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ABSTRACT

While cellular interfaces are known to be main power consumers
in smartphones, our measurements reveal that surprisingly, due to
cellular tail effect, a substantial ratio of energy drain comes from
the low-frequency, low-data-rate background traffic. To reduce cel-
lular tail energy use, existing solutions either require changing ap-
plication behavior or assume the availability of low-level control
of cellular interface (e.g., fast dormancy). We propose a collabo-
rative cellular tail energy reduction approach for background traf-
fic, which opportunistically discovers neighbours using low-power
Bluetooth radio and shares their cellular bandwidth. Our evalua-
tion demonstrates up to 90% saving for background traffic energy
consumption in urban settings. Furthermore, we define a rigorous
fairness notion by adapting the generalized processor sharing con-
cept. Our sharing scheduling algorithm uses this notion to achieve
substantial energy saving while ensuring fairness for participating
phones.
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1. INTRODUCTION

Mobile data will continue to grow at an unprecedented speed in
the rest of this decade. As predicted by Cisco Systems, mobile
IP traffic will reach an annual run rate of 190 exabytes by 2018, as
compared to 18 exabytes recorded in year 2013 [1]. Supporting this
fast expansion poses significant challenges at both ends of the wire-
less links, in particular, the battery resource on mobile devices and
the computing / communication resources of cellular infrastructure.

To conserve resources both on mobile devices and on base sta-
tions, a mobile device releases its reserved data channel and goes
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into an IDLE state after finishing its data transfer. However, fre-
quent setup and teardown of cellular data channels can result in
both significant delay for serving new traffic and in high consump-
tion of base station resources (in terms of both computation and
signalling channels). To avoid this, the standard cellular network
design is to let a cellular interface stay in an intermediate state for
a certain duration (cellular tail phase) after it completes the last
data transfer. With the underlying correlation of traffic arrival time,
there is higher probability that new data transfer may occur within
this tail phase. When this happens, the tail phase helps avoid both
the setup delay and the associated resource expenses. While cel-
lular tail phase design has proved to be useful, it comes with its
own downsides. As reported in [2], there are cases that cellular tail
energy consumption can contribute to more than 60% of the total
communication energy consumption.

Existing solutions to mitigate the wastage of cellular tail phase
typically involve some traffic prediction mechanisms. Based on
the prediction, the phone can terminate the tail duration earlier us-
ing the fast dormancy mechanism ([3, 4, 5]). Another popular ap-
proach is to batch several data transfers originated from a mobile
device’s different applications ([5, 2]). Such a technique aims to
schedule the data transfers so that they share a common tail rather
than incurring their individual tail phases. For these approaches to
be effective, they either assume the capability to change/predict the
behaviour of applications or the availability of low-level control for
cellular interface (e.g., an API call to execute fast dormancy).

A new focus: background traffic. Our approach to mitigate the
tail energy consumption is unique in that instead of looking at ap-
plication data, we focus on the low-data-rate background traffic.
Many mobile applications such as social media applications, email
& calendar applications, and stock market applications generate
background traffic to check for data update from their respective
servers via the Internet. Smartphones typically spend substantial
amount of their time with their screen off [6]. Background traffic
continues to happen even during these periods in order to alert the
user with updates. Hence, while their update frequency and data
rate are low, the existence of tail phase for background traffic can
make their aggregated impact on the battery lifetime rather signifi-
cant.

As an illustrative example, suppose that the duration of the cel-
lular tail phase is 20s and the average power consumption in the
tail state is 600mW . If a heartbeat message is transmitted in the
background every 100s, even without any other communication,
the total energy consumed by the incurred tail phases in a 12 hours
recharging period is 600mW X 12f0X0§05 = 1.44Wh, which is
around 26% of the total battery capacity (5.45Wh) of iPhone 5.
If the user intends to use the phone longer, the ratio will further
increase (e.g., greater than 50% for use of 24 hours).
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(a) 3G RRC State Machine: Variant 1 (b)3G RRC State Machine: Variant 2

Figure 1: RRC state machines for 3G UMTS

A collaborative approach: feasibility and fairness. Our solu-
tion is based on the observation that a smartphone often has a good
number of other smartphones nearby and that each of these smart-
phones is equipped with both a high-power high-data-rate cellular
interface and a low-power low-data-rate radio interface like Blue-
tooth. A collaborative tail energy reduction approach is thus fea-
sible. Before turning on its cellular interface, a smartphone first
opportunistically scans its neighbourhood using its low-power ra-
dio and checks whether a neighbor’s cellular radio is already CON-
NECTED (including in its tail phase) and can help. When collab-
oration is possible, one device can utilize its low-power radio to
transfer its background traffic via the helper phone and completely
eliminate its own cellular tail energy. While the other device’s tail
duration may be extended, since the total amount of tail energy con-
sumed is reduced, a fair scheduling algorithm can be used to ensure
that all participating devices benefit from the collaboration over a
long run.

Our evaluation based on real-world traces from urban environ-
ments demonstrates that this approach saves up to 90% of energy.
We also validate the feasibility of our approach through a prototype
implementation on Android phones. In order to ensure that such
sharing benefit participating phones in a fair manner, we define a
rigorous notion of fairness by adapting the well-accepted concept
of generalized processor sharing [7]. Guided by this notion, we de-
sign a fair sharing scheduling algorithm that can achieve substantial
energy saving while ensuring a satisfactory level of fairness.

Roadmap. The rest of the paper is organized as follows. Section
2 presents the background on radio state machines of cellular net-
works and the prior efforts on reducing cellular tail energy wastage.
Section 3 presents our measurements that demonstrate the signifi-
cant hidden cost of background traffic due to the cellular tail effect.
We then reason about the feasibility of a collaborative tail energy
reduction approach in Section 4. The fairness notion is defined in
Section 5 and the realization of our collaborative cellular tail en-
ergy reduction is discussed in Section 6. We present results from
both actual smartphones experiments and trace-based simulations
in Section 7 and conclude in Section 8.

2. BACKGROUND AND PRIOR WORK

This section presents the necessary background on cellular tail

phase and discusses the prior efforts on mitigating the energy wastage

in cellular tail phases.

Radio resource management in 3G and 4G. Both 3G UMTS [8]
and 4G LTE [9] are resource constrained systems. To manage the
scarce resources efficiently, each mobile device, or so called User
Equipment (UE), that accesses these network systems follows cer-
tain Radio Resource Control (RRC) state machine. This state ma-
chine determines the radio resource allocation for a UE in differ-
ent states, hence it directly impacts the energy consumption and
performance of UEs. State promotions (and demotions) result in
signalling between the radio network and the UE, hence the fre-
quency of promotions (and demotions) has a direct impact on the
performance of a radio network.

Figure 1 presents two variants of the RRC state machines for 3G
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Figure 2: 4G RRC state machine

UMTS. The IDLE state in both variants refers to the case when a
UE is switched ON but does not have an active data connection with
the Radio Network Controller (RNC). This state consumes the least
amount of power among the three states. A UE in the CELL_DCH
state has a dedicated connection with RNC for data communica-
tion. This is the state with the highest power consumption rate. A
UE in the CELL_FACH state is also connected to the RNC, but its
connection is shared with other UEs, hence both the power con-
sumed and the available data rate in this state are lower than the
CELL_DCH state.

Once a data transmission is completed in the CELL_DCH state,
an inactivity timer is started. If there is no more communication
at the cellular interface for ¢; time, the UE is demoted to the state
CELL_FACH and another inactivity timer is started. If there is
no communication via the cellular interface for another ¢o time,
the UE will demote to the IDLE state and the connection with the
RNC will be terminated. We call the time period of t; + t2 the
cellular tail time. If the cellular interface has some traffic in the tail
phase, the corresponding timer will be reset. When a UE is in IDLE
state, in variant 1 (see Figure 1a) an activity triggers a UE directly
into CELL_DCH state, whereas in variant 2 (see Figure 1b), it will
first move to CELL_FACH state. Variant 2 is more energy efficient
than variant 1 for low-data-rate transmission, albeit at the cost of an
increased initial delay for supporting high-data-rate transmissions.

Figure 2 presents the RRC state machine for 4G LTE. Unlike
the 3G UMTS RRC state machine shown in Figure 1, the 4G LTE
state machine consists of only two main states. A UE in the state
RRC_CONNECTED has dedicated radio resources for data com-
munication, while a UE in the RRC_IDLE state does not. Similar
to 3G UMTS, the completion of a transmission triggers an inactiv-
ity timer. If no more communication occurs for a period of t:4i:
time, the celluar interface is demoted to the RRC_IDLE state. Any
communication that occurs before that resets the inactivity timer.
Note that the RRC_CONNECTED state is itself a combination of
3 sub-states to allow a UE to carry out micro-sleeping for saving en-
ergy. More details on these sub-states can be found in [10]. We will
present our power measurement results of different 3G/4G states in
Section 7.

Prior efforts on reducing cellular tail energy wastage. There
have been a substantial amount of research efforts devoted to miti-
gating cellular tail energy wastage. One main approach (e.g., see [3,
4, 5, 11]) is to understand the applications behaviour and cut the
tail earlier when no new transmission is likely to happen. There
are two potential downsides of this approach. 1) Since the cellular
tail phase provides faster responses to possible data transmissions,
such an approach bears the risk that a wrong decision can cause
extra delay in communication. While researchers have developed
various traffic prediction schemes to improve the decision accuracy,
understanding the behavior of an ever-growing set of mobile appli-
cations can be technically challenging and also do not align well
with the layering design of network stack. 2) All existing efforts
assume that a phone can cut the tails through an underlying fast
dormancy mechanism offered by the cellular interface [12]. How-
ever, as acknowledged in [5], the availability of an API to invoke
fast dormancy mechanism remains uncommon on today’s smart-



phones, probably due to a lack of OS support and more fundamen-
tally due to the potential risk of exposing such a low-level control
to app developers. One can envision that an abuse of such inter-
face by applications may lead to serious performance and stability
issues to cellular network infrastructure. In fact a recent document
[13] discusses the impact of fast dormancy and as to why service
providers are reluctant to enable it.

Another main thrust (e.g., [5, 2]) focuses on sharing the cellular
tail across different applications to reduce the power consumed in
tail phases. Specifically, if a phone can batch together data transfers
originated by its different applications, these transmissions would
be able to share a common tail phase rather than incurring their
individual tail phases. Again, doing so requires a mechanism to
change the default behavior of applications, which is not commonly
available today.

The mobile kibbutz [14] is a system that targets to reduce the en-
ergy consumption and the latency associated with cellular networks
via a mobile-to-mobile collaborative system using low power ra-
dios such as WiFi or Bluetooth. Kibbutz mainly targets relatively
high data rate applications like audio streaming and web browsing

whereas our proposed solution targets low-data-rate delay-insensitive

background traffic. In order to improve the latency the kibbutz sys-
tem needs to maintain the collaborative connections and therefore
for low-data-rate traffic such as background traffic the energy over-
head of keeping the connections alive dominates. In comparison,
our proposed solution opens a Bluetooth connection only when a
phone has data to forward or when its cellular interface is turned
on. While this introduces some startup delay, it significantly re-
duces the energy consumption for keeping the Bluetooth connec-
tion. While the recent work by Hu and Cao [15] also considers the
use of phone-to-phone connections to aggregate traffic and reduce
energy wastage due to cellular tail, they do not focus on the back-
ground traffic. For foreground traffic, we find that using Bluetooth
as the phone-to-phone interface incurs significant delay if the traf-
fic volume goes beyond a few hundred kilo bytes, and using WiFi
interfaces consumes significant energy on themselves thus limits
the total savings. Finally, the PhonePool framework [16] attempts
to reduce energy consumption by selecting the best cellular links
among a set of collaborating phones. The sharing allows utilization
of a better channel as well as the statistical reduction of tail energy.
PhonePool focuses on choosing the best cellular link, hence reduc-
ing tail energy is only a secondary issue. For transfers with low data
volume, the link rate plays a minor role, PhonePool’s threshold-
based algorithm reduces to choosing the link with the longest re-
maining time tail.

Our approach is unique in that we focus on the problem of low-
frequency, low-data-volume and delay-insensitive background traf-
fic. Our solution is based on a rigorous notion of fairness that de-
rives from fair queuing context. We have also evaluated the energy
efficiency of our approach using both simulation as well as a pro-
totype implementation on Android phones.

3. THE HIDDEN COST OF BACKGROUND
TRAFFIC

We approach the cellular tail energy wastage problem differently
by focusing on background traffic that occurs even when a phone’s
screen is off. Somewhat surprisingly, our measurements show that
a substantial amount of energy is consumed in supporting these
low-frequency low-data-rate background traffic due to the cellular
tail effect.

What goes on when your phone’s screen is off? Many mo-
bile applications, such as social networking applications (e.g. Face-

book, WhatsApp) and email applications, use a push-based mech-
anism to efficiently receive their infrequent and aperiodic updates /
notifications from their respective servers. The push-based mech-
anism works by first establishing a permanent TCP connection be-
tween a mobile device and a notification server. For example, Google
provides such notification service for all Google applications that
use the push-based mechanism. Once there is an update for any of
the registered mobile applications, the corresponding application
server will inform the notification server. This triggers the notifi-
cation server to reach to the mobile application through the TCP
connection between the notification server and the mobile device.
Such a notification then triggers the mobile application to estab-
lish a direct connection with the corresponding application server
to pull the content.

For contents that are updated infrequently and aperiodically, such
a push-based mechanism is more energy efficient than a periodic
pull-based mechanism, which requires smartphones to contact the
application servers periodically regardless of whether there is any
update. Although the push-based mechanism avoids the periodic
pulling of content, in order to maintain the TCP connection be-
tween a mobile device and the notification server, the mobile ap-
plication and the notification server still needs to send out heart-
beat messages occasionally to prevent the TCP connection from
timing out. A recent study [17] has found out that TCP connec-
tions behind cellular service providers’ NATs (Network Address
Translators) will be terminated if their idle period exceeds some
time interval. The reported time intervals in [17], vary between
255 sec to 20 min. Since application developers need to design
applications to run over the networks of different cellular service
providers, they often conservatively send the heartbeat messages
frequently enough so as to avoid such situations.

With the use of high data rate 4G-LTE networks, the total time
to transfer small amount of data, like heartbeat messages, is neg-
ligible. Therefore, in a scenario where the only data transfers are
exchanges of heartbeat messages, the energy consumption from the
cellular radio will mostly be the power consumed by the cellular
tail. When the frequency of heartbeat messages becomes suffi-
ciently high, a large portion of the energy on the mobile device
can be wasted by the cellular tail energy.

Background traffic and tail phase together Kkill the battery. We
carry out measurements on off-the-shelf android devices to quan-
tify the potential impact of background traffic. In our experiments,
we run TCPdump on a Google Nexus 5 phone running Android
version 4.4.4 (KitKat) to capture background traffic. The phone
screen is switched off throughout the experiment. When process-
ing the packet traces, we group together packets that arrive within
a period of no more than 2 seconds. We consider each cluster of
packets as a background event.

We tested four different settings. In the basic “Google Services
Only” setting, the phone only runs the default Google applications
and services, including the email and calendar applications GMail
and Google Calendar. In the second setting (Application Set A), we
installed the online social networking application Facebook, the in-
stant messaging application Facebook Messenger, and the Internet
news application BBC News (all using push-based mechanism), on
top of the default Google Applications. In the third setting (Ap-
plication Set B), we further added the microblogging application
Twitter to the set of applications installed in Application Set A. In
the last setting (Application Set C), we added to Application Set
B two more applications: the instant messaging application What-
sApp and the VoIP application Skype. Both of these applications
are expected to provide more real-time user interactions. We carry
out each measurements for at least 6 hours.
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Figure 3: Distribution of background event inter-arrival time

Figure 3 shows the inter-arrival time between background events
under the different settings. The average inter-arrival time for the
Google Services Only setting is roughly 140s. With the addition
of new mobile applications, this reduces to around 100s for Appli-
cation Set A. The inter-arrival distribution does not change much
between Application Set A and B. This is most probably because
both sets of applications use the Google Cloud Messaging service,
which is a shared push-based service available through the Android
API [18]. Using this underlying messaging service minimizes the
number of connections to be maintained. Finally, the inter-arrival
time for the setting of Application Set C is significantly lower than
the application set A or B. The addition of the two real-time ap-
plications WhatsApp and Skype reduces the average inter-arrival
time for application set C to around 30s. This suggests that the use
of real-time applications results in a huge increase of background
traffic. The size of the data exchanged in each of these background
events ranges from a few hundred bytes to 10 KB. Further, we
noticed that in very rare instances the background transfers were
larger than 10 KB and these were removed from our traces. Previ-
ous studies have also reported [17] similar behavior for background
transfer sizes.

Assuming a tail duration of 20s, we observe that a smartphone
running Application Set A or B will stay in the tail phase for roughly
16 — 20% of time. This ratio increases to 40% when running Ap-
plication Set C. Over a 12 hour period, this constitutes around 25%
of a 5.45Wh battery capacity (that of iPhone 5) for application set
A and B, and around 50% for application set C. If the user intends
to use the phone longer before the next charging, this ratio will
further increase. Our measurement results clearly indicate that re-
ducing the amount of energy drain for background traffic is of great
utility in practice.

4. FEASIBILITY OF A COLLABORATIVE
APPROACH

If we apply existing solutions (see Section 2) to deal with the
tail phase energy wastage because of background traffic, we need
to either 1) cut the cellular tails for background traffic, or to 2)
change the behavior of the corresponding applications and try to
group their background traffics together. As we discussed earlier,
both approaches have their drawbacks. Fundamentally, they rely
on support from other layers, i.e., an underlying fast dormancy API
and applications cooperation respectively, which are not commonly
available today.

Instead, we take a different collaborative tail energy reduction
approach: Before turning on its cellular interface for background
traffic, a smartphone first opportunistically scans its neighbourhood
using a low-power radio (e.g., Bluetooth) and checks whether a
neighbor’s cellular radio is ON (or in tail state) and can help. If
some helper is available, the phone can utilize its low-power radio
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Figure 4: An example collaboration scenario

to forward its traffic to the helper phone, hence avoid the activation
of its own cellular interface and the associated wastage of cellular
tail energy.

Figure 4 illustrates an example of how this collaborative ap-
proach saves energy. In this example, the tail timer is 20s. As
shown in Figure 4, User A has 3 packets, User B has 2 packets,
and User C has 1 packet. Their cellular active periods overlap, and
without collaboration their total active periods add up to 115s. Un-
der our proposed approach, when User B and User C have new
traffic, they will search around using their Bluetooth radio and find
that User A is available to help. If User A is willing to help (we
will discuss this issue in Section 5), User B and C then communi-
cate over their Bluetooth interface with User A so that User A can
forward the traffic for User B and C. This allows User B and C to
totally eliminate their cellular interface activation and the energy
wastage in tail phases. As shown in Figure 4b, with the help from
User A, the total active periods for the 3 phones reduce to 60s, a
nearly 50% reduction.

There are several underlying requirements for such a collabora-
tive approach to become feasible:

1) Performance-wise, a low-power radio like Bluetooth can sup-
port the collaboration. Such radios only support a low data rate,
e.g., less than 1 Mbps as measured on Samsung Galaxy SIII (19305)
phones. Fortunately, the low-data-rate nature of the background
traffic allows the collaboration to happen over such low-power and
low-data-rate radios. As shown in Section 3, the size of the data
exchanged in each of these background events ranges from a few
hundred bytes to 10 KB. A similar observation is also reported
by [17]. In comparison, if one wants to forward a typical web page
(e.g., 2M Bytes large) over such a low-power low-speed interface,
the delay will become intolerable (more than a dozen of seconds).
Also, the small size of background traffic ensures that forwarding
them will not affect the performance of the helper phone’s own
transmission.

2) Energy-overhead-wise, the use of a low-power radio like Blue-
tooth only introduces negligible energy overhead. Background data
transfers sizes lie in the range of few 100 bytes to 10 KB and the en-
ergy consumed to transmit a typical 3 KB background traffic only
consumes less than 0.5.J of energy, or less than 5% of the total en-
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ergy (12J) wasted in a typical cellular tail phase. Furthermore, the
helper phone (e.g., User A in the example of Figure 4b), turning
on the Bluetooth interface for discovery and communication when
the cellular interface (3G or 4G) is in high power state consumes
nearly the same amount of energy as only turning on the cellular
interface (see Section 7).

3) Collaboration opportunities are sufficiently abundant. If two
phones wakeup for 20% of their time independently, the probability
that they have some overlapping period will be low (around 4%).
We observe that in urban settings (such as office, bus, metro, and
food courts) a large number of smartphones stay close to each other
for a considerable amount of time and therefore would provide an
excellent environment for mobile-to-mobile collaboration. For ex-
ample, on an average day an office worker who commutes to work
via public transport will cumulatively spend at least 8 to 9 hours of
his day in his office, at the food court/canteen and in public trans-
port. Further, it is highly likely that this person would be meeting
the same group of people everyday during his commute to work, at
work and during lunch. Such a scenario provides an ideal situation
for mobile-to-mobile collaboration.

In order to get a sense of the number of neighbors in an urban
setting, we conducted an experiment to count the number of unique
mobile devices using a WiFi sniffer at a popular food court. The
reason to base our experiment on WiFi was that we found most of
the mobile devices by default switch OFF the Bluetooth radio or
keep it non discoverable. Counting based on Bluetooth will thus
have very low coverage. Instead, we choose to count the number of
WiFi devices. Note that while counting based on WiFi has better
coverage, we are still underestimating the actual number of mobile
devices since some mobile devices may still turn off their WiFi. If
we consider Bluetooth to have the same range as WiFi, as shown in
Figure 5, a smart phone would have more than 70 - 110 neighbors
during the peak period (1900 hrs to 0100 hrs, for dinner and late-
night supper) of the food court. The typical communication range
of Bluetooth [19] is around 10 m, which was roughly 25% of the
area covered by our WiFi sniffer. With that range we see roughly
about 20 neighbors during the peak hours. Furthermore, our exper-
iments in open spaces such as food courts and offices showed that
a Bluetooth device can be discovered up to a range of 20 m, which
is roughly 80% of the area covered by the sniffer. With this range
roughly 50 - 90 neighbors can be discovered during peak hours. In
terms of neighbors in an office space a recent study [20] reports
that a typical office space of 100 m? (range of Bluetooth) houses
around 10 - 15 people. If a node has 20 neighbors around, even if
each neighbor independently wakes up only 10% of the time, the
probability that there is at least one neighbor around to help is as
high as 1 — (1 — 0.1)*° ~ 88%. Bluetooth devices can form a
piconet of up to 8 active peers and up to 255 inactive peers [19].
Since only phones with background traffic needs to be active mem-
bers, Bluetooth is suitable for supporting collaboration in a dense
network.
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Figure 6: Energy savings under varying community size

Besides ours, several other research efforts [21, 14, 16] also de-

pend on the availability of mobile-to-mobile collaborative opportu-
nities.
Potential savings under varying neighborhood size. To further
illustrate the last point above, we will do a more careful evaluation
of the potential energy savings through collaboration under vary-
ing neighborhood sizes. For this, we pessimistically assume that
no phones in the system are in active use. Having active phones
around will increase the opportunity that a phone with background
traffic can find a helper. We use the background event trace we col-
lected (see Section 3) to drive the simulation. We simulate a clique
of phones with an increasing neighborhood size. We evaluate the
fraction of the total amount of energy that can be potentially saved
through collaboration. As in Figure 4, we assume that if a phone
with a new background traffic event finds another phone with active
cellular connection, the latter will always help. This means that at
any moment, for a clique of phones, there will be at most a single
phone with active cellular interface.

As shown in Figure 6, based on our trace, as long as a node has
more than two neighbors, the potential energy savings for the com-
munity can be around 5% and 10% respectively when the phones
are running the default Google Applications and Application Set A.
Further, around 20% can be saved if the phones are running Appli-
cation Set C. Remember that in Application Set C, WhatsApp and
Skype applications send background traffic more often to check for
updates, hence increase the chance that two phones have overlap-
ping periods. Even with a small neighborhood size (< 5 phones
around), the energy saving is already sufficient to compensate for
the overhead of Bluetooth probing. As soon as the neighborhood
size reaches 10, the potential savings increases to more than 40%
and around 75% respectively for Google Applications Only / Ap-
plication Set A and Application Set C. This further increases to
more than 60% and nearly 90% when the neighborhood size in-
creases to 20. The rate of increases drops with further increase of
neighborhood size. Our simulation result clearly shows that with a
reasonably large neighborhood size (e.g., 10 to 20), which are al-
ready commonly available today, a collaborative approach has the
potential to save a significant fraction (more than 50%) of the total
energy wasted by background traffic in their tail phases.

S. FAIRNESS IN COLLABORATIVE
ENERGY REDUCTION

In the previous section, we show that it is feasible to save sig-
nificant amount of energy using a collaborative tail energy reduc-
tion approach. In the example of Figure 4b, the most energy ef-
ficient sharing is achieved by letting User A serve the other two
users. However, under such an arrangement, User A performs
all the works without gaining any savings from the collaboration,
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while Users B and C do not utilize their cellular radio at all. This
is obviously “unfair”, despite that it maximizes the total amount of
energy saved.

Figure 7 shows another arrangement, where User A serves only
a limited amount of time (in this example, until serving User C’s
event at 255s). Since we do not assume a phone can cut its tail, User
A will continue to be in an active state until 25 + 20 = 45s. Since
User A does not help with the second event of User B that arrives
at 30s, User B turns on its own cellular radio for that. User B will
also help User A with A’s last event at 40s. User C still does not
utilize its cellular radio at all. In this case, both Users A and B con-
tribute. Through the collaboration, Users A, B and C reduce their
cellular active time by 15s, 5s and 20s respectively. Intuitively,
this schedule would seem to be fairer than the greedy schedule in
Figure 4b, where an active user will always help others in order to
greedily reduce the total energy consumption. Achieving this im-
proved fairness however comes at a cost. The total saving is now
15s + 5s + 20s = 40s, which is smaller than the total savings of
555 in the greedy schedule. This lost of efficiency is because dur-
ing the period between 30s and 45s, both User A and User B turn
on their cellular interface to switch the role of being a helper.

Based on the above examples, it is clear that what is needed is a
quantitative definition of fairness. Based on a well-defined fairness
notion, one can then evaluate different collaborative algorithms by
their abilities to achieve both energy efficiency and fairness.

Ideal / perfectly fair savings. To establish a solid fairness notion
in our unique collaboration context, we draw inspiration from the
deep literature of packet scheduling. One widely-adopted fairness
notion is the Generalized Processor Sharing (GPS) [7], which is
a scheduling algorithm that achieves ideal fairness among multi-
ple flows by assuming that the traffic is fluidly splittable. Under
GPS, each flow can instantly receive its ideal fraction of the server
at any point of time. Instead of the fair resource to be allocated,
in our context, we consider the amount of savings that a mobile
phone is entitled to. Similar to GPS, we define the ideal (or per-
fectly fair) savings for a mobile phone by assuming that at any point
of time the potential amount of energy savings (as compared to a
non-collaborative setting) can be fluidly split among all collabo-
rating phones. Specifically, consider a moment when there are n
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Figure 9: Proposed system architecture

phones that are in the cellular active states if they do not collabo-
rate. Suppose all phones can hear each other. If they collaborate to
save energy, only one phone needs to enter the cellular active state.
Hence the energy can potentially be saved by a fraction of 1 — %
Our fairness definition assumes that this potential savings can be
equally split among all nodes instantaneously, hence the ideal sav-
ing of a node at the considered moment is 1 — % of its normal power
consumption.

Ideal saving is greater than zero only in periods when there are
at least 2 nodes in cellular active states if they do not collaborate.
Hence, in Figure 4a, saving is only possible in the period between
155 to 50s. In this period, the amount of ideal saving varies with
the number of active users. As shown in Figure 8, the ideal savings
for both Users 1 and 2 are 10 x £ +20 X 2 +5 x 3 =203. The
ideal savings for User 3 is 20 x % = 13%. Note that as computation
is based on what is possible when there is no sharing/collaboration,
it is independent of the collaboration scheme used and captures the
maximum amount of savings possible through collaboration.

With the notion of ideal fairness defined, we can then use it to
gauge the fairness under different helper selection algorithms. One
would expect that a good helper selection algorithm could let each
node approximately obtain its ideal savings. However, this turns
out to be impossible in general for our context due to a fundamen-
tal trade-off between efficiency and fairness in our context. Recall
the example shown in Figure 7, the system has to let User A and
User B stay in their cellular active state together for a while in or-
der to achieve better fairness. Such an overlapping of cellular active
phases reduces the overall system efficiency, making it impossible
for all phones to achieve their ideal savings that is defined by as-
suming the ideal efficiency.

RMS fairness index. With this in mind, a natural goal is instead
to hope that the ratio between a node’s actual savings and its ideal
savings is made similar across different nodes. The rationale be-
hind this is that the inefficiency due to enforcing fairness should be
shared among all nodes. Consider a set S of n phones, all with non-
zero ideal savings. Denote phone 7’s actual savings and ideal sav-
ings by actualSavings; and ideal Savings; respectively. We will
evaluate the fairness of a scheduling algorithm by the degree that
it can make the ratio of r; = actuelSevings; g, gifferent phones

v idealSavings;
equal to each other. Specifically, we define the global average ra-

. P actualSavings; .
tio R = %ES - —— and we define the RMS fairness
ics tdealSavings;

index by the RMS value of the distance between ;s and R, i.e.,
Zigs(Ti—R)2

— . Note that for an ideal scheduling algorithm (as
shown in Figure 8), the resulted RMS value is 0. Based on this
definition, the two schemes as shown in Figure 4b and Figure 7 has
a RMS value of 0.76 and 0.53 respectively.

In general, a scheme that is fairer tends to be less efficient, and
vice versa. In the next section, we will present a scheme that pro-
vides a good tunable trade-off between these two requirements.



6. REALIZING COLLABORATIVE
ENERGY REDUCTION

6.1 Prototype Implementation

Figure 9 shows the system architecture of our proposed system.
Applications that make use of our collaborative system make all
network related system calls via the middleware. The middleware
has two components, an interface selector and a controller. The
proposed algorithm, to be presented in Section 6.2, runs in the con-
troller.

The interface selector may transmit the packets received from
the applications either to the Bluetooth or the 3G/4G interface de-
pending on the decision of the controller. A node can either be in
the default or collaborative mode. In the default mode, packets are
routed based on the default configuration.

In the collaborative mode, a node can be either a helper or a
client. As a client, a node turns off its cellular interface. It will
transmit and receive all traffic to/from the Bluetooth interface, us-
ing the helper as the relay node. The helper turns on its Bluetooth
interface to communicate with one or more clients. It will also turn
on its cellular interface to support communication with the Inter-
net for both its own and the client’s traffic. For a client to route its
packet through the helper, it has to encapsulate the packets using a
special header. The helper node forwards these packets to a proxy
that will interpret the header information and forwards the packet
to the proper destination. This encapsulation is also performed in
the reverse direction. Our mobile-to-mobile collaborative system
architecture is similar to the multipath-TCP-based implementation
presented in [14], although the system in [14] is designed for col-
laborations involving larger data transfers.

In our system, the collaborative mode is only enabled when the
frequency and amount of data traffic is low, typically when there is
only background traffic. Starting from an initial state (as a client
with no associated helper), a node uses the Bluetooth service dis-
covery protocol to discover if any mobile device in vicinity is in-
terested in collaboration. In order to reduce energy consumption,
such discovery is performed only when a node needs to turn on its
cellular interface for communication. If collaboration is enabled
through the discovery, the Bluetooth MAC address of the devices
discovered are cached for later use.

A prototype of the system was implemented on Samsung Galaxy
SIV (LTE) phones running Android 4.4.2 (kitkat). We will use this
prototype implementation in our evaluation in Section 7.

6.2 Algorithm Description

Based on the framework of fair queuing [22] and processor shar-
ing [7], we propose a Fair-Ratio algorithm that runs in the con-
troller. The algorithm keeps track of two variables, actualSav-
ings and idealSavings. Based on the exchange of state information
through the Bluetooth communication and by simulating the be-
havior of each phone when there is no sharing, a phone can derive
the parameter idealSavings, which keeps tracks of the ideal savings
(as in Section 5) a phone is entitled to. The phone then computes
the difference between the energy consumption when there is no
sharing and the actual energy consumption, which gives the other
variable actualSavings. The outline of the Fair Ratio algorithm is
shown in Algorithm 1.

In the algorithm, the subset of phones that can be a candidate to
help must be the one that either is in cellular active (including tail)
phase or has an active background event. If a phone is a newcomer
(idealSavings is 0), we set its idealSavings to 1 to avoid the divide-
by-zero error and its actual savings is set with 50% chance to +1
or -1. This makes the scheme appear neutral to newcomers on the

Algorithm 1 Fair-Ratio Algorithm (with threshold )

1: S« PHONESyitntraffic U PHONES eiiuiaronN;
2: Initialize actualSum and ideal Sum to 0;
3: for each phone in S do
Get phone’s actual Savings and ideal Savings;
if idealSavings == 0 then
tdealSavings + 1;
Set actualSavings to 1 or —1 with equal probability;
end if
phone’s ratio < actualSavings/ideal Savings;
actual Sum += actualSavings;
11:  idealSum += idealSavings;
12: end for
13: avgRatio < actual Sum/ideal Sum;
14: helper < phone of max ratioin PHON E S eiiviaron;
15: if helper’s ratio < avgRatio 4 6 then
16:  helper < phone of max ratioin S;
17: end if

_
SIN  AAR

Table 1: Power measurements for cellular networks

Power Measurement
3G/3.5G 4G LTE

IDLE 30 mW 30 mW

RRC State

SEND (Upload) 1500 mW 2300 mW
RCV (Download) 1200 mW 2100 mW
TAIL 600 mW 600 mW

average. For each phone ¢ with background traffic or with active
cellular connection, we compute its ratio actualSavings;
idealSavings;

>; actualSavings;
>, idealSavings; for all

such phones. If for the current helper, the difference between its
ratio and the average ratio is not too large (less than the threshold
0), it continues to help. A larger threshold 6 increases the chance
the current helper continues to help hence can make the system
more energy efficient. In contrast, a smaller 6 can lead to more fair
distribution of loads among phones, albeit at the cost of total energy
efficiency. If there are multiple existing helpers that meet the crite-
ria, the helper with the highest ratio is chosen. If no existing helpers
meet the criteria, i.e., all helpers have contributed § more than their
fair shares, the algorithm will optimize for fairness now. Under this
case, the phone with the largest ratio will be chosen since relatively
it has gained the most from its past collaborations.

An active phone periodically updates its helper about its event
activities and the helper then shares this information with other
phones. Information update does not have to be frequent. Note
that longer delays in these updates tend to reduce the number of
helper changes, thus making the performance less fair and more
energy efficient.

Next, we compute the average ratio

7. EVALUATION

7.1 Power Measurements

We used a monsoon power meter ' to carry out a series of power
measurements on a Samsung Galaxy SIII (I9305) phone running
Android 4.1.2. We kept the screen off throughout our experiments.

The first set of our experiments measure the power consumption
in different states of the RRC state machine for both 3G and 4G
networks. We summarize the results in Table 1. Our second set
of experiments measure the power consumed by a Bluetooth 4.0

"http://goo.gl/sjChCH



Table 2: Power measurements for Bluetooth 4.0

BT State Power Measurement
SEND 290 mW
RCV 320 mW
CONNECTED 65 mW
1400+
12000 ~1200mW A
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Figure 10: 3G cellular tail ~ 10 seconds

radio, with the results summarized in Table 2.

We also measure the tail times for different cellular networks.
The tail duration for a 3G network is roughly 10s (Figure 10). For
two 4G networks operated by different service providers, we ob-
serve that the tail durations are around 10s and 20s respectively
(Figure 11 and Figure 12).

Finally, we measured the effect of Bluetooth discovery when a
smart phone is on its cellular ON stage. For this experiment, we
first let the phone carry out low data rate transfers via the cellular
connection at pre-defined intervals. Afterwards we averaged the
cellular tail energy consumption since the cellular tail is the domi-
nating fraction for low data rate traffic. In the next experiment we
carried out the same low data rate transfers via the cellular interface
while having the Bluetooth radio switched ON and advertising a
Bluetooth connection. The difference between the average cellular
tail energy consumption in the two experiments less than 10 mW.

7.2 Delay Measurements

Forwarding packets via Bluetooth through another device rather
than through a device’s own cellular connection incurs addition de-
lay. We carried out an experiment to measure this additional de-
lay. Our experimental setup consisted of two Android mobile de-
vices where one of the phones (sender) forwards a 2 KB packet
via Bluetooth 4.0 to the other phone (proxy) which has a 4G LTE
connection. The proxy then forwards the packet (via 4G) to a re-
mote server which will reply with an ACK packet to the proxy.
This ACK packet will then be relayed from the proxy to the origi-
nal sender via Bluetooth. For each packet/ACK exchange, both the
sender and proxy keep track of the time of transmission and recep-
tion. We transmit 100 packets from the sender and measure the ad-
ditional delay incurred by the extra forwarding through Bluetooth.
The average additional delay measured is about 111ms, which is
not significant for background notification traffic.

7.3 Trace-based Evaluation

We developed a customized simulator that incorporates the cel-
lular RRC state machine of phones. The simulator also allows easy
incorporation of each phone’s network activity trace (i.e., when it
sends and receives packets) and the phone-to-phone contact trace
(i.e., in which time periods two phones become direct neighbors).
We have made the source code of our simulator available 2. In-
stead of using the collected traces described in Section 3 directly,
we extract more than 1500 instances of event inter-arrival times as
collected over 50 hours from the traces and randomly pick one of

Zhttp://www.cir.nus.edu.sg/projects/tail-sharing
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Figure 13: Energy savings under varying number of users

these inter-arrival times during simulation. Traces generated using
this sampling approach spends on the average 16% of the time in
active (cellular tail) state, similar to Application Set A and B de-
scribed in Section 3.

In terms of power consumption, since packets for background
traffic are typically small, the simulator incorporated a simpler 4G
LTE RRC state machine where any packet transmission will trig-
ger the mobile device to enter the tail power state, omitting the
SEND/RCYV high power state (RRC_CONNECTED). We also as-
sume that the amount of energy consumed by Bluetooth 4.0 trans-
mission is negligible.

For contact patterns, we put a WiFi monitor in a food court to
identify the presence of patrons through their WiFi packets. Data
collection lasted for a period of 2 days. Using the collected user
traces, we generated two contact traces. The first trace contains the
top 100 longest occupancies (Dynamic trace) and each stay lasts
for more than an hour. In the second trace (Mix trace), there is
a mixture of 50% long (more than 1 hour), 25% medium (30min
to lhour) and 25% short (15min to 30min) occupancies. As some
of the patrons visited the food court more than once, the Dynamic
trace has 85 unique users while the Mix trace has 88 users.

The proposed Fair-Ratio Algorithm was evaluated against two
other algorithms. One algorithm is a greedy algorithm where mo-
bile devices would always pick (if available) the mobile device
which has its cellular radio switched on. Hence, there should not be
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more than 1 device with its cellular radio on at any time. Although
this greedy approach provides the most energy efficient solution,
it is also the most unfair. The other algorithm is the Fair-Actual-
Savings Algorithm. The Fair-Actual-Savings Algorithm picks the
current cellular radio on device to collaborate only if its current gain
is greater than the sum of the gain of all mobile devices that needs to
collaborate plus some threshold. If no device meets the constraint,
the phone with the highest gain within the set of phones that needs
to collaborate will be selected. Note that while the threshold of the
Fair-Ratio Algorithm is a ratio, the threshold for the Fair-Actual-
Savings Algorithm is in Joule (J). We use the RMS fairness index
as defined in Section 5 to measure the fairness.

Energy savings under varying number of users. We vary the
number of users collaborating and measured the amount of over-
all savings. Users stay in the system throughout the simulation.
As one can see in Figure 13, when the number of users increases,
the amount of energy that can be saved increases in all three algo-
rithms. Basically with more neighbors, there is higher probability
of finding a phone to collaborate with and thereby reducing the en-
ergy consumption. Note that since the activity period is only 16%
on the average, the opportunity for sharing when there are only 2
devices or users is rather small. However, even with only 5 users,
a savings of almost 20% to 30% can be achieved. With 10 users,
savings reach 40% to 50%. This shows that substantial savings is
possible, even in an environment with say only 5 to 10 users. With
50 users, savings can be more than 80% and adding more users do
not achieve much more gain beyond that.

RMS fairness index vs energy consumption. We compare the
performance of Fair-Ratio and Fair-Actual-Savings Algorithm by
varying the threshold and evaluate how they perform in terms of
the trade-off between fairness and energy consumption. The energy

consumption of the Greedy and No-Sharing cases provide the two
extreme performance bounds, as detailed in the Figure 14 caption.

We first evaluate the performance using a scenario where there
are always 91 users in the system. The result is shown in Fig-
ure 14a. Since the users are static and always present, we expect
both algorithms to be fair and savings to be substantial. In fact,
the RMS fairness index is less than 0.008 for Fair-Actual-Savings
and less than 0.0009 for Fair-Ratio. With respect to No-Sharing,
the total energy saving for Fair-Ratio Algorithm ranges from 83%
to 92%. In addition, the Fair-Ratio Algorithm does not have any
free riders in the range of thresholds evaluated. In comparison, the
Fair-Actual-Savings Algorithm allows free riders when the energy
consumption is less than 59KkJ.

The result for the Dynamic trace is shown in Figure 14b. Again,
in terms of the energy consumption vs. fairness trade-off, the Fair-
Ratio Algorithm is better than the Fair-Actual-Saving Algorithm.
The unfairness is higher since the variation in contact duration makes
it harder to spread the gain fairly. The RMS fairness index varies
from 0 to 0.16 for Fair-Actual-Savings and 0 to 0.07 for Fair-Ratio.
Savings for the Fair-Ratio algorithm are smaller compared to the
static case, ranging from 45% to 60% relative to No-Sharing. Un-
like the static trace, when using the Dynamic trace, free riders exist
for both the algorithms when the energy consumption is less 71kJ.

The results for the Mixed trace is shown in Figure 14c. The
RMS fairness index is much higher since users spend very different
amount of time in the system. The RMS fairness index reaches
almost 0.5 in the worst case for Fair-Actual-Saving Algorithm. The
Fair-Ratio Algorithm can still strike a good trade-off between the
fairness and energy consumption. One interesting observation is
that the curve for the Fair-Actual-Saving algorithm is different from
all other settings. We believe that this is due to the large differences
in gain between short contacts and large contacts and there is a large
range of thresholds whereby there is loss in energy efficiency with
no corresponding gain in fairness. Note that even larger threshold
cannot bring the fairness further down in this scenario.

Note that the simulations in Figure 14 are based on a 48 hour
mobility trace. The threshold values vary from -0.3 to +0.3 and
from -800J to +800J for the Fair-Ratio algorithm and Fair-Actual-
Savings algorithm respectively.

Per-user fairness. So far, the level of fairness is shown at an ag-
gregated level. Figure 15 shows a scattered plot of the actual sav-
ings vs. ideal savings for individual user under both algorithms
for the static trace. We select their respective thresholds such that
their total energy consumptions are similar. The result shows the
Fair-Ratio algorithm is able to maintain similar ratio for most users
while the ratios of the Fair-Actual-Saving are scattered much more



Table 3: Prototype evaluation result

Setting Data rate (bps) | Average events/s | Savings
App Set C 15 0.03 1.7%
Cx5 72 0.11 7.6 %
Cx10 127 0.18 11.8%

widely. As a result, in Fair-Actual-Saving scheme, some nodes’
actual savings can unfairly exceed their ideal saving shares, while
most other nodes’ actual savings become lower than the Fair-Ratio
scheme can offer.

7.4 Android Phone Prototype Evaluation

To validate the feasibility of our proposed approach on real mo-
bile phones, we also developed a prototype system of our proposed
collaborative tail energy reduction mechanism as described in Sec-
tion 6.1.

Our prototype system consists of two Samsung Galaxy SIV smart-
phones with Bluetooth v4.0 as the low-power radio. Both phones
are running Android kitkat (version 4.4.2). Each phone uses a sub-
set of the trace from the application set C to mimic the background
data traffic. Both phones use 4G LTE connections for Internet
access, with the length of the tail period set to 10s by the cellu-
lar service provider. We measured the total energy consumption
of the phones when executing our fair-ratio algorithm using mon-
soon power meters, and compared the results to a baseline where
the phones do not collaborate. In order to overcome the shortage
of power meters, we also use the two phones to mimic multiple
phones, by let each phone independently sample multiple subsets
from the trace of application set C. We use one phone to mimic 5,
and 10 phones, and refer to the corresponding experiments as Cx5
and Cx 10 respectively.

We run 3 experiments for each setting, and each experiment lasts
for 1 hour. The first experiment only incurs background traffic of
the phone. The second experiment incurs the background traffic
and the phones execute our fair-ratio algorithm. The third experi-
ment incurs the same background traffic (including our trace) with-
out running any collaboration algorithm. Denote the total energy
consumption of the three experiments by E1, Es, and E3. We re-
port the value of g?’:gf as the ratio of savings provided by our
collaborative algoritflm over the background traffic communication
energy. Table 3 summarizes our experiment results, which demon-
strates that our proposed collaborative energy reduction approach
can reduce energy consumption on real mobile phones. It also con-
firms the trend that greater savings can be obtained with more par-
ticipating phones. The saving here is lower than what is shown by
the simulation, which is an artefact since all the virtual phones ac-
tually use the same cellular interface of the two underlying physical
phones.

8. CONCLUSION AND FUTURE WORK

In this work, we have presented a new collaborative approach
for mitigating the tail energy wastage in cellular communications.
By focusing on background traffic, we devise schemes for nearby
phones to share the overhead of their tail energy in an efficient and
fair manner.

While these initial results are promising, the following issues
worth further investigating: 1) With collaboration, a phone’s traffic
may go through neighboring phones and cloud-side proxies. This
allows other phones to learn the presence of a phone and lets prox-
ies to learn which services/apps runs on a phone. We plan to inves-
tigate practical mechanisms to address such privacy concerns. 2)

While our approach aims to achieve fairness through scheduling,
a credit-based method can be more flexible and suitable in highly
mobile environments, though it also incurs new overheads. It is in-
teresting to investigate how different mechanisms complement each
other.
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