems to work….
-  Focus on mastering complexity

• When making system easy to use and understand
-  Focus on extracting simplicity

•  You will never succeed in extracting simplicity
-  If don’t recognize it is different from mastering complexity

9

What Is My Point?

•  Networking has never made the distinction…

•  And therefore has never made the transition
-  Still focused on mastering complexity
-  Little emphasis on extracting simplicity from control plane

•  Extracting simplicity builds intellectual foundations
-  Necessary for creating a discipline….

10

An Example Transition: Programming

• Machine languages: no abstractions
-  Mastering complexity was crucial

•  Higher-level languages: OS and other abstractions
-  File system, virtual memory, abstract data types, ...

• Modern languages: even more abstractions
-  Object orientation, garbage collection,…

Abstractions key to extracting simplicity

11

“The Power of Abstraction”

“Modularity based on abstraction
 is the way things get done”

 − Barbara Liskov

Abstractions è Interfaces è Modularity

What abstractions do we have in networking?

12

Layers are Great Abstractions

•  Layers only deal with the data plane

• We have no powerful control plane abstractions!

•  How do we find those abstractions?

•  Define our problem, and then decompose it.

13

The Network Control Problem

•  Compute the configuration of each physical device
-  E.g., Forwarding tables, ACLs,…

•  Operate without communication guarantees

•  Operate within given network-level protocol

Only people who love complexity would find
this a reasonable request

14

Programming Analogy

• What if programmers had to:
-  Specify where each bit was stored
-  Explicitly deal with all internal communication errors
-  Within a programming language with limited expressability

•  Programmers would redefine problem:
-  Define a higher level abstraction for memory
-  Build on reliable communication abstractions
-  Use a more general language

•  Abstractions divide problem into tractable pieces
-  Make task of control program easier…

15

From Requirements to Abstractions

1.  Operate without communication guarantees
 Need an abstraction for distributed state

2.  Compute the configuration of each physical device
 Need an abstraction that simplifies configuration

3.  Operate within given network-level protocol
 Need an abstraction for general forwarding model

16

1. Distributed State Abstraction

•  Shield mechanisms from vagaries of distributed state
-  While allowing access to this state

•  Natural abstraction: global network view
-  Annotated network graph provided through an API

•  Control mechanism is now program using API
-  No longer a distributed protocol, now just a graph algorithm
-  E.g. Use Dijkstra rather than Bellman-Ford

17

2. Specification Abstraction

•  Control program should express desired behavior

•  It should not be responsible for implementing that
behavior on physical network infrastructure

•  Natural abstraction: simplified model of network
-  Simple model only enough detail to specify goals

•  This is “network virtualization”

18

Simple Example: Access Control

Global
Network
View

Abstract
Network
Model

19

3. Forwarding Abstraction

•  Control plane needs flexible forwarding model

•  Abstraction should not constrain control program
-  Should support whatever forwarding behaviors needed

•  It should hide details of underlying hardware
-  Crucial for evolving beyond vendor-specific solutions

20

•  SDN is defined precisely by these three abstractions
-  Distribution, forwarding, configuration

•  SDN not just a random good idea…

•  ...can be “derived” from decomposing network control

•  Fundamental validity and general applicability

My Entire Talk in One Sentence

21

Realizing These Abstractions

•  Core challenge:
-  make distributed control problem a logically centralized one

•  This involves designing a common distribution layer
-  Gathers information from network elements (topology)
-  Disseminates control commands to network elements

•  This is done by a “Network Operating System”

22

Control	 Program	

So#ware	 Defined	 Network	 (SDN)	

	
	
	

	
	

Network OS

Global Network View

Tradi4onal	 Control	 Mechanisms	 Network	 of	 Switches	 and/or	 Routers	

Distributed algorithm running between neighbors

e.g. routing, access control

23

Major Change in Paradigm

•  No longer designing distributed control protocols

•  Now just defining a centralized control function
 Configuration = Function(view)

•  This spells the end for distributed protocols
-  Easier to write, reason about, maintain, ….

•  Beginning of the “software era” of networking
-  Rate of change, nature of standards, different culture, etc.

24

2. Specification Abstraction

•  Abstraction is a simplified model of network

•  Control program merely configures abstract model
-  Abstract configuration = Function(abstract model)

•  Requires a new shared control layer:
-  Map abstract configuration to physical configuration

25

	
	
	

	
	
	

Network OS

Global Network View

Abstract Network Model

Control	 Program	 Network	 Virtualiza4on	

So#ware	 Defined	 Network	

26

3. Forwarding Abstraction

•  Switches have two “brains”
-  Management CPU (smart but slow)
-  Forwarding ASIC (fast but dumb)

•  Need a forwarding abstraction for both
-  CPU abstraction can be almost anything

•  ASIC abstraction is much more subtle: OpenFlow

•  All this assumes switches are unit of abstraction
-  Why not fast, cheap fabrics? (in datacenters)

27

Keep in Mind

•  As we debate the finer points of OpenFlow
-  OF is a detail in the overall SDN architecture

•  OpenFlow is crucial for the industry
-  But a minor piece architecturally

•  Don’t let the tail wag the dog…

28

Dog: Clean Separation of Concerns

•  Control prgm: specify behavior on abstract model
-  Driven by Operator Requirements

•  Net Virt’n: map abstract model to global view
-  Driven by Specification Abstraction

•  NOS: map global view to physical switches
-  API: driven by Distributed State Abstraction
-  Switch/fabric interface: driven by Forwarding Abstraction

29

Final Words

•  Future of networking lies in finding right abstractions
-  The era of “a new protocol per problem” is over

•  Takes years to internalize and evaluate abstractions
-  Even longer to adjust to software-oriented culture

• We are in the early stages of an intellectual voyage
-  We should keep our minds open while charting our course

30

Thank You…..

