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ABSTRACT
In this paper, we present an approach to extract social behavior and
interaction patterns of mobile users by passively monitoring WiFi
probe requests and null data frames that are sent by smartphones for
network control/management purposes. By analyzing the temporal
and spatial correlations of the Receive Signal Strength Indicators
(RSSI) of packets from these low rate transmissions, we are able
to discover proximity relationships, occupancy patterns, and social
interactions among users.

We evaluate the SocialProbe system using commodity off-the-
shelf smartphones and WiFi Access Points in two locations, a re-
search lab and a public dining area. The result shows that the
proposed approach is able to obtain reliable social relationships and
interactions in a non-intrusive way.

CCS Concepts
•Networks → Wireless access points, base stations and infras-
tructure; •Human-centered computing→ Social network anal-
ysis; Ubiquitous and mobile computing systems and tools; Smart-
phones;

Keywords
Social Relationship; Passive; WiFi Probe; Fingerprinting

1. INTRODUCTION
Understanding social behavior and interaction pattern plays an

important role in many disciplines. Having this information is useful
in a diverse range of applications, including psychology [22, 12],
health care [23, 28] and urban planning [31, 8]. However, obtaining
such information often either requires additional hardware support
or users need to install software on their mobile devices. Getting
this information in a non-invasive manner has been a long-standing
challenge in the research community.

As the capability of mobile devices continues to grow, mobile
devices, especially smartphones, will be even more ubiquitous. A
recent study [10] suggests that negative psychological and physio-
logical outcomes are associated with phone separation even just for
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a while. Thus, smartphone provides a good proxy to reason about a
user’s behavior and social interaction pattern.

Due to the widespread deployment of WiFi networks and the
availability of WiFi chipsets on smartphones, use of WiFi related
information to extract context information has been both popular
and shown to be effective. Researchers have proposed various
ideas to utilize WiFi based information including indoor localization
[3, 33], crowd counting [17, 30] and passive tracking [24, 25].
One limitation of these techniques is that they require users to
install applications on their smartphones, which can be cumbersome
and limits deployment. To make matter worse, Apple has recently
removed the API for WiFi scanning on iOS platform [13] thus
severely limiting the use of mobile apps that require active WiFi
scanning on iOS.

In order to overcome such problems, researchers have proposed
to use WiFi probe request frames. These probe request frames are
constantly broadcast by smartphones to advertise their presence to
nearby access points (APs). These frames contain useful information
such as network identifier (SSID), MAC address, signal strength, and
time stamp. Such approaches are passive because they require no
change on the mobile devices. The monitoring is performed only by
the APs with no impact on the operations of existing infrastructure.
In the past, researchers have been able to uncover many interesting
social relationships by looking at the SSIDs contained in the probe
request [11, 14, 4, 7]. However, in a recent study [18], over 80% of
the probe requests are broadcast with empty SSID field to reduce
information leakage. This implies that such SSID based approaches
will be much less effective.

In this work, we present an approach to extract social behavior
and interaction pattern by using the spatial-temporal correlation
of 802.11 frames and the signal strength information contained
in these frames. Signal strength information is typically under-
utilized because of the noise and non-uniform (among different
phones) behaviors. In spite of these challenges, we show that we are
able to discover users’ daily behavior and social interaction pattern
by passive WiFi monitoring. We summarize our contributions as
follows:

• We make use of both probe request frames and null data
frames transmitted by WiFi clients. While probe request
frames have often been exploited, we are not aware of previ-
ous work that has utilized null data frames for relationship
detection.

• Frames transmitted by different phones even in the same loca-
tion have significantly different RSSIs. We compare different
signal fingerprints normalization methods and use the maxi-
mum scheme to detect if two mobile devices are co-located.

• We design and evaluate SocialProbe, a system that can dis-
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(a) Probe request frames
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(b) Null data frames

Figure 1: The number of frames sent over time observed for a Nexus
5. The phone is not associated to an AP in (a) while connected to an
AP in (b).

cover social interaction among users of mobile devices. We
demonstrate the utility of SocialProbe by showing how it can
be used to discover the underlying relationship and interaction
patterns among different users in two different environments,
namely a research lab and a public dining hall.

The rest of the paper is organized as follows. In section 2, we
investigate how probe request and null data frame intervals and
signal strength differ among different phones. In section 3 and
4, we present an overview of the system and introduce the four
components of SocialProbe: devices filtering, fingerprint generation
and normalization, co-location detection, and social relationship
discovery. We show the evaluation result in section 5 and present
related work in section 6. Finally, we discuss and summarize our
work in section 7 and 8.

2. FEASIBILITY AND CHALLENGE

2.1 Probe Request and Null Data Frame
Probe Request Frame: In order to speed up the discovery of

surrounding APs, a smartphone broadcasts probe request frames to
trigger responses from nearby APs. These frames are management
frames containing information such as network identifier (SSID),
MAC address, signal strength, and time stamp. This information is
used by devices and APs to make decisions related to association
and authentication.

As probe requests frames are used for AP discovery, we expect
these frames to be broadcast only when the smartphones are not
associated with any AP. To our surprise, the mobile devices con-
tinue to broadcast probe requests even after they are already con-
nected/associated to a WiFi network. We believe that this is done
to prepare for handover if the WiFi signal from currently connected
access point becomes weak, say due to mobility.

Figure 1(a) shows an example of how frequent a device, in this
case, a Nexus 5 smartphone, sends out probe request frames. In
this example, probe requests are sent in a burst of a few frames
(4 to 11) each time. Probe interval increases from 30 seconds to
60s second and finally reaches a stable value of 120 seconds. The
longest interval occurs when the smartphone cannot find available
WiFi AP to connect to after repeated attempts. This behavior strikes
a balance between energy consumption and discovery time.

Null Data Frame: Many existing works on WiFi passive moni-
toring rely only on probe request frames. In our work on discovering
social interaction, it is reasonable to assume that the devices have
access to the WiFi infrastructure. This is typically true in office and
campus environments and is also likely in places such as malls, pub-
lic libraries and transportation hubs (e.g airports and train stations).

Thus, in order to increase the amount of information we can
gather, we also monitor additional IEEE 802.11 control frames. One

control frame of interest is the null data frame. Null data frames
are transmitted when a device is associated. It is used for power
management purpose, such as to inform the AP that the device will
be going offline into power save mode (PSM) or when it is online
and ready to receive data.

Figure 1(b) shows an example of how frequent a device, in this
case, a Nexus 5 smartphone, sends out null data frames. Null frames
are sent every 20-30 second, with two frames sent each time. From
time to time, the device will send out a burst of null frames when it
hit the roaming threshold and is seeking out another access point to
associate with. In Figure 1(b), we can also observe a large number
of null frames transmitted around the 950 to 1000 second interval.

We found a similar pattern on 5 different smartphone phone
models. The maximum interval between probes varies between
45 seconds to 5 minutes. The result we get from this controlled
experiments is consistent with the findings by other researchers [16,
18, 24].

2.2 Inter-Frame Interval in the Wild
By combining probe request and null data frames, one can get

information on a device when it is associated and not associated.
However, the question of what are the (probe and null data) frame
transmission intervals in the wild remains. To answer this question,
we analyze data collected from a university environment covering
eating areas, classroom, and research labs over a two months period.
The data contains information from 4574 devices and 33 phone
vendors. We show the results in Figure 2. For probe request frames,
89% of the inter-frame intervals are 120 seconds or less and 60% of
the frames are separated by 20 seconds or less. On the other hand,
70% of the null frames are sent at intervals of 20 seconds or less.
30% of null frames are sent within 5 seconds which are the result
of those burst of null frames shown in Figure 1(b) in the 950-1000
second interval. When we combine data from both probe request
and null data frames, 95% of the frame intervals are less than 2 min.

Our measurement provides two valuable information. First, probe
request and null data frames can provide up to minute-level gran-
ularity on user movement. Second, since 95% of probes and 97%
of null frames have inter-frame intervals of less than 5 minutes, 5
minutes is a good threshold to decide whether a people has moved
away based on frame reception.

2.3 Received Signal Strength
The signal strength information available in the probe request and

the null data frame is known to be noisy and can be unreliable [6].
Many factors influence the stability of signal strength, including
multi-path effect, antenna gain and phone placement. A phone can
also transmit at different power depending on the specific IEEE
802.11 version used [15]. For example, Samsung Galaxy S4 sends
at 13 dB using 802.11a but it sends at 12 dB using 802.11n.

In order to study the signal difference and stability from diverse
phone models, we place six different phones very close together
and collect probe requests from five WiFi monitors in a research lab.
5 different models installed with different versions of the Android
operating system are used. We collected about 100 probe requests
burst for each phone in all the 15 locations we have selected.

Figure 3 shows the results for one of the locations. From the
figure, we see that even if the phones are placed close together, there
can be substantial differences in the signal strength. While most of
the signal strengths received from the same phone fluctuate within
4 dB, in some cases, the variation can be as much as 10 dB. Given
such noisy and highly varying signals from different phones placed
very close together, the challenge is thus on how to make sense of
these noisy signals.
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Figure 3: Signal strength of frames collected by 5 different WiFi
monitors from 6 phones. Phones are kept in same location and
settings: screen is ON but device is not connected to the WiFi.

3. SYSTEM OVERVIEW - SocialProbe
The overview of the proposed system, SocialProbe, is shown in

Figure 4. Multiple WiFi monitors are deployed around the area of
interest and each WiFi monitor scans for probe request and null data
frames. When a user, carrying WiFi enabled mobile devices, enters
the vicinity of the area to be monitored, the frames transmitted are
captured by the monitors.

Data collected by the monitors are sent to the server for further
processing. The server performs analysis of the data as follow:

• Device Filtering: only devices with valid MAC addresses
and human-like present ratio are used.

• Fingerprint Generation and Normalization probe request
and null data frames from multiple monitors are merged and
then “normalized" to form the signal fingerprint.

• Co-location Detection: The above “normalized" WiFi fin-
gerprints are fed into our algorithm to determine if two mobile
devices are nearby.

• Discovering Social Relationship: Information on pair-wise
device proximity enables us to discover short-term behavior
like dining together in the canteen or a short gossip at tea
breaks. As data was accumulated for a sufficiently long dura-
tion, social interaction pattern and the underlying relationship
among mobile users can be obtained.

It is important to note that since we are relying on WiFi frames
that are transmitted relatively infrequently, it is not possible to per-

form short time-scale tracking. Instead, we are looking at behaviors
that last for a sufficiently long period, usually in the order of minutes.

4. METHODOLOGY
In this section, we will introduce each component of the Social-

Probe system in detail.

4.1 Device Filtering
The first level of filtering is to make sure that the frames recorded

belong to devices carried by human users. The processing is done
as follows.

4.1.1 Filtering based on MAC Address
This filtering step is to make sure that the devices detected are

from valid mobile device vendors. Note that we are mainly inter-
ested in smartphones carried by mobile users. Each frame received
contains a plain text MAC address which contains a 3 byte Organi-
zationally Unique Identifier (OUI) and a 3 byte Network Interface
Controller Specific (NIC). By matching the first three bytes (OUI)
to an online public database, we are able to identify vendors of the
devices. This filtering process removes two categories of MAC ad-
dresses. The first category contains MAC addresses that are invalid
or randomly generated. The second category are addresses that are
not likely to be belonging to smartphones. Examples are laptops or
devices that use WiFi dongles.

4.1.2 Filtering based on Present Ratio
While we are able to identify mobile devices that are likely to

be smartphones, it is also important that these devices are carried
by human users. Devices such as desktop or WiFi enabled sen-
sor/gateways from smartphone vendors cannot be removed by MAC
addresses alone. The next filtering step is based on temporal be-
havior. In particular, mobile devices carried by human users should
exhibit daily routines similar to a human. After sufficient data is
collected, we can use the data to check for consistency with hu-
man mobility patterns. We exclude devices with the two following
patterns: very limited time or no mobility.

To perform this filtering step, we do an analysis of the detection
duration and transmission frequency of these devices. We used a
time slot duration of 5 min, a threshold determined based on the
measurements from section 2. If consecutive frames from a device
are detected within 5 min, we assume that the device is still in the
vicinity of the monitor. Note that these observations are made after
merging frames collected from all the monitors. Hence, as long as
one of the monitors hears a probe request or the null data frame, the
device is detected. Figure 5 shows a sample behavior of 4 devices
detected over 5 days.
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Figure 5: Active span for devices during weekday. Device No. 1, 3
and 4 show regular human activity patterns.

We calculate the Present Ratio (PR) of a device by dividing the
active span (duration in which a device’s frames can be detected
in a 5 min interval) over the entire period monitored. If PR is less
than Tlow, we tend to think that the device is carried by humans
who just walk past the monitored area or devices in deep sleep
mode to conserve power. In both cases, either the stay time is too
short or the frame transmission interval is too long for meaningful
interpretation. If PR of a device exceed threshold Thigh, then we
tend to filter such devices as stationary machine not carried by the
human. We empirically set Thigh as 0.5, Tlow as 0.01. For example,
device 2 is a stationary WiFi-enable laptop left on the desk for 4
days which has high PR value of 0.8.

We used both OUI and PR methods to determine if a device is
carried by a human user.

4.2 Fingerprint Generation and Normalization

4.2.1 Fingerprint Generation
After device filtering, the next step is to merge data that are

collected from different monitors into a single signal fingerprint.
The signal fingerprint of a device at a particular time is the col-
lection of signal strengths extracted from frames collected at that
time from different monitors. The fingerprint is represented as
~f :{r1,r2,r3, ...,rn}, where ri is the RSS captured by monitor i.

Note that frame detection is highly unreliable. It has been ob-
served that about 40% of the frames transmitted may be missing
[16]. In order to mitigate the effect of such losses, we search for
fingerprints from nearby time periods to fill in the gaps. However,
in order to reduce the error, we will fill in these measurement gaps
only if the fingerprints before and after the gap do not differ too
much. If we cannot find valid data from the nearby time periods, we
use the value of -99 to denote missing data. To ensure that the local
clocks are in sync, we run NTP in all the monitors.

4.2.2 Fingerprint Normalization
We have illustrates using Figure 3 the problem with utilizing RSS

from different phone models. To compensate for such variations, we
normalize the signal fingerprints obtained from monitors. Consider

the Log-distance Path Loss (LDPL) model as shown in Equation
(1):

RSSd = RSS0−10γlog10(
d
d0

)+ ε (1)

where RSSd is the measured RSS value of a mobile device at a dis-
tance of d away. RSS0 is the reference RSS at a distance of d0. γ is
the path loss exponent and ε is a Gaussian random variable with un-
known parameters. Consider two co-located devices d meters from
a monitor. If we compare the signal strength based on the LDPL
model, we see that the term 10γlog10(

d
d0
) relates to the transmission

loss in the path and does not contain variable related to sending
power. This term depends only on the distance d and the path loss
component which should be similar for two devices in proximity.
Hence, if we are able to normalize the fingerprint vector by reducing
the effect due to differences in transmission power and emphasize
the effect from distance path loss, the fingerprints of these two de-
vices can be made more similar. We use the strongest signal to
substitute RSS0 in the LDPL model. That is to subtract the strongest
signal strength from all signal strength and the new fingerprint vector
becomes {r1− rmax,r2− rmax, ...,ri− rmax, ...,rn− rmax}. We com-
pare the effectiveness of this normalization scheme in section 5 with
using average and weakest signal strength to normalize fingerprint.

4.3 Co-location Detection

4.3.1 Fingerprint Similarity
To discover social interactions, an important step is to detect co-

location. The key intuition we exploit is that we are not looking for
localization but co-location detection. In co-location detection, we
only need to know whether the devices are in proximity and do not
need to know the exact location. Therefore, we want to know if two
mobile devices and implicitly the persons carrying these devices are
in proximity.

Si j =
~fi ·~f j∥∥∥~fi∥∥∥2

+
∥∥∥~f j

∥∥∥2
−~fi ·~f j

(2)

To identify whether two devices are in the same place or in differ-
ent places, one can compute the fingerprint similarity metric using
the Tanimoto Coefficient as shown in Equation 2. This metric has
also been used by many existing work [9, 20, 8] for co-location
detection.

4.3.2 Co-location Event Detection
Fingerprint similarity gives us a metric to measure how close

two devices, or two people, are. We can use this tool to detect
co-location events, e.g. conversations, encounters, dining and so
on. Figure 6 gives us a typical scenario where two people, Alice
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Figure 6: Fingerprint similarity trend during a conversation

and Bob (both carrying smartphones with them), met and had a
short conversation. Initially, Alice and Bob are 10 meters apart.
The fingerprint similarity is low, around 0.55 in the figure. As
they approach each other closer, the fingerprints similarity of these
two devices carried increases. When they sat down and talked, the
similarity increases to values between 0.9 and 1.0.

This example motivates the use of fingerprint similarity to detect
social interaction. However, in order to reconstruct such interactions
much accurately, we need to derive the similarity threshold τsim
that indicates sufficient proximity. The similarity threshold τsim to
be used depends on the granularity of social events to be detected
and the density of monitors deployed. For example, finding people
dining together will require proximity detection of say 3 meters
while people attending a lecture in the same classroom may be up
to 10 meters away.

4.4 Discovering Social Relationship
Using fingerprint similarity over time enables us to identify co-

location events and to estimate the intimate level between two people.
The intuition is that if two people stay in the same vicinity, they
are likely to interact or chat. Sustain number of co-location event
over a long period between 2 users provides a hint that these 2 users
are likely to have some form of social relationship. We define a
relationship index over a period of time T :

RI =
n

∑
1
(sti +1)∗Si/T (3)

where n is the number of times that two users are in proximity. sti
is the time span of the related co-location event. Si is the fingerprint
similarity calculated using Equation 2. The algorithm of calculating
the relationship index for two people is described in Algorithm 1.

There are three steps in this algorithm. First, we derive the simi-
larity trace of two people. As frames are collected opportunistically
and there is often frames loss, we use moving average to smooth
fingerprint similarity. Next, we detect the starting and ending time
points of interaction between two devices using the similarity thresh-
old τsim derived from Figure 11. Based on these start and end points,
we identify each social interaction event, its corresponding length
and the people involved. Finally, interactions over time can be used
to build up the relationship map.

5. EVALUATION

5.1 Implementation
SocialProbe system contains two parts: the frontend WiFi moni-

tors and backend servers. WiFi monitors include Raspberry Pi 2B
with two D-Link wireless USB adapters (DWA-137 and DWA-132).

Algorithm 1: Pairwise Relationship Estimation Algorithm
1 Input: Fingerprint Traces for two devices FT1 and FT2, Time Span T
2 Output: Relationship Index RI

3 Smap is map of timestamp and corresponding similarity, initially empty;
4 α is smooth factor, range in (0,1);
5 for each fingerprint (~fi) in FT1 do
6 for each fingerprint (~f j) in FT2 do
7 if time stamp difference for ~fi and ~f j are within ts gap then
8 Calculate Similarity Si j and its timestamp ti j;
9 if ti j− t(i−1)( j−1) < ts then

10 Si j = α ∗Si j +(1−α)∗ t(i−1)( j−1);
11 end
12 add Si j and ti j into similarity map Smap;
13 end
14 end
15 end
16 // identify co-location event and calculate Relationship Index RIbase
17 Initialize k and RI;
18 while k not exceed the size of Smap do
19 Find next meeting time point Istart where Sstart > τsim and Sstart−1

< τsim;
20 if meeting point found then
21 Find leaving point Iend
22 where Send > τsim and Send+1 < τsim;
23 end
24 calculate co-location time length st and
25 mean similarity for Sm between Istart and Iend ;
26 RI += Sm ∗ (st +1);
27 increase k to Iend ;
28 end
29 RI = RI/T ;
30 return RI;

Figure 7(b) shows one of the monitors deployed in the research lab.
In order to make sure that we have synchronized time in all the
monitors, NTP runs every few hours. To reduce network traffic to
the server, we only store a subset of the information in the frames
including MAC address, timestamp, signal strength, monitor ID.
After verifying that the MAC address is valid, we do not store the
actual value but instead stored a hashed value of the MAC address.

We deployed the system in two environments: an 11m×13m
research lab and 50m×29m dining hall. The solid triangle represents
the monitors’ positions on the map. The floor plan for the research
lab is shown in Figure 7. The floor plan of the dining hall is shown
in Figure 14. The dining hall is a dynamic and noisy environment
with a lot of people moving around during the day. Figure 8 shows
the number of unique mobile devices detected over 5 days, with the
expected surge in traffic during lunch and dinner times.

5.2 Device Filtering
In order to evaluate the effectiveness of the device filtering, we

perform a small control experiment covering two research labs
located side by side. We perform passive scanning for a week and
use OUI and PR filter to identify valid devices. Since the experiment
covers a relatively small area, we are able to get the ground truth by
manually checking the devices present.

Figure 9 shows the performance of our filtering scheme with
56 devices that should be detected. Only use OUI gives us a low
precision detecting valid device. Combining with PR filter, precision
increases to 89% with only a little drop in recall rate.

5.3 Fingerprint Similarity
In this section, we do a measurement study to illustrate the effec-

tiveness of our fingerprint normalization scheme, we plot fingerprint
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similarity to distance relation in Figure 11. We can see that the
similarity for normalized fingerprint drops significantly when the
distance increases while the similarity for raw fingerprints remains
high up to 12m in this experiment. We also compare the resolution
improvement when we use mean, maximum or minimum signal
strength as offset benchmark. We can see from Figure 11 that using
maximum as offset standard can achieve a higher resolution.

We then do a site experiment in a 11m×13m research lab as
shown in Figure 7. We select 15 locations evenly distributed in the
lab which are marked 0 to 14 (in squares). We put 6 phones in each
of the places and collect more than 500 frames per location. We
calculate the similarity of these fingerprints collected in different
places and in the same places using Equation 2 with maximum
signal strength as offset benchmark. The results are shown in Figure
10.

As suggested in [9, 20, 8], if Si j is larger than 0.7, we can con-
clude that the device has not moved. As shown in Figure 10, maxi-
mum similarity scheme can easily differentiate different locations.
The overall co-location detection precision is 91% in the relative
static lab environment and 84% from dynamic dining canteen. The
high accuracy of co-location detection gives us more confidence on
relationship inferring.

In the rest part of evaluation, we apply the information on co-
location to discover behavior and interaction patterns.

5.4 Dining Hall
We deploy our system in a dinner hall on campus. The dining

hall consists of food stalls, dining area, and tray collection area as
shown in Figure 14. The positions of the monitors are located close
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to power outlets.
In this application scenario, we analyze the dining behavior. More

specifically, we would like to discover clusters of diners dining
together and how long each cluster took to finish their food. We
calculated the stay time of people during dining time in two weeks
and show the result in Figure 12. Around 90 percent of people
finished their food in half an hour, while around 50 percent of people
just stay in the canteen for less than 10 minutes. The reasons for a
high percentage of short term stays are multi-folded. First, some
people may just walk pass by without dining in the canteen. Further,
some patrons could have a brief meal or order takeaway. Another
possible factor is that the phones stop sending frame because of low
battery or operating in power saving mode. Such durations do not
provide sufficient information to infer dining group behavior. Thus
in our system, we only analyze people who have stayed in the dining
area for at least 10 min. We re-plot the dining curve after filtering
these short duration presences.

To understand how the pair-wise similarity changes over time in
the dining hall, we selected 5 users. Among these 5 users, 3 are
people dining together (A,B,C) and 2 are randomly chosen from all
the other users (a,b). Among these 5 users, we plot the similarity
among 4 pairs. In two of these pairs, both users are from the same
dining group and the similarity is expected to be high. In the other
pairs, 1 user is from the chosen dining group and the other is a
random user. We expect the similarity to be low. The result is shown
in Figure 13.

In trace A-B and B-C, both users are from the same dining group.
The similarity is maintained at a relatively high value of about 0.9
from 11:18am to 11:32am. In trace A-a, B-b, the users have a
much lower value of similarity below 0.7. From the similarity to
distance matching in Figure 11, we can easily draw the conclusion
that A, B, C may be having lunch together but not with a and b.
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Figure 14: 50m×29m Dining hall. Solid triangles denoted monitors’
positions.

However, we also find similar valleys where similarity drops to a
relatively low value in trace A-B and B-C. Recalling the experiment,
this valley matches to the time when the diners disperse and order
different food at their favorite counters. Thus, these traces perfectly
describe the whole dining process. This experiment tells us the two
people dining together should have high fingerprint similarity and
synchronized time stamps. Based on these two facts, we derive the
dining similarity index of person x and y as follow:

Sdining = 2∗RI ∗STxy/(STx +STy) (4)

RI is the relation index we derive from Equation 3, STx and STy are
the individual dining time of person x and y. STxy is the co-location
time for the two persons. Sdining can be used to derive a dining
graph of all the diners. Then we use the Markov Cluster algorithm
(MCL) to detect dining groups. MCL works well when the cluster
size is small as in our case. Such an approach has also been used in
[27]. However, the initial result showed high recall rate for group
clustering and also high false positive. Some diners with weak
connections are unnecessarily grouped together as shown in Figure
15. Two persons in the right-bottom are falsely clustered as a group
even though they have a weak connection. The problem lies in the
normalization step for adjacency matrix. The weak connection can
have a dominant effect on person with a low degree of connection,
like the person at the bottom. Our case is different from pure group
detection in that person can take a meal alone. Thus we improve the
algorithm by filtering weak connection edges before we input the
data to MCL. We analyze two weeks data of dining crowd and show
the result of group clustering and dining length during four periods:
breakfast, lunch, tea time, dinner in Figure 16.

Figure 16 (a)-(d) show the group counting and people distribution
during the four periods. Overall we can see that 80 percent of people
tended to dine with their friends and 60 percent of people liked to
form groups with less than 4 people. This may be explained by the

Figure 15: False positive case of MCL algorithm.

Table 1: Dining behavior and partnership detection

Content/Day 1 2 3 4 5

Size of Group 6 5 6 7 8
Correct Number 6 5 5 5 6
False Positive 0 0 1 2 2
Estimated Time(min) 20 25 22 19 24
Ground Truth(min) 29 26 28 20 27

fact that each table in the dining hall consists of four seats. Diners
were more likely to dine alone during breakfast. During dinner time,
more group behaviors were detected probably because there were
less crowd. Figure 16 (e)-(h) show how the durations vary with
different group sizes. In general, dining time increases when people
are dining in a larger group. This confirms with our experience that
people tend to talk more when dining with their friends and they
wait for each other to finish the food.

In order to gauge the accuracy of our dining detection, we per-
formed an experiment with 6 people going for lunch together over 5
days.

The result of this experiment is shown in Table 1. During these
five days, we have a good estimation of group size and its members
compared to the ground truth. For example, in the fourth day, we
identify 7 people as a group who may be having lunch together from
around 500 diners. Among the 7 diners identified, 5 of them are
correctly detected with 2 additional diners misclassified. All in all,
the precision of group detection is 84% and the recall is 90%. The
dining times we estimated are generally shorter than the ground
truth. This is because the probe request and null data frames are
sent opportunistically and we do not take into account the time
needed for buying food. Even though the scale of this experiment
is relatively small, it provides strong evidence that we can identify
group of diners with high accuracy.
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Figure 16: Dining group size distribution and dining time length

5.5 Research lab
Interaction in a research lab offers a different setup when com-

pared to the dining hall. The number of people in the lab is relatively
stable and the duration of stay is also much longer. Instead of ana-
lyzing short-term behavior like having lunch, we would like to infer
their seating arrangement and build a relation map for members
in the lab. Over 2 months, we detected 533 devices with monitors
deployed in the research lab shown in Figure 7.

Infer Seating Arrangement In the previous experiment in the
lab, we verified that fingerprint similarity can tell locations apart
with high resolution. We would like to apply it to infer the sitting
arrangement in this research lab. This process includes three steps:
member identification, fingerprint extraction, and clustering.

First, we need to figure out who is working in this lab. This can
be easily done by requiring a good quality signal strength since
these monitors are physically close to the lab members. Next, to
exclude users that walk pass the lab or visit the lab for a short time,
we remove devices that stay for just for a short time. After these
filtering, we can successfully identify 9 members from this lab.

Next, we need to extract the representative fingerprints at the
users’ actual seat locations. People do not spend all the time in
the same place. From time to time, they move around, say to get a
coffee or talk to another member. However, over a long time, they
should spend most of the time working in their seats. We apply
KMeans++ Cluster [2] to get the main fingerprint for each device.
The use of KMeans++ is to avoid the poor initial center selection
for kmeans.

Finally, we have to cluster these fingerprint to different groups to
indicate their sitting arrangement. We still use MCL for it does not
require a group number input and flexible on selecting the resolution.
We show the result in Figure 17 with dotted circle. This result
confirms with the ground truth marked in small black circle.

Relationship Map Using the relationship index RI defined in
Equation 3, we can generate pairwise values to define the contact
level between lab members from the same lab and from different
labs. Figure 18 shows the relationship map generated from the data
collected over two weeks. During this period, other than 9 members
from lab A, we also identify 8 members from lab B. To evaluate

Seat 
Location
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X9

X1

X4
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X2

X5

Sitting
Cluster

Figure 17: Sitting arrangement inferring result. Label X1 to X9
marked the ground truth location where they sit.

the accuracy of the relationship inferring, we collected ground truth
only from lab A recording their daily behavior.

As we mentioned before, lab members generally spend most of
their time working where they are seated. From the relationship
map, we can see stronger links between people who sit closer, e.g.
X5 and X6, X5 and X7, X4 and X9. Since each table is just 1.5
meters away, we expect such a result. Another relevant factor is
that students who worked on the same project tend to interact more
often. Such relationship can be shown in X1 and X4 who are seated
farther apart but has a strong link.

Another observation that can be derived from the result and that
is consistent with common sense is that members of the same lab
show closer relation than those between the two labs. However, we
can also derive working relationship between students between the
two labs that was introduced as a result of this work, as shown by
the connection between X5 and Y3.

6. RELATED WORK
Crowd Counting Variation in Bluetooth signal strength has been

used to estimate crowd density [30]. The main intuition is that at
high crowd density the signal strength variance would be higher than
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Figure 18: Relationship map based on RI. Members from lab A is
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activity. The stronger link means an intimate relationship between
people.

at low crowd density. Similarly, analysis of probe request frame [17]
and channel state information [32] can be used to estimate crowd
size. Our work is different in that we do not focus on counting, but
try to infer user behavior and interaction patterns.

Social Relationship Detection Social relationship detection and
inference have long been discussed in the research community. Ear-
lier methods use data of email, Facebook or phone call to generate
dependency between people [14]. Recently, the use of probe frames
to reveal user relationship has drawn attention from researchers.
Cunche et al.[11] uses known SSIDs list in probe requests as the fin-
gerprint to decide whether two devices are socially linked together.
They applied modified Adamic-Adar, which was introduced earlier
[1], as similarity metric over control data sets. Barbera et al.[4]
uses an automated methodology to derive the underlying relation-
ship graphs between the users. A similar method has been used to
generate spatial-temporal similarity based on users’ co-occurrence
frequency to infer relationships between them [7]. However, as
recent work has discovered that over 80% of the devices reply with
empty (unknown) SSID list [18], approaches that rely on SSID
information may not work well anymore.

WiFi-based Indoor Localization and Tracking Researchers
have proposed a series of ideas to exploit the availability of WiFi
networks including indoor localization[3, 33]. A key difference
between our approach and localization is that we do not aim to
localize a user. Instead, we focus on determining whether a user has
moved and if two users are in proximity.

To improve accuracy, AP emulation and RTS injection to prompt
additional probe frames have been used [24]. In other approaches,
researchers have tried to analyze the crowd density and movement
[25] and to optimize the facility planning from WiFi traces collected
across buildings [26]. Our approach is different in that these ap-
proaches look at coarse level information such as whether users are
on the same floor or building while we aim to discover more detailed
and accurate social interaction on a personal level.

Human Communication and Group Detection Human com-
munication such as conversation, encounter, and group activity is
still an active research area because of its importance and difficulty.
Mutual Information of human voice has been used to infer emerg-
ing conversation between people[5, 21]. GruMon [27] makes use
of smartphone sensors and Markov Cluster algorithm to monitor
closely related group activity. [29] is close to our job that targets at
detecting short-lived human interaction. While they achieve high
accuracy encounter detection, the modification of phones to sched-
ule high frequency and synchronized probe request sending hinders

its practical usage in real life. Instead, we try to detect co-location
event with low-frequency frame and infer long-term relationship
with unmodified mobile phone in a non-invasive way.

7. DISCUSSION
The sparse nature of frames transmission limits the performance

of social interaction discovering. To get more frame transmission,
the author in [24] propose to emulate the SSID of popular or pre-
viously visited AP. This technique can also be integrated into our
system. But this technique triggers the use of WiFi interface of the
mobile device which will interrupt the existing connection and drain
the battery at a higher rate.

Even though we can detect social interactions and their pattern, we
are unable to know whether they are having a conversation, greeting
or quarreling. To further infer the detail of the emerging social event,
we may need to deploy other sensors or install an application in
the mobile device. Such methods extends the power of our social
interaction system but contradicts with the non-intrusive nature of
the probe scanning method.

From iOS 8, Apple introduced mac randomization to avoid pas-
sive scanning 1. But it only works when smartphones are not con-
nected to the network and the devices are in the sleep mode. In our
evaluation, we are still able to hear probe request frames from Apple
devices with valid MAC address. In addition, such technology has
no effect on null frame detection. We are not sure about how a more
effective mac randomization technology in the future will have an
effect on our technology. But techniques have been proposed for
monitors to track the WiFi devices with mac randomization[19].

In the two environments we deployed, the monitors were 5 and
15 meters apart. We used the same similarity threshold τsim as 0.8
rather than 0.7 in [9, 20, 8] to avoid high false positive. As we can
see this threshold worked well for both environments. Based on the
scenario of deployment, with monitors spacing 5-15 meter away, we
believe this is a reasonable threshold for other settings as well.

Finally, it is possible for users to carry more than one device with
them. Our device filter method will regard these two devices as two
different users. We leave this problem for future work.

8. CONCLUSION
In this paper, we propose a system to discover social interaction

based on opportunistic probe request and null data frames sent by
mobile devices. We discuss the feasibility of using these frames
to infer social events and using normalize fingerprint to figure out
co-location events. This technique has been applied in a small office
like environments as the research lab and public crowd area as the
dining hall and we are able to discover relevant interaction patterns.
We believe this is a good first attempt towards the understanding
of human interactions using passive monitoring with infrastructure
support.

Acknowledgements
This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centre in Singapore Funding Initiative, Grant No. 61602319 from
the National Natural Science Foundation of China and Natural Sci-
ence Foundation of SZU (grant no. 2016048).

9. REFERENCES
1http://www.networkworld.com/article/2361846/wireless/ios-8-
mac-randomizing-just-one-part-of-apple-s-new-privacy-push.html



[1] L. A. Adamic and E. Adar. Friends and neighbors on the web.
Social networks, 25(3):211–230, 2003.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics,
2007.

[3] P. Bahl and V. N. Padmanabhan. Radar: An in-building
rf-based user location and tracking system. In INFOCOM,
volume 2, pages 775–784. Ieee, 2000.

[4] M. V. Barbera, A. Epasto, A. Mei, V. C. Perta, and J. Stefa.
Signals from the crowd: uncovering social relationships
through smartphone probes. In IMC, pages 265–276. ACM,
2013.

[5] S. Basu. Conversational scene analysis. PhD thesis,
MaSSachuSettS InStitute of Technology, 2002.

[6] B. Bonne, A. Barzan, P. Quax, and W. Lamotte. Wifipi:
Involuntary tracking of visitors at mass events. In WoWMoM,
pages 1–6. IEEE, 2013.

[7] N. Cheng, P. Mohapatra, M. Cunche, M. A. Kaafar, R. Boreli,
and S. Krishnamurthy. Inferring user relationship from hidden
information in wlans. In MILITARY COMMUNICATIONS
CONFERENCE, 2012-MILCOM 2012, pages 1–6. IEEE,
2012.

[8] Y. Chon, S. Kim, S. Lee, D. Kim, Y. Kim, and H. Cha.
Sensing wifi packets in the air: practicality and implications in
urban mobility monitoring. In UbiComp, pages 189–200.
ACM, 2014.

[9] Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility
prediction-based smartphone energy optimization for
everyday location monitoring. In Proceedings of the 9th ACM
conference on embedded networked sensor systems, pages
82–95. ACM, 2011.

[10] R. B. Clayton, G. Leshner, and A. Almond. The extended
iself: The impact of iphone separation on cognition, emotion,
and physiology. Journal of Computer-Mediated
Communication, 20(2):119–135, 2015.

[11] M. Cunche, M. A. Kaafar, and R. Boreli. I know who you will
meet this evening! linking wireless devices using wi-fi probe
requests. In WoWMoM, pages 1–9. IEEE, 2012.

[12] M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz.
Predicting depression via social media. In ICWSM, page 2,
2013.

[13] A. developers. http://developers.apple.com/, 2014. [Online].
[14] C. P. Diehl, G. Namata, and L. Getoor. Relationship

identification for social network discovery. In AAAI,
volume 22, pages 546–552, 2007.

[15] S. Electronics. Sar evaluation report. In SAR evaluation report,
pages 3–4. Samsung Electronics, 2013.

[16] J. Freudiger. How talkative is your mobile device?: an
experimental study of wi-fi probe requests. In Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, page 8. ACM, 2015.

[17] M. Handte, M. U. Iqbal, S. Wagner, W. Apolinarski, P. J.
Marrón, E. M. M. Navarro, S. Martinez, S. I. Barthelemy, and
M. G. Fernández. Crowd density estimation for public
transport vehicles. In EDBT/ICDT Workshops, pages 315–322,
2014.

[18] X. Hu, L. Song, D. Van Bruggen, and A. Striegel. Is there wifi
yet? how aggressive wifi probe requests deteriorate energy
and throughput. arXiv preprint arXiv:1502.01222, 2015.

[19] iMore. http:
//www.imore.com/closer-look-ios-8s-mac-randomization/,
2014. [Online].

[20] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. Sensloc:
sensing everyday places and paths using less energy. In
Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, pages 43–56. ACM, 2010.

[21] C. Luo and M. C. Chan. Socialweaver: collaborative inference
of human conversation networks using smartphones. In
Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, page 20. ACM, 2013.

[22] J. Mirowsky and C. E. Ross. Social pattern of distress. Annual
review of sociology, pages 23–45, 1986.

[23] S. A. Moorhead, D. E. Hazlett, L. Harrison, J. K. Carroll,
A. Irwin, and C. Hoving. A new dimension of health care:
systematic review of the uses, benefits, and limitations of
social media for health communication. Journal of medical
Internet research, 15(4):e85, 2013.

[24] A. Musa and J. Eriksson. Tracking unmodified smartphones
using wi-fi monitors. In Proceedings of the 10th ACM
conference on embedded network sensor systems, pages
281–294. ACM, 2012.

[25] T. S. Prentow, A. J. Ruiz-Ruiz, H. Blunck, A. Stisen, and
M. B. Kjærgaard. Spatio-temporal facility utilization analysis
from exhaustive wifi monitoring. Pervasive and Mobile
Computing, 16:305–316, 2015.

[26] A. J. Ruiz-Ruiz, H. Blunck, T. S. Prentow, A. Stisen, and
M. B. Kjaergaard. Analysis methods for extracting knowledge
from large-scale wifi monitoring to inform building facility
planning. In PerCom, pages 130–138. IEEE, 2014.

[27] R. Sen, Y. Lee, K. Jayarajah, A. Misra, and R. K. Balan.
Grumon: fast and accurate group monitoring for
heterogeneous urban spaces. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, pages
46–60. ACM, 2014.

[28] S. Soto, E. M. Arredondo, M. T. Villodas, J. P. Elder,
E. Quintanar, and H. Madanat. Depression and chronic health
conditions among latinos: The role of social networks.
Journal of Immigrant and Minority Health, pages 1–9, 2016.

[29] G. Vanderhulst, A. Mashhadi, M. Dashti, and F. Kawsar.
Detecting human encounters from wifi radio signals. In
Proceedings of the 14th International Conference on Mobile
and Ubiquitous Multimedia, pages 97–108. ACM, 2015.

[30] J. Weppner and P. Lukowicz. Collaborative crowd density
estimation with mobile phones. Proc. of ACM PhoneSense,
2011.

[31] T. Wiesenthal, G. Leduc, P. Cazzola, W. Schade, and J. Köhler.
Mapping innovation in the european transport sector. An
assessment of R&D efforts and priorities, institutional
capacities, drivers and barriers to innovation. JRC Scientific
and Technical Report, 2011.

[32] W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and
Z. Jiang. Electronic frog eye: Counting crowd using wifi. In
INFOCOM, 2014 Proceedings IEEE, pages 361–369. IEEE,
2014.

[33] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor
location system. In NSDI, pages 71–84, 2013.

http://developers.apple.com/
http://www.imore.com/closer-look-ios-8s-mac-randomization/
http://www.imore.com/closer-look-ios-8s-mac-randomization/

	Introduction
	Feasibility and Challenge
	Probe Request and Null Data Frame
	Inter-Frame Interval in the Wild
	Received Signal Strength

	System Overview - SocialProbe
	Methodology
	Device Filtering
	Filtering based on MAC Address
	Filtering based on Present Ratio

	Fingerprint Generation and Normalization
	Fingerprint Generation
	Fingerprint Normalization

	Co-location Detection
	Fingerprint Similarity
	Co-location Event Detection

	Discovering Social Relationship

	Evaluation
	Implementation
	Device Filtering
	Fingerprint Similarity
	Dining Hall
	Research lab

	Related Work
	Discussion
	Conclusion
	References

