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ABSTRACT
Beacons, the backbone of the physical web and location-based
services, are widely used to tag objects and places. However, as a
beacon’s wireless transmission is limited to a ranging technology,
the localization information is only available when the beacon is
nearby.

In this work, we propose BFound, a navigation and room level
localization system that enable users to locate beacons within a
building to the room level. The scheme is based on expanding
the beacons’ capability in two ways. First, the system builds upon
crowdsourcing using data from smartphones carried by mobile
users and infrastructure beacons to search for facilities within an
area and navigate to the target region. Next, we utilize sensors on
the beacons to further localize beacons to the room level.

In order to enable room level localization, the beacon’s sensors
are leveraged to generate a signature unique to the room it belongs.
This is achieved using wavelet transform.

Evaluations show that BFound provides sufficient accuracy both
for navigation as well as room level localization.
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•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluationmethods; •Networks→Cyber-
physical networks; Sensor networks;
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1 INTRODUCTION
In the mobile computing context, beacons are small, battery pow-
ered wireless devices that periodically broadcast small amount of
information. Beacons can enhance user experience as smartphone’s
applications receive contextual information and are able to provide
more relevant responses. These beacons are also known as proxim-
ity beacons since they mostly use Bluetooth Low Energy (BLE) for
advertisements and have limited range. However, BLE 5 can adver-
tise with 255 bytes packet size to multiple times the range of BLE
4. While these beacons are limited in terms of functionalities, they
are cheap and easy to deploy and can be easily incorporated into
a Internet-of-Things (IoT) framework. There are different types of
beacons, including the iBeacon [10], AltBeacon [22] and Eddystone
[7]. The differences are in the format and type of data the beacons
transmit.

The explosion of beacon deployments to provide contextual
services is noticeable at airports [2] and shopping malls [20]. A
number of case studies for the use of beacons, as proximity tech-
nology, can also be found in different applications ranging from
vending machines, business cards, art exhibition projects to city
scale deployment [11]. ABI research also forecasts the shipment
of 400 million beacons by 2020 [13]. In the same context, there is
a proliferation of location-aware services with the use of beacons
to mark a location (e.g. hotel’s lobby, bedroom, dining room, lec-
ture hall, meeting room, etc.) that are mostly static (location-based
beacons). Similarly, there are also beacons that tag items but do
not necessarily convey location information (e.g. vending machine,
water dispenser, TV monitor, projector, computer equipment or
shared office equipment such as printer).

In this work, we look into the problem of localizing an object in
an environment with many beacons installed, but only the locations
of some of the beacons are known. For example, a set of beacons
heard at a particular location could be: beacon #1 saying “I am a
TV monitor in the lobby”, beacon #2 saying “I am a projector in
the seminar room”, and beacon #3 saying “I am a coffee machine”.
For beacon #3, there is no direct way to localize the coffee machine
to any of the known places. As illustrated in figure 1, the beacon
may be able to tell us that the object being searched for is within
a certain region, but there is insufficient information to localize
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further. Moreover, certain nearby facilities remain invisible for
being beyond RF range.

In this paper, we present BFound, a light-weight navigation and
localization service. BFound has two components. First, it uses a
crowdsourcing approach to build up information to search and
navigate to a region close to the target object. Next, it uses sensor
data collected by the beacons to localize tagged objects to room
level. In order to enable this feature, the sensor data from individual
beacon are used to generate a signature unique to the room it
belongs using wavelet transform.

ProximityZones

(far)(near)

(beyond range)(within range)

hotel
lobby

hotel
bar

thing tobe
localized

restaurant

Figure 1: Problems: (1) despite location-based beacons as
part of the infrastructure, things cannot be localized, (2)
Other objects are nearby but out of RF range.

The main contributions of this paper are as follows:
• A system that builds a virtual map for end-to-end cross-floor
navigation and searching using RF beacons from the physical
world.

• A method to generate a room signature based on sensor
readings that can be used for room level localization.

• We have implemented and evaluated BFound, a system that
combines sensor data and RF beacons, for navigation and
localization.

We have evaluated the crowdsourced navigation in a building
with 100 beacons deployed and the wavelet generated room sig-
nature using a 24 hours sensor data collected from 2 buildings as
well as 15 days sensor trace from the Intel/Berkeley data set [19].
Evaluation showed that BFound has high accuracy for both RF
based navigation and the sensor based room localization.

The rest of this paper is organized as follows: We first present
relatedwork in Section 2. The architecture and details of the BFound
system are then presented in Section 3 and 4 respectively. Next, the
evaluation is discussed in Section 5. Finally, we conclude in Section
6.

2 RELATEDWORK
2.1 Indoor Localization
Indoor localization has been an active area of research. Early works
like the Active Badge system [26] and the Bat location sensor sys-
tem [1] performed localization of people wearing special tags using
infrared and ultrasound respectively. Next, with the proliferation of
WiFi deployments, there has been an explosion of localization ap-
proaches using WiFi fingerprints, which started with [4, 23]. These

approaches typically require labor-intensive calibration process
though more recent approaches, like [17, 24, 25], have proposed
mechanisms to reduce the calibration effort. Other features ex-
ploited for localization include magnetic distortions inside building
[5, 25, 29] and visible light [16, 28]. Our work takes one step ahead
of traditional localization techniques by leveraging beacons’ sen-
sor data to determine whether they are in same room. Wavelet
transform is applied in the process.

2.2 Wavelet Transform
Wavelet transform emerged out of the main limitation of the Fourier
transform, which was lacking in localization of detected frequen-
cies. Since then, wavelet transform has been mostly used in the
image processing domain. Some of the applications are in image
compression (JPEG 2000), in the hiding of digital watermarks[9], in
noise removal, face recognition [3] and in querying image databases
[14].

2.3 Navigation
In the category of navigation with floor maps, places with high
human traffic like airport and other transportation hubs can request
for GoogleMaps Indoor [8]. There is also ClickLoc [27] which uses
mainly images for localization and navigation. In ClickLoc, a floor
map is used to map shot photos from the image space to the physical
space. As for navigation without maps, there are (1) Escort [6] that
uses opportunistic sensing and interaction to guide navigation,
and (2) Travi-Navi [29] that is trace-driven and uses images to aid
navigation.

Our work is different from existing work in the following ways.
First, BFound uses data about beacons encountered, from mobile
crowdsourcing, which are transformed into a graph representation;
thus, it is relatively lightweight. Moreover, it uses sensor enhanced
localization to enable the navigation to things of interest by poten-
tially identifying the room in which they are.

2.4 Floor Level Detection & Lift/Staircase
Detection

Previous works [21] showed the detection of staircases and lifts by
using pressure difference and time difference. However, this is under
the assumption that the time to change floors using the different
methods differ. Moreover, the authors also concluded out that one
cannot use the barometer to determine the floor level. However,
BFound (1) relaxes the time constraint assumption by leveraging
the step counter, and (2) uses relative pressure difference across
floors for building its network, where set of beacons’ encountered
are expected to overlap for users walking on the similar floor levels.

3 BFOUND
The BFound architecture leverages crowdsensing and sensor en-
hanced localization for end-to-end navigation. As shown in figure
2, there are 4 steps/components, namely:

• Crowdsourced data collection
• Graph building on server
• Navigation
• Sensor enhanced localization
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Figure 2: The architecture of BFound.

The basic idea is that beacons encountered by a user moving
from one place to another can be used to guide another person
moving somewhere along the same path. As such, multiple paths
can be combined to create a navigation map that is eventually
used to discover new paths and shortcuts relying only on existing
beacons with no additional infrastructure.

To this end, crowdsensing is leveraged to build the network of
beacons. The beacons encountered during a walk is used to build
a local network, in the form of a graph. The challenges are (1) the
beacons must be classified to the appropriate floor levels of the
building, and, (2) the automatically generated graph must include
floor changes, so that end-to-end cross-floor navigation is possible.

The locally generated graphs are uploaded to a Cloud server. The
server combines uploaded local graphs, that may cover different
parts of a building, into a global graph. The stitching process must
ensure that beacons encountered on different floor levels can be
combined in a consistent manner. As data from more walks are
available, the paths/edges’ distances of the global graph converge
to the shortest paths.

The generated global graph can be used for navigation to a target
beacon in the following manner. From any location, the user can
listen for transmission from nearby beacons and figure out his/her
approximate location. By inputting the destination, BFound uses
the global graph to compute the navigation path in terms of list of
beacons to be encountered, the walking directions, the turns and
the floor change positions.

While the navigation graph allows the user to reach the vicinity
of the destination beacon, in an indoor environment with many
rooms, it is still often unclear which room the object is located. It
is further challenging when obstructions/partitions in the environ-
ment change the beacon signal strength to a level making RSS not
a good indicator of distance.

Hence, in order to complete the end-to-end navigation and find
the room whereby the beacon is located, it is necessary to provide
additional information on room level localization.

This last problem is addressed in BFound by using a sensor
enhanced room level localization whereby readings from the light,
temperature and humidity sensors are used to identify which room
a beacon is in.

4 DESIGN
4.1 Crowdsourced Data Collection
Three kinds of data are collected through crowdsourcing on the
smartphone,

• Virtual landmarks

715 720 725 730 735 740 745

Step count

−60

−55

−50

−45

−40

R
S
S

Beacon received

Beacon reception interpolated/smoothened

fl
o
o
r

ch
an

ge

Figure 3: A beacon’s location is centered at the local maxima
of theRSS over the step count. TheRSS is interpolated across
the step count using a one dimensional smoothing spline fit.

• Relative floor change (staircases/lifts)
• Heading direction

4.1.1 Virtual Landmarks. Virtual landmarks are determined by
the locations of the (strongest) RSS detected for the respective
beacons. Each virtual landmark corresponds to a single beacon.
However, since RSS is a relatively noisy measure and can be de-
tected over multiple locations and floors, identifying the unique
position requires further processing. In order to reduce data process-
ing, a smartphone will consider only the strongest 10% of the RSS
collected for each beacon or a distance as threshold when TxPower
is available. For each beacon identified, its multiple appearances,
with respect to the step count, are grouped together; an instance of
a group is shown in ‘beacon received’ points of figure 3.

Next, we determine the closest location of the beacon to the
user’s step count. Figure 3 shows the RSS detected for a given
beacon over 30 steps with a floor change starting at the 729th step
using staircases. Spline interpolation is used to get a curve that fits
the RSS readings at the different step count. The beacon’s position
is placed at the step count corresponding to the maxima of the
smooth RSS curve.

Each of the beacons detected appears as a node in the locally
generated graph д.

4.1.2 Floor Change Detection. It has been observed that a floor
change is easily detected by a device’s barometer reading when the
device moves across two floor levels [18] over a short period (say ≈
0.4 mbar for one floor change). Hence, given that the smartphone’s
barometer sensor is able to detect floor changes based on pressure
change, the rate of change of the pressure with respect to the step
count gives us an indication about whether staircases or lifts were
used. A high rate of change, nearly a vertical line, implies lifts are
activated otherwise the staircases are used.

4.1.3 Detecting User’s Heading Direction. Detecting a user’s
heading direction using the smartphone can be challenging because
the phone can be hand-held, placed in a bag or kept upside-down in
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a pocket. Moreover, the magnetic distortions inherent in building
structures makes turn detection using the absolute magnetic north
unattractive. In order to deal with this, the axis on which the gravity
is exerting is leveraged. The changes in the gyroscope readings are
more pronounced on the same axis. As such, all relative turns are
derived from that particular axis. Hence, we determine the relative
change in direction by the user using the integral of the gyroscope
axis onto which the gravity is pulling the accelerometer. When
the device is upside down, the turn taken is negated as a result of
having negative accelerometer readings with respect to the gravity.

4.1.4 Build Local Graph д. By combining and processing the
RSS and sensor data, we are able to (1) locate the detected beacons
based on step count and the respective floors and (2) derive the
vector (direction and step count) between different nodes. The next
step is to construct the local graph д. The nodes in д corresponds
to the position of the beacons (virtual landmarks). Two nodes are
connected in д if the distance between them is less than the window
size (in step count) as shown in figure 4. An example of the graph
or adjacency matrix constructed is also shown. The edge’s distance
is the step count between the two node being connected. Direc-
tion change detected between connected nodes are also recorded.
Whenever two nodes from different floors are being connected,
rate of change of the pressure with respect to step count is used
to determine (1) whether it is an upward or downward movement,
and (2) the mode of movement (staircases/lifts). These details are
added as edges’ attributes.

4.2 Graph Building on Server
These crowdsourced sub-graphs are merged to form the global
navigation graph at the server. The set of common beacons between
the master graphG and new sub-graph is leveraged for the merging.
Information on the relative floor and pressure differences are also
utilized in the merging to ensure that the relative ordering among
different floors are preserved.

4.3 Navigation
Navigation is started by downloading the sub-graph ofG related to
beacons heard. The user search for facilities or services found in the
sub-graph and can possibly states his interests. When the desired

destination is known, the path, relevant to the user desired interests,
is returned. The path is in the form of environment markers, like
shops or rooms, that are expected encounters to the destination.
While walking, the user’s location is updated on the sub-graph
based on the beacons’ heard, such that he is always given the next
expected encounter.

At times, nodes can also be encountered in slightly different
orders at different instances of the crowdsensing process. This
is expected as the virtual landmarks are RSS-based. The different
encountered orders can be kept as separate instances ofG . However,
the convergence to the correct order, as that in the physical space,
is expected as more data is obtained from crowdsourcing.

4.4 Sensor Enhanced Localization
The sensors available on beacons can be used to capture room level
events and it is possible to determine if two beacons are in the
same room if (1) trends in sensor readings are similar in the same
room and different from other rooms, (2) there is some coarse time
synchronization among the beacons so that sensor readings can
be compared over time. In BFound, synchronization on the gran-
ularity of the sampling interval (10s) is sufficient, (3) these trends
can be captured and represented efficiently using small amount of
data, and (4) the computation required must be minimum since the
computation is done locally on the beacon.

BFound utilizes light, humidity and temperature data to perform
room level localization.

• Light events, as shown in figure 7a, are very distinctive.
Even with very sparse sampling rate, sharp changes in light
intensity can be recorded. However, in some settings, there
may be multiple light sources in one room that are controlled
separately and the changes will be less obvious. In some
cases, there could be no lighting events at all (either on or off
all of the time) or the light sensor could be covered. Hence,
there is a need to incorporate additional sensor modalities
like humidity and temperature.

• Unlike the light events, the humidity readings, as shown in
figure 7c changes muchmore gradually and trends’ similarity
can only be detected over a long time period. Temperature
readings exhibit similar behavior.

beacon

step counter

beacon id

sliding

window

a
b

(a) The sliding window.

a

b

node attributes:
{beaconid, floor level, URL, ...}

edge attributes:
{distance, turns, floor crossing, ...}

(b) The graph.

0
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1
(c) The adjacency matrix.

Figure 4: As the sliding window moves, the graph/adjacency matrix are build up with nodes/edges’ attributes. The edge’s
distance is the step count difference between the respective encounter of the edge’s nodes.
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Encoding of light, humidity and temperature poses challenges.
For light readings, there is no change most of the time and the
changes occur over a very short period. On the other hand, tem-
perature and humidity changes slowly and there is a need to find a
compact representation of a long time series data that can be used
for comparison and classification.

The approach used in BFound is to apply wavelet transform to
encode the beacons’ sensors data, namely light, temperature and
humidity, into a short signature.

4.4.1 Wavelet Transform. Wavelet transform [12] has been used
in data/image compression, pattern recognition and noise reduction.
In all cases, the transform consists of two parts,

• a low pass filter, to obtain the approximations,
• a high pass filter, to obtain the detail coefficients. The same
transform can be further applied to the output as required.
The crucial elements for the compression are the coefficients
with highest values.

It is to be noted that (1) the time element is preserved, and (2)
after each transform the number of samples from the input is halved
to the approximation and coefficient domain. By using only a small
set of the coefficients of the transform, a very compact presentation
can be obtained. The decomposition is shown in figure 5 and figure
7 shows only the detail coefficients of decomposition.

original signal

approx1 detail1

detail2approx2

...
...

...

level 1

level 2

tx

time period, tx

tx

tx

tx

Figure 5: Signal decomposition using wavelet transform.

In BFound, wavelet transform is used to (1) reduce noise from
the beacon’s sensors, and (2) retain a highly compressed represen-
tation of the collected data based on the highest coefficients. As
such, the outcome is a signature, in terms of lighting events and
temperature/humidity trends, for the room that a beacon is located.
Two beacons are likely to be in the same room if they share similar
room event signature.

The number of iterations for the wavelet transform required to
return a meaningful representation of the signal depends on how
fast or slow the signal changes. Therefore, while few iterations
are enough to consider light events, the coefficients from multiple
iterations are required to enable the alignment of events in the
slow varying domain of temperature and humidity. Another pa-
rameter to consider is the wavelet to be used. Although there is

a panoply of wavelets, the Haar wavelet, shown in figure 6, also
known as Daubechies 1 (db1), being one of the most powerful [15],
is considered in this work.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Haar wavelet

Figure 6: The Haar wavelet

Figures 7a and 7c show the raw sensor data for light and humidity
respectively for three different beacons from two rooms. Visually,
it is easy to tell that two of the light event changes (room 1 and
room 2) are similar. Figure 7b shows the wavelet transforms that
say the same.

For the case of humidity, the raw sensor values are harder to
interpret since the changes are much more gradual. The correspond-
ing wavelet transforms are shown in Figure 7d. Again, the wavelet
transforms indicate that the associated beacons in the top 2 rows
are in the same room though it is less obvious.

4.4.2 Room Signature withWavelet Transform. Given thatwavelet
transform preserves the relevant variations/happenings of a signal
by assigning higher detail coefficients, the latter are useful inputs
in the constitution of the room signature. One of the property of
wavelet that also make these coefficients useful is that they are
localized. Unlike the Fourier Transform that only says that a partic-
ular feature (frequency) is there, wavelet transform also says where
or when that feature happened. As such, the partial signature from
a particular sensor is created using the respective indexes of the
set of highest coefficients. In our case, these indexes also represent
the times at which these events happened. Thus, it is expected that
these times correlate across beacons in the same room. Therefore,
the room signature is composed of the indexes of the highest absolute
detail coefficients from the multiple sensors.

In the case shown in figure 7b, the indexes of light’s highest
absolute coefficients for the three beacons are:

• Beacon 1 = [462, 1719, -1741, -1742, -1743, 3187, -5745, -5746,
-5747, -5748]

• Beacon 2 = [462, -1741, -1742, -1743, -1747, -1750, -2109, 3187,
-5745, -5746]

• Beacon 3 = [238, 239, -1908, 2031, -2049, 2740, 2741, -6080,
6326, -6361]

For the case of humidity shown in figure 7d, they are:
• Beacon 1 = [1, -2, -3, 4, -10, 12, 13, -20, -28, 29]
• Beacon 2 = [1, -2, -3, 4, 6, -10, 16, -23, -28, 69]
• Beacon 3 = [-1, 3, 4, 12, -13, 16, -22, 23, 32, -64]



MobiQuitous ’18, November 5–7, 2018, New York, NY, USA P. Appavoo, H. Hong, M. C. Chan, and A. Bhojan
Be

ac
on

1:
Ro

om
1

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

50

100

150

200

Time

L
ev

el

Be
ac
on

2:
Ro

om
1

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

50

100

150

200

Time

L
ev

el

Be
ac
on

3:
Ro

om
2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

50

100

150

200

Time

L
ev

el

(a) Light: raw sensor data.
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(b) Light: detail coefficients.
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(c) Humidity: raw sensor data.
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(d) Humidity: detail coefficients.

Figure 7: The outcome of light and humidity sensor data going through the Haar wavelet transform at up to level 2 and 11
respectively. For lights, level 1 and level 2 coefficients are shown. For Humidity, an extract of the highest level coefficients is
shown as the lower ones are close to zeros. The data from the first two rows are for beacons in the same room.

In both cases, the sign, we used to accompany each index, represents
either a corresponding positive or negative coefficient value.

For the beacons in the same room (Beacons 1 and 2), the matches
for the light and humidity coefficients are 7 (out of 10) and 6 (out
of 10) respectively.

For the beacons in different rooms (Beacons 1/2 and 3), there is
no match for the light sensors for beacons from different rooms.
Noted that coefficient index with opposing sign implies the changes
are dissimilarity rather than similarity. Hence, with humidity data,
the match is low (only 2 out of 10) as well.

Although wavelet transform is not computationally expensive,
it is worthwhile to compute only the coefficients that are needed.
As the beacon is highly resource limited, less computation and less
coefficients to broadcast are both important. Unlike with the light
sensor values that require up to two levels of wavelet transform to
detect sudden changes, the slow varying temperature and humidity
data require more iterations to produce more coefficients to unveil
the similarity between two beacons in the same room.

The moving up to the higher levels in the wavelet transform is
similar to time compression. As such, there is the need to make
sure that events are properly indexed so that the outcome from the
transform represent the most appropriate time/index that an event
occurred across beacons. Figure 8 illustrates the indexing process
when two levels of iterations are used.

4.4.3 Localization. Figure 9 shows the decision tree used for
localization. In order to localize a beacon, we first need to receive
the room signature it broadcasts. This room signature is compared

time
signal

level 1

level 2

coefficient

coefficient index
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0 1 2 3 4 5

5 4 3 2 1

s0 s1 s2 s3 s4 s5
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d0 d2 d1 d4 d3

Figure 8: Indexing coefficients for proper representation of
events across beacons.
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Figure 9: Localizing tree based on signature correlation.
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with other beacons with known location that have been received.
We localize a beacon by matching it to a beacon (with known
location) that has the most similar signature, i.e. highest correlation.
Since light is the strongest signature if available, it is first used
to determine whether two beacons are in the same room if the
signatures match.

If the light signature does not match, we consider the case of
having similarities in both the temperature and humidity domain. Fi-
nally, consideration is given to the case when correlation is present
in either temperature only or humidity only. If all matching fails,
the beacon cannot be localized as no other beacon in the same room
was found.

5 EVALUATION
There are two parts in the evaluation. First, we present results on
crowdsourced data and navigation. In the second part, we present
results for sensor based localization.

5.1 Data Collection and Navigation
We evaluated BFound’s navigation accuracy in a building deployed
with over 100 beacons in rooms, corridors, and common areas, over
three floor-levels. The floors are connected by staircases and lifts.
The default sliding window is set to 10 steps.

5.2 Quality of Crowdsourced Data
To build the graphG, 4 users collected data over 6 walking paths.
In all 6 walks, the ground truth were recorded for comparison. We
evaluate our results by comparing the graph build using crowdsens-
ing against the ground truth. The main properties that are checked
against are (1) the closest point of the beacon on the step count,
(2) the attribute floor level of the node, (3) the nodes’ order as they
appear on the graph for traversal, and (4) the attribute turns of the
respective edges.

5.2.1 Positioning Beacons’ Position on Step Count. While walk-
ing and logging the beacons heard, the closest points with respect
to 22 beacons were recorded. These records were used to show how
close/far the beacons are positioned to the actual locations on the
step count. The result in figure 10 shows that 80% of the time, the
beacon is positioned within 2 step count, i.e. less than 2 meters.
Almost all errors are within 3 steps. Moreover, the results are better
when using the local maxima of a spline fit instead of using the
highest RSS observed for a particular beacon.

5.2.2 Nodes’ Ordering. For all 6 walks, the number of nodes
encountered and correctness of the ordering are shown in table
1. In terms of ordering of beacons encountered, about 90% of the
ordering is correct. For almost all the error cases, misordering of
encountered nodes happened when the beacons are quite close to
each other.

5.2.3 Expected Turns. Figure 11 shows the CDF of the percent-
age error in the detected degree of turns. In all walks, despite the
phones’ carried positions, most of the expected turns were detected
without any false positives. The possible drifts of the gyroscope
are properly cancelled out. The cases for the false positives are
(1) two turns happening within a few steps of each other and are
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Figure 10: CDF of error in beacon’s position (in step count)

Table 1: Nodes’ ordering and classification

Walk 1 Walk 2 Walk 3 Walk 4 Walk 5 Walk 6
Duration (mins) 11.12 12.39 11.13 3.50 4.70 3.30
Distinct nodes
encountered 52 50 48 21 25 25

Nodes
encountered 78 75 75 25 31 31

Proper ordering 70/78 70/75 68/75 19/25 26/31 22/31

interpreted as one turn, and (2) turn is below the threshold set of
45◦.
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Figure 11: At 90%, the CDF of the percentage error in the
detected degree turns in all walks, is less than 30%. 127 out
of 130 turns were detected.

5.2.4 Navigation. For the evaluation using the generated global
graph G for navigation, 6 users were asked to download G from
the server. The list of beacons are annotated with appropriate de-
scriptions such as nearby room number. Each user then chooses
a destination beacon fromG and asks BFound to provide a list of
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Table 2: Navigation trials

No. of beacons
involved <7 7 8 9 12 >13

No. of paths 4 4 1 1 1 2
Required turns 8 19 8 3 6 6
Floor crossing 2 5 2 1 1 0
Out of order
beacons (%) 6.7 10.7 0.0 11.1 25.0 24.1

expected beacon encounters along the path to reach the destination.
Users were expected to use visual clues, in the form of room names,
to navigate. During the navigation process, we compare the graph
obtained during crowdsensing with that provided by BFound at the
start of the navigation.

In total, 13 paths were taken in the evaluation. We compare the
turns required, floor change and beacon ordering between the paths
suggested by running a shortest path algorithm onG and the ground
truth. The results are shown in Table 2. While the floor crossings
were all correct, some turns were not indicated correctly because
the turns were too close together. However, the visual clues (room
identification) and/or user turning in opposing direction whenever
required allowed the users to head the right way. Less than 15%
of the nodes encountered were not in the expected order (as per
the graph). But they do not affect navigation as these beacons were
located close to one another. In all cases, BFound successfully brings
the user to the vicinity of the target beacon.

5.3 Beacon’s Localization
57 sensors (mixture of TelosB and SensorTag CC2650) with light,
humidity and temperature sensors were placed in 16 rooms and
corridors (over 5 floors) in two nearby buildings. The location of
the beacons were either wall mounted or placed on desk. Sensor
data was collected at a sampling rate of 0.1Hz over 24 hours.

5.3.1 Accuracy: Experiment 1. In the first experiment (experiment
#1), we consider the case whereby we consider the coefficients of
the wavelet transform of one node and compares the waveform to
that of the other 56 nodes. This is the worst case situation since all
beacons are considered.

In the evaluation, only 5, 9 and 9 indexes of highest coefficients of
the transform are used for light, humidity and temperature respec-
tively. We select the node with the most similar wavelet coefficients
as the node that is in the same room (level or building). Two nodes
are considered to be potentially in the same room if a majority of
the coefficients matches (at least 3 and 5 coefficients out of the 5
and 9 respectively). The decision tree shown in figure 9 is applied.

The results are shown in table 3 and are grouped into three
levels of accuracy, namely: building, level and room. The results
also show that the light sensor is a strong indicator but with low
recall. This is because lights in many of the rooms did not change at
all (either always ON or OFF). On the other hand, the humidity and
temperature data are less accurate but give a much higher recall.

At the building level, the accuracy is always 100% as the sensor
data shows sufficient differences for easy matching. The accuracy
at the floor level granularity is still good, at more than 92% when

Table 3: Experiment #1: ONE against the REST

Sensors Accuracy RecallBuilding Level Room
Light 1 1 1 0.193
Humidity 1 0.959 0.749 0.825
Temperature 1 0.929 0.783 0.737
Combined 1 0.927 0.818 0.965

Consider rooms with 2 or more nodes
Combined 1 1 0.979 0.980

Table 4: Experiment #2: 10 SPOTS (entrances/lobby/common
spaces/rooms)

Sensors Accuracy RecallBuilding Level Room
Combined 1 1 0.871 0.884

all sensors are combined and recall of more than 96%. The room
level accuracy is also high, at 81.8% and with recall of 96.5%

As many of the inaccuracies are due to matching beacons in
rooms that have only one beacon, we show the results whereby
these “standalone” nodes are removed for the test set and we only
consider rooms with at least 2 nodes. Under this condition, there
are 11 rooms in the data set. The results shown in table 3 indicate
that the accuracy at the room level improves to 97.9% with recall of
98%.

5.3.2 Accuracy: Experiment 2. In the second experiment (experiment
#2), instead of looking at all the beacons, we consider only sensor
nodes within wireless reception. This is more inline with the appli-
cation scenario whereby a user, after using BFound to navigate to
the vicinity, uses the wavelet coefficients broadcast by the nodes to
locate the target node by matching the coefficients broadcasted by
the target node to the coefficients of a node with known location.

The evaluation was performed from 10 different locations to
generate 10 clusters of beacons. These locations were chosen so
that most of the (57) nodes from all levels of the two buildings
were included in at least one of the clusters. The minimum, average
and maximum number of beacons within clusters were 5, 9 and 17
respectively. In total, 93% of the beacons were included.

The results are shown in table 4. As expected, with a smaller set
of beacons to match, the accuracy improves to 87.1%

5.3.3 Accuracy: Experiment 3 (Intel Research Lab dataset). In the
last experiment (experiment #3), we look at an open dataset [19]
from Intel Berkeley Research Lab, with 54 sensors deployed in four
rooms. This data set has the advantage that it was collected over
multiple days. We used data from 15 consecutive days having at
least 24 hours of sampling data starting from March 1, 2004.

There are some limitation in the data set. First, there are only 4
rooms whereby there were at least 2 beacons. Next, the sampling
intervals were irregular, for example on one day the range is from
33s to 74s with an average sampling interval of 44s.

Table 5 shows the accuracy over 15 days. Note that for each
query, we only consider coefficients computed based on data from
the last 24 hours. The average room accuracy is 83.7% with a recall
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Table 5: Experiment #3: Intel Research Lab (over 15 days)

Sensors Accuracy RecallBuilding Level Room
Combined NA NA 0.837 0.944

of 94.4%. While the accuracy is lower than the experiments using
the data we have collected, given the irregular sampling and much
noisier sensor data, the accuracy is fairly good.

5.4 Power Consumption
In this section, we measured the power consumption of a beacon
(SensorTag CC2650) running the BFound protocol. For each beacon,
a cycle includes a periodic sensor sampling of light, humidity and
temperature, followed by coefficients’ computation and a beacon
broadcast. The result is shown in table 6.

When the cycle repeats every 10s (0.1Hz), the average power
and average current drawn are 90 µW and 40µA respectively. At
this rate, a 1000 mAh battery can sustain this kind of beaconing for
nearly three years.

Table 6: Power consumption

Beacon
Broadcast/
Sampling
rate (Hz)

Average
current
(mA)

Battery life
(Yrs)

1000 mAh

Broadcast
only

10 0.42 0.3
5 0.21 0.5
1 0.06 1.9
0.1 0.03 3.8

Prototype 1 0.14 0.8
0.1 0.04 2.9

6 FUTUREWORKS AND CONCLUSION
In this work, both RF and sensors are used for navigation and
Things’ localization. In order to extend the one-hop nature of bea-
con, BFound was proposed to effortlessly create a network of bea-
cons using crowdsourcing. Unlike existing heavily trace-driven
indoor navigation system, it uses a lightweight graph representa-
tion for navigation and searching. The system was also successfully
experimented in a building with around 100 beacons that spans
over three floor levels.

Unlike any existing RF-based localization solutions, BFound
bridges the navigation gap to the Thing of interest by leverag-
ing common low-power sensors available for Internet of Things tag.
With experiments conducted using beacons with mounted sensors
in multiple rooms, across multiple levels of two nearby buildings, it
was shown that IoT devices can be localized with high accuracy to
room level. No additional infrastructure support is required. Bfound
uses wavelet transform to generate room signatures from sensor
data. The proposed mechanism is shown to be very energy-efficient
and having high accuracy when tested over more than 15 days of
sensor data.
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