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Abstract—In datacenter networks, flows need to complete as
quickly as possible because the flow completion time (FCT)
directly impacts user experience, and thus revenue. Link failures
can have a significant impact on short latency-sensitive flows
because they increase their FCTs by several fold. Existing link
failure management techniques cannot keep the FCTs low under
link failures because they cannot completely eliminate packet
loss during such failures. We observe that to completely mask
the effect of packet loss and the resulting long recovery latency,
the network has to be responsible for packet loss recovery instead
of relying on end-to-end recovery. To this end, we propose Shared
Queue Ring (SQR), an on-switch mechanism that completely
eliminates packet loss during link failures by diverting the
affected flows seamlessly to alternative paths. We implemented
SQR on a Barefoot Tofino switch using the P4 programming
language. Our evaluation on a hardware testbed shows that SQR
can completely mask link failures and reduce tail FCT by up to
4 orders of magnitude for latency-sensitive workloads.

I. INTRODUCTION

Datacenter computing is dominated by user-facing services
such as web search, e-commerce, recommendation systems
and advertising [1]. These are soft real-time applications
because they are latency-sensitive and the failure to meet
the response deadline can adversely impact user experience
and thus revenue [1]. Such application-level deadlines can
be translated into flow completion time (FCT) targets for
the network communication between the worker processes
that work together to serve the user requests [2]. There have
been many proposals to reduce the FCTs of latency-sensitive
flows for user-facing soft real-time applications under normal
network conditions [1]–[6]. In this paper, we study the problem
of reducing FCTs in the presence of link failures.

Link failures are common in datacenter networks [7] and
they have outsized impact on short latency-sensitive flows.
Such flows typically operate with a small TCP congestion
window so when there is packet loss, the TCP receivers cannot
send enough duplicate ACKs within one RTT [8]. As a result,
fast retransmission is rarely triggered and the lost packets are
often recovered via retransmission timeouts (RTOs) [9]. Such
timeout events result in much larger delays than the lifespan
of the short flows and significantly increase FCT [10].

A large number of approaches have previously been pro-
posed to reduce the impact of link failures, including fast
re-routing [11]–[15], flowlet-based load balancing [16], [17]
and re-configurable topologies [18], [19]. All these approaches
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inevitably rely on link failure detection which has a minimum
delay. Among them, the state-of-the-art ShareBackup [19]
takes as little as 730µs to recover from a link failure and it
relies on F10’s link failure detection technique [18] which has
a delay of about 30µs. This total delay of 760µs on a 10 Gbps
link translates to about 950 KB, and some 600 1500-byte
packets could be lost. Even if we can reroute immediately after
detecting the link failure (30µs) using a pre-computed backup
path, some 25 1500-byte packets could still potentially be lost.
This suggests that while existing proposals can achieve low
FCTs under normal network conditions, they cannot maintain
or keep these low FCTs stable under link failures, even when
using state-of-the-art link failure recovery techniques. In other
words, in the face of link failures, the datacenter network stack
today is unable to provide any bounds or strong reliability
guarantees (up to five or six 9’s) on FCTs or the network
latency.

We observe that to completely mask the effect of packet loss
and the resulting long recovery latency, the network has to be
responsible for packet loss recovery, instead of relying on end-
to-end recovery. To this end, we propose Shared Queue Ring
(SQR), an on-switch mechanism to recover packets that could
be lost during the period from the detection of a link failure
to the completion of the subsequent network reconfiguration.
SQR is therefore complimentary to existing methods of link
failure detection and route reconfiguration as shown in Fig. 1.

It is not possible to know in advance if a link will fail
when a packet is sent, since link failures occur randomly and
cannot be predicted [7]. We define the route failure time to
be the time taken to detect a link failure and for the network
to recover. We observe that by estimating the upper bound on
the route failure time, a switch can cache a copy of recently
sent packets for this duration. Then, in the event of a link
failure, we can avoid packet loss by retransmitting the cached
copy of these previously transmitted packets on the backup978-1-7281-2700-2/19/$31.00 2019 © IEEE



Table I
ASIC PACKET BUFFER TRENDS

ASIC Year Packet Buffer
Trident+ [21] 2010 9 MB
Trident II [22] 2013 12 MB
Trident II+ [23] 2015 16 MB
Tomahawk+ [24] 2016 22 MB
Tomahawk II [25] 2017 42 MB

path. Naively, this can be implemented as a delayed queue
that temporarily delays (stores) every packet passing through
it for a configurable amount of time. When the link fails, we
can retransmit the cached packets from this delayed queue.
Unfortunately, no queuing engine today readily provides the
queuing discipline required to realize such a delayed queue.
Furthermore, existing queuing engines, including those in
programmable ASICs, cannot be programmed to implement a
custom packet scheduling algorithm that implements a delayed
queue. To realize a delayed queue in any other way, the basic
primitive required is packet storage. In a switch dataplane,
even a programmable one, the packets can only be stored
in the packet buffer of the queuing engine [20]. This packet
buffer storage can only be utilized by placing packets into
the default FIFO queues, which send out packets as fast as
possible without introducing any delay.

In this paper, we describe a technique to emulate a delayed
queue in the dataplane of a programmable switch. We do
so by retaining a copy of a sent packet in a FIFO queue.
If this packet reaches the head of the queue before being
sufficiently delayed, we use egress processing to route this
packet back into the FIFO queue. While this approach is,
in principle, sufficient to emulate a delayed queue, it is
challenging to ensure that no packet is missed out and the
packets are retransmitted in order. Furthermore, there are
two costs involved – the egress pipeline processing required
to build and maintain the emulated delayed queue, and the
additional packet buffer required for the packets in the delayed
queue (i.e. the cached packets). A naive implementation could
inflict additional egress processing delays on other flows going
through the switch. SQR avoids this with a Multi-Queue Ring
architecture that exploits unused egress processing capacity.
The egress pipeline is provisioned to support all ports at full
packet rate. In practice, most networks will almost always have
spare egress processing capacity available [26]. We only use
the idle ports so that other traffic passing through the switch
is uninterrupted.

We implemented SQR on a Barefoot Tofino [27] switch1.
We show using experiments on a hardware testbed using trace-
driven workloads that:
• SQR can completely mask the effect of link failures from

end-point transport by preventing packet loss;
• Coupled with current link failure detection (F10 [18]) and

route reconfiguration schemes (ShareBackup [19]), SQR
can reduce the tail FCT by 10 to 1000 times for web and
data mining workloads in the presence of link failures;
and

1A simple bmv2 version of SQR is available at: https://git.io/fjbnV
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• SQR’s overhead in terms of packet buffer consump-
tion, additional egress processing and ASIC hardware
resources is low, thereby demonstrating the feasibility of
our solution.

Gill et al. observed that network redundancy is not entirely
effective in reducing the impact of link failures [7]. Our
work addresses this gap by enabling a seamless hand-off of
packets from a failed route to an alternative route, thereby fully
exploiting available multi-path redundancy. To the best of our
knowledge, we show, for the very first time, that it is possible
to handle link failures without a single packet being lost or
reordered in a multi-gigabit datacenter network. Our proposed
approach was not previously feasible because switches would
not have enough packet buffer to cache packets for the route
failure time. However, recent innovations have substantially
reduced the route failure time (65 ms in Portland [28] to 760µs
in ShareBackup [19]) so that the number of packets to be
cached is significantly reduced. On the other hand, on-chip
shared packet buffer for switching ASICs has increased more
than fourfold over the last 5-7 years (see Table I), making
in-network seamless packet hand-off practical.

II. MOTIVATION

Link failures are dominated by connection problems such
as cabling and carrier signaling/timing issues [29]. Gill et al.
observed that link failures were more common than device
failures, and some 136 link failures were observed daily at the
95th percentile [7]. Link failures usually last for a few minutes
and exhibit a high variability in their rate of occurrence.

For any solution that tries to minimize the effects of link
failures, there are two main delays involved: (i) link failure
detection delay, the time it takes to detect that a link has
failed, and (ii) network reconfiguration delay, the time required
to reconfigure the network and restore route connectivity in
response to the link failure. Together we refer to the sum of
these delays as the route failure time. In this section, we show
that although the route failure times have reduced from 65 ms
in Portland [28] to 760µs in ShareBackup [19], short latency-
sensitive flows still suffer from high FCTs when there are link
failures. To the best of our knowledge, ShareBackup currently
has the lowest reported route reconfiguration time.

Setup. We do not have access to an optical switch, and so
we emulated ShareBackup’s behavior in our testbed by dis-
abling a link and enabling it again after ShareBackup’s route
reconfiguration time. We refer to this simulation of Share-
Backup as ShareBackup′ or SB′. Our testbed (Fig. 2) consists
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Fig. 3. FCTs of latency-sensitive web search flows [1] under link failures
with ShareBackup as route recovery mechanism.

of a fat-tree topology built using a partitioned Barefoot Tofino
switch (similar to [30]) and Intel Xeon servers equipped with
Intel X710 NICs. All links are 10 Gbps and the network RTT
between the hosts is about 100µs. Each host runs Linux kernel
4.13.0 with TCP CUBIC. SACK is enabled and RTOmin is
set to the smallest possible value of 4 ms. Host h2 sends short,
latency-sensitive (≤100 KBytes [16]) TCP flows to host h4 via
the path sw8 → sw4 → sw2 → sw6 → sw10 → h4. The
flow sizes are drawn from the distribution of a web search
workload [1]. The flows are sent one at a time with no other
network traffic. Since the FCT of a small flow is less than 2 ms
in normal case, we inject link failures between switches sw6
and sw10 every 20 ms to ensure that each flow experiences
link failure at most once. To emulate ShareBackup’s route
reconfiguration, we use precise dataplane timer mechanisms
to generate a link failure that lasts for exactly 760µs. We use
a deflect-on-drop switch dataplane mechanism to identify the
flows affected by link failures.

FCTs under Link Failures. Fig. 3 shows the FCTs of
the flows where failure-affected flows form three distinct
horizontal clusters. The cluster of FCT values around 1 second
is due to the SYN or SYN-ACK packet loss since the default
retransmission timeout (RTO) for these packets is set to
1 second [31]. The middle two clusters of FCT values (∼10 ms
and ∼100 ms) are due to RTOs being triggered either due
to tail losses in a cwnd or the complete loss of all packets
in a cwnd. For failure affected flows, we did not observe
any fast retransmissions. Overall, we see that when there
are contiguous packet losses due to link failures, even with
state-of-the-art fast recovery mechanisms like ShareBackup,
the FCTs for short flows can increase by several orders of
magnitude.

To further understand this result, we measured the TCP
cwnd sizes for the above flows under no link failure (no loss)
conditions. We found that, at 90th percentile, the cwnd size
is about 10 MSS segments which is the default initial cwnd
size on Linux [32]. The maximum observed cwnd size was
32 MSS segments which translates to 46,336 bytes with MSS
being 1448 bytes. However, at 10 Gbps link speed, a route
failure time of 760µs translates to 950,000 bytes, i.e. 656 MSS
segments after accounting for the Ethernet preamble, framing,
and inter-frame gap. Therefore, the route is in the failed state
for a much larger duration than the time it would take for
a cwnd worth of packets to traverse a link in the network.
This implies that it is very unlikely to have packet losses as

“holes” within a cwnd so as to trigger fast transmissions. In
our experiment with short flows, link failures always triggered
expensive RTOs resulting in significantly longer FCTs.

The results presented above also hold true for other de-
ployed TCP variants (DCTCP [1], TIMELY [6]) since they
all employ the same mechanism for handling packet loss. In
summary, our results (which concur with the results in [33])
show that the tail and whole window losses dominate in case
of short flows, triggering RTOs and inflating FCTs under link
failures. Therefore, to reduce tail FCTs under link failures, we
need to avoid RTOs.

Discussion. The impact of RTOs can be alleviated to an ex-
tent by using microsecond-level RTOmin [34], which requires
significant modifications to the end-host network stack [35].
A small RTOmin however risks reducing throughput due to
spurious retransmissions [36] and leads to increased overall
packet loss for incast-like scenarios [34]. Deciding on the right
value for RTOmin is tricky and it is typically set at 5 ms in
production datacenters [33], [37]. At this value, the majority
of latency-sensitive flows are small enough to complete in one
RTT [38] and therefore under link failures they would take at
least twice as long to complete, irrespective of the value of
RTOmin.

III. SQR DESIGN

In §II, we argued that to eliminate high FCTs under link
failures, we need to avoid RTOs. SQR therefore focuses on fast
in-network recovery of packets lost during the route failure
time, without involving the end hosts. Our key idea is to
continuously cache a small number of recently transmitted
packets on a switch and in the event of a link failure, retransmit
them on the appropriate backup network path.

SQR runs entirely in the dataplane of an individual
switch. Our design assumes the Portable Switch Architecture
(PSA) [39] consisting of an ingress pipeline, a Buffer and
Queuing Engine (BQE), and an egress pipeline. When an
incoming packet enters the ingress pipeline, the primary egress
port is determined by the network’s routing scheme. Subse-
quently, the packets from the latency-sensitive applications
will be marked if it belongs to a latency-sensitive flow2 that
needs to be protected by SQR. The packet passes through the
BQE normally and when it arrives at the egress pipeline, it is
subjected to SQR’s processing if it is marked.

In the egress pipeline, SQR by default forwards a packet to
the destination port and be proceeded normally. However, if a
packet is marked, SQR performs the additional task of creating
a copy of the packet and caches the copy for a time duration
equal to the link failure detection delay (§II). By doing so,
SQR ensures that packets are not lost if a link fails later.
After this delay, SQR checks if the cached packet’s primary
egress port (on which the original packet was sent) is still
operational. If the link is up, then it means that the original
packet was transmitted successfully and the cached copy of

2Latency-sensitive applications can request SQR’s protection by using a
pre-defined set of TCP port numbers, IP Header TOS bits or VLAN IDs.
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the packet is dropped. However, if the link is down, then the
original packet was likely lost and a copy of the packet is
cached again for time equal to the network configuration delay
(§II). This additional delay allows the network to configure
the backup path without losing the cached packets. After this
second delay, the cached packets are sent on the backup path
(port).

SQR’s operation requires the following information in the
switch dataplane: (i) The link status of the ports (up or down),
(ii) the backup port (route) for each primary port (route) to
a destination top-of-the-rack switch. SQR integrates with a
link failure detection mechanism such as the one used in
F10 [18] to update and maintain the status of the ports (albeit
after a delay). It also integrates with a route recovery scheme
(e.g. ShareBackup [19]) to determine the backup port for each
primary port.

A. Caching Packets on the Switch.

Conceptually, the caching of packets can be achieved with
a delayed queue, where each individual packet entering the
queue is delayed for a fixed minimum amount of time (termed
as delay time) before it leaves the queue. Unfortunately, there
is no such primitive in the current switching ASICs. Further-
more, the queuing engines, including those in programmable
ASICs do not support programming such custom scheduling to
realize a delayed queue inside the queuing engine. In addition,
packet storage, which is required to realize a delayed queue, is
only available inside the queuing engine in the form of FIFO
queues. Therefore, it is not straightforward to realize a delayed
queue in existing switching ASICs.

SQR achieves the delayed queue functionality using a
“Queue Ring” that combines the BQE’s FIFO queue, egress
pipeline processing and high-resolution timestamping. The
high-level idea (shown in Fig. 4) is to place the packets to
be cached inside a FIFO queue of a port on the switch. When
the FIFO queue transmits the cached packet at a later time,
high-resolution timestamping is used to check if the packet
has been delayed for the required duration δ. If the packet is
not sufficiently delayed (delay < δ), the egress pipeline sends
the cached packet back to the FIFO queue. Once a packet is
sufficiently delayed (delay >= δ) after passing through the
FIFO queue one or more times, it exits the Queue Ring. This
helps to build up an artificial queue of cached packets, since
effectively no packet exits without being sufficiently delayed.
In the steady state, where new packets enter the Queue Ring at
a fixed rate R, the artificial queue build up remains fixed and
equal to R × δ. Notice that each packet accumulates delays
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from two sources – (i) the queuing delay due to the artificial
queue build-up, and (ii) the egress processing delay incurred
in sending a packet back to the FIFO queue. Hereafter we will
refer to the FIFO queue used to implement a Queue Ring as
the caching queue.

B. Multi-Queue Ring Architecture

Our Queue Ring approach utilizes the egress processing
of the port associated with the caching queue to emulate the
delayed queue behavior. Unfortunately, the processing of these
cached packets may affect the normal traffic passing through
other queues of that port. Therefore, to minimize the impact
on existing traffic, we do not use the same port for packet
caching. Instead, SQR assigns one queue from the multiple
queues [40] of each port as a caching queue and spreads
the queued packets across a set of these caching queues.
In particular, when a cached packet is to be sent back to a
FIFO queue for additional delay, SQR dynamically chooses the
caching queue that belongs to a port with the least utilization.
We refer to this architecture that consists of multiple caching
queues from the BQE that are connected to each other by
the egress pipeline to form a ring as the Multi-Queue Ring
(see Fig. 5). We exploit the fact that while the egress pipeline
is provisioned to support all ports at full packet rate, there is
almost always spare egress processing capacity available in the
switch under typical network load conditions [26]. The spare
capacity, however, is available on different ports at different
times. Using a ring of multiple queues allows SQR to exploit
the spare capacity by dynamically changing the set of low
utilization ports.

An artifact of SQR’s Multi-Queue Ring architecture is that
when the cached packets exit after being buffered, they do not
exit in the same order as they originally entered the Multi-
Queue Ring. Therefore, in the event of a link failure, the
exiting cached packets need to be ordered before they are sent
to the backup port. To do so, SQR uses a counter-based packet
sequencing mechanism. SQR’s Multi-Queue Ring architecture
is implemented with three components running in the egress
pipeline (also shown in Fig. 5): (i) a delay timer (§III-C) to
keep track of each cached packet’s elapsed time, (ii) a queue
selection algorithm (§III-D) to dynamically choose the next
caching queue, and (iii) a packet order logic (§III-E) to order
the cached packets before re-transmission.

C. Delay Timer

The delay timer first computes how long each packet has
been buffered in the Multi-Queue Ring (called ElapsedTime).



Algorithm 1: Delay Timer.
Initialization: ElapsedTime = 0, pkt.DelayEnough = 0;

1 foreach marked pkt in egress pipeline do
2 diff = CurrentEgressTstamp − StartEgressTstamp;
3 if diff > 0 then
4 ElapsedTime = diff;
5 else
6 ElapsedTime = 2n+ diff;
7 if ElapsedTime => δ then
8 pkt.DelayEnough = 1;

end

Algorithm 2: Dynamic Queue Selection.
Input: PrimaryPort, LeastLoadedPort, BackupPort

1 foreach marked pkt in egress pipeline do
2 if PrimaryPort == UP then
3 if cached pkt then
4 if pkt.DelayEnough ! = 1 then
5 Send pkt to the LeastLoadedPort;
6 else
7 Drop cached pkt;
8 else
9 Make a copy and send the copy to LeastLoadedPort;

10 else
11 if cached pkt then
12 if pkt.DelayEnough ! = 1 then
13 Send pkt to the LeastLoadedPort;
14 else
15 Send pkt to BackupPort;
16 else
17 Send pkt to BackupPort;

end

To do so, when a copy of the original packet is created, the
delay timer attaches the egress timestamp provided by the
dataplane (called StartEgressTstamp) to the copied (cached)
packet as metadata. As the cached packet passes through
the Multi-Queue Ring, it enters the egress pipeline one or
more times. Each time in the egress pipeline, the delay timer
calculates the time elapsed so far (ElapsedTime) by taking
the difference between the current egress timestamp (Cur-
rentEgressTstamp) and the packet’s StartEgressTstamp.
The delay timer then compares the ElapsedTime with the
required delay time (δ) to check if the packet has been buffered
for at least the delay time. If so, the delay timer would
set the DelayEnough field in the packet (later used by the
queue selection algorithm in §III-D). The delay timer logic
is summarized in Algorithm 1. Because of limited bit-width
(n bits) clock register in the switch dataplane, the calculation
needs to handle cases with value wrap around.

Delay Time (δ). This is the time for which each copied
(cached) packet needs to be buffered on the switch. Since
there is a delay in detecting link failures, δ is initially set
equal to the upper bound of the link failure detection delay.
When a link failure is detected, SQR dynamically increases δ
by value equal to the network reconfiguration delay so as to
hold the cached packets until the network reconfiguration is
complete. Since the total packets being buffered on the switch
is proportional to δ (c.f. §III), its value determines SQR’s
packet buffer requirement (§IV-D).

D. Dynamic Queue Selection
Recall from §III-B that SQR designates one queue on each

port as the caching queue. In the Multi-Queue Ring, each time
a cached packet is to be sent from the egress pipeline back

Algorithm 3: Packet Order Logic.
Input: NextPktTag, PrimaryPort, BackupPort

1 foreach marked pkt in egress pipeline do
2 if PrimaryPort == UP then
3 if pkt.DelayEnough == 1 then
4 NextPktTag = PktTag + 1;
5 else
6 if PktTag == NextPktTag then
7 NextPktTag + = 1;
8 else
9 if PktTag > NextPktTag then

10 Send pkt to BackupPort;
end

to the BQE, the queue selection logic (Algorithm 2) decides
to which caching queue to forward the packet. As the goal is
to minimize the impact on other traffic, SQR selects the next
caching queue from a port which has the least utilization at
the current moment (called the LeastLoadedPort). A packet
is sent to the LeastLoadedPort in the following cases: (i)
if it is a freshly made copy of an original packet and the
PrimaryPort is UP, or (ii) if it is an already cached packet
that has not been sufficiently delayed. A sufficiently delayed
cached packet (as indicated by the Delay Timer in §III-C) is
dropped if the primary link is up. If the primary link is down
and the incoming packet is an original packet or a sufficiently
delayed cached packet, it is sent to the caching queue of the
backup port for retransmission.

Tracking Port Utilization. SQR tracks the egress utilization
of all the ports by maintaining a moving window of the number
of bytes transmitted on each port. The size of the window
is the time interval over which the number of transmitted
bytes are accumulated. We discuss window sizing in §III-F.
SQR maintains a LeastLoadedPort and the corresponding
LeastUtilization. When an original packet arrives at the
egress pipeline, the utilization of its egress port is updated. If
this utilization is lower than the LeastUtilization, SQR will
update the LeastUtilization to the current utilization and the
LeastLoadedPort to the current egress port. When an original
packet is transmitted on the LeastLoadedPort, SQR will also
update the value of LeastUtilization.

E. Packet Order Logic
When a link failure happens, the delay timer (§III-C) and

the dynamic queue selection (§III-D) would send the cached
copies of recently transmitted packets to the backup port
(path). However, since cached packets are circulated through
a ring of queues, the order in which they are sent to the
backup port may not be the same as the original arrival
sequence. To ensure that packet ordering is preserved, the
packet order logic (Algorithm 3) first needs to know the
original ordering of the packets. To achieve this, the packet
order logic consists of a monotonically increasing packet
counter in the egress pipeline. When an original packet to be
protected by SQR enters the egress pipeline, the counter value
(PktTag) is added to the packet as metadata and gets copied to
the corresponding cached packet. The packet order logic also
maintains an expected next counter number (NextPktTag).
Both the PktTag and the NextPktTag are used to ensure
correct packet ordering as following: (i) if the cached packet’s



PktTag is equal to the expected NextPktTag, SQR just sends
the packet and updates the NextPktTag (lines 6-7); (ii) if the
cached packet’s PktTag is larger than the NextPktTag, it
will send this packet back to the backup port’s caching queue
and wait for the packet with the correct PktTag (line 9-10) to
be sent first. When a cached packet with a PktTag leaves the
switch due to either being dropped after sufficient buffering or
sent on the backup path, SQR updates the NextPktTag (lines
4, 7). Since the cached packets are ordered before being sent,
this may add extra delay on recovery time (§IV-B).

F. Implementation

We implemented SQR on a Barefoot Tofino switch [27] in
about 1,100 lines of P4 code. A common action performed by
SQR is to send a packet from the egress pipeline back to the
BQE. This action is achieved with two primitives, egress-to-
egress cloning (also called mirroring) and packet drop. For
each cached packet, the SQR metadata is added when the
cached packet is first created and is removed before the packet
is sent out of the switch. The SQR metadata contains three
fields: (i) PktTag: used by packet order logic for reordering
(§III-E); (ii) StartEgressTstamp: used by delay timer to
record when the cached packet was created (§III-C); (iii)
PrimaryPort: used by queue selection logic to track the
cached packet’s primary port (§III-D).

The delay timer, queue selection logic and the packet
order logic are implemented using a series of exact match-
action tables and stateful ALUs. The delay time is stored
in a dataplane register and can be dynamically configured
based on the link failure detection mechanism being used.
For computing link utilization (§III-D), we set the moving
window size larger than the network RTT to avoid sensitivity
to transient sub-RTT traffic bursts [16]. At the same time, we
also avoid setting the window so large that it would aggregate
the bytes of entire short flows and make SQR sluggish to
react to the flow churn. Since the network RTT in our testbed
is about 100µs and the minimum FCT in our evaluation
workloads is about 157µs, we used a window size of 150µs
in our prototype. The LeastLoadedPort and LeastUtilization
are also maintained using dataplane registers. We note that
SQR’s implementation requires standard primitives such as
egress mirroring, encap/decap (for SQR metadata), registers
and match-action tables which are specified in the PSA [39]
and also available in fixed-function ASICs. Therefore, SQR
can be implemented on any programmable ASIC based on the
PSA [39] or it could be baked into fixed-function ASICs.

IV. PERFORMANCE EVALUATION

We evaluate our SQR prototype by answering three ques-
tions: (1) How effective is SQR in masking link failures from
end-point TCP stack, such that RTOs will not be triggered? (2)
When SQR is integrated with other network reconfiguration
systems (e.g. ShareBackup), how much is the reduction in
FCTs under link failures for latency-sensitive workloads? (3)
What is the cost (overhead) of SQR in terms of effect on other
traffic and consumption of resources in the switch hardware?

We perform the evaluation on the same hardware testbed as
described in §II unless otherwise mentioned.

A. Experimental setup

Workloads. We consider two empirical workloads with
short flows taken from production datacenters: a web search
workload [1] and a data mining workload [38]. The CDF of
flow sizes for these two workloads is shown in Fig. 6. For both
the workloads, we consider flow sizes up to 100 KB since these
represent latency-sensitive flows [16]. We use a server-client
model in which a server sends TCP flows of sizes drawn from
these two distributions to a client. Specifically, in our testbed
(Fig. 2), host h2 sends TCP flows to host h4.

Background Traffic. We run the Spark TPC-H decision
support benchmark to generate background traffic. It contains
a suite of database queries running against a 12GB database
on each worker. The master node is h4 (see Fig. 2) which
communicates with the slave nodes h1 and h2 via the paths
sw10 → sw6 → sw2 → sw4 → sw7 and sw10 → sw6 →
sw2→ sw4→ sw8, respectively. The query job is submitted
to the master node and multiple tasks run on the three nodes.

Baseline Schemes. Recall that SQR integrates with a link
failure detection and a network reconfiguration scheme (§III).
We consider the link failure detection method suggested in
F10 [18] (detection delay = 30µs) and two different network
reconfiguration methods: ShareBackup [19] (SB′) and local
rerouting (LRR), in the following configurations:
1) SB′: As explained in §II, SB′ is our emulated version

of ShareBackup that takes an additional 730µs to restore
network connectivity via backup switches after a link
failure is detected.

2) LRR: Local ReRouting runs a path probing protocol [16],
[17] to proactively-determine a backup port for each pri-
mary port. When the link on a primary port is detected to
be down, the traffic is immediately re-routed to the backup
port thus incurring no network reconfiguration delay.

3) SB′+SQR: SQR integrated with SB′ involves setting the
backup port to be the primary port itself since ShareBackup
uses optical switching to restore connectivity on the same
port. The initial delay time is 30µs and is increased to
760µs on link failure detection (§III-C).

4) LRR+SQR: SQR integrated with LRR involves setting the
backup ports to the ones determined proactively. The delay
time is 30µs at all times.

Link Failure Model. SQR helps with link failures where
multiple paths are available. Therefore, we inject a link failure
every 20 ms between sw6 and sw10 while h2 is sending traffic
to h4 (Fig. 2). Similar to §II, for SB′ we restore the failed link
after the route failure time (760µs).

B. Masking Link Failures from TCP

First, we evaluate SQR’s effectiveness in masking link
failures from the end-point transport protocol (TCP). We
compare TCP’s behavior under link failure when running SB′

alone to that when running SB′ along with SQR. h2 starts
an iperf client to send TCP traffic to an iperf server running
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Fig. 7. TCP sender’s cwnd and seq number progression for SB′ with and
without SQR. Link failure occurs after about 2 seconds.

on h4 (see Fig. 2). To properly observe the TCP sequence
numbers from captured traces, we set TSO off (only for this
experiment). We use n2disk [41] to capture the packet traces
and the tcp probe kernel module to capture the TCP sender’s
connection statistics. About 2 seconds after starting the flow,
we inject a link failure on the link between the switches sw6
and sw10. Fig. 7 shows one instance of the result. Results are
similar when link failure is introduced at a different location
in the network.

Fig. 7a shows the evolution of the TCP sender’s cwnd. We
see that with SB′ alone, the TCP sender reduces its cwnd
size drastically when there is a packet loss due to link failure.
However, when SB′ is enhanced with SQR, the link failure
has no impact on the TCP sender and the cwnd grows like
the no-failure case. In Fig. 7b, we plot the TCP stream’s
sequence number of packets as sent by the sender. With SB′

alone, when the link fails, the TCP sender stops sending due
to absence of ACKs and times out leading to a disruption
time of about 12 ms. By the time the TCP sender recovers
from the timeout, SB′ has already restored the connectivity
and the sender resumes by first retransmitting the lost packets.
However, when SB′ is coupled with SQR, the TCP sender is
not affected by the link failure and the TCP sequence number
grows smoothly.

Recovery Time. While Fig. 7 shows the TCP sender’s
perspective, the perspective from a TCP receiver is different.
Upon link failure, while the route is being reconfigured, SQR
holds the packet transmission thereby introducing a time small
gap. This small time gap, called the recovery time, is an
unavoidable effect seen by a TCP receiver. Fig. 8 shows the
CDF of the recovery time for over 30,000 TCP flows where
the link failure is masked in a SB′+SQR configuration. The
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recovery time is larger than SB′ route failure time (760µs)
in about 90% instances for two reasons. First, SQR needs to
reorder the packets before retransmission which adds some
additional recovery delay. Second, the underlying delayed
queue causes each individual packet to be delayed for a time
at least equal to the worst-case route failure time. The packets
that are delayed for longer than the actual route failure time are
those that are not lost and would be delivered to the receiver
again. Retransmitting these extra packets also contributes to
the additional recovery time. Note that these extra packets do
not affect the TCP receiver’s state and the resultant FCT for
short flows [42]. In about 10% instances, the recovery time
was lower than 760µs. We believe that in these instances,
due to “natural” gaps in the packet transmission, the packets
arrived after a link failed and before the route was successfully
recovered, thereby getting buffered for less than 760µs.

Packet Loss. The number of packets lost during a link
failure depends on the recovery scheme’s route failure time.
A scheme with a higher route failure time would stress SQR.
Fig. 9 shows the number of packets lost for a generic route
recovery scheme X, whose route failure time varies from 30µs
(LRR) to 1000µs (F10 [18]). Beyond the route failure time of
600µs, the number of lost packets does not increase as TCP
loses almost the whole cwnd and the transmission is stalled.
When X is coupled with SQR, the packet loss remains zero
even when the route failure time increases.

C. Latency-sensitive Workloads

Next, we evaluate how effective is SQR at keeping FCTs
low for latency-sensitive workloads under link failures. We
use 1,000 different flow sizes from the web and data mining
workloads (§IV-A) and send 30 flows of each flow size
yielding a total of 30,000 flows. The flows are sent from h2
to h4 while the link between sw6 and sw10 is brought down
every 20 ms (see Fig. 2). The total route failure time is 30µs
for LRR and 760µs for SB′.

We first focus on the FCTs of flows which faced link failures
i.e. we ignore the flows that were not affected by a link
failure. We showed in §II that even with SB′, the FCTs can
increase by several orders of magnitude when there are link
failures (see Fig. 3). Fig. 10 shows that when SB′ is coupled
with SQR, the FCTs for the failure-hit flows are only slightly
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higher than the FCTs of no failure flows. Fig. 11 shows the
FCTs for failure-hit web search flows when running SB′ and
LRR schemes with and without SQR. We show the results for
three different ranges of flow sizes. The vertical bars show
the minimum, median, 95th percentile, 99th percentile and the
maximum values of FCT. We observe that when coupled with
SQR, the tail FCTs of failure-hit flows for both SB′ and LRR
are reduced by about 3 to 4 orders of magnitude. If the packets
of a flow arrive after the link has failed and before the route is
reconfigured, the recovery time (see §IV-B) of these packets
will be less than the route failure time. Therefore, even though
SB′ has a 760µs route failure time, the minimum and median
values of FCT for SB′+SQR are only about 200µs higher than
the no failure or LRR+SQR scenarios.

Fig. 12 shows the FCT distribution for all the 30,000 flows
involved in an experiment run, including those not affected
by link failures. For both the data mining and web search
workloads, the tail FCT of SB′ is slightly worse than LRR.
This is because SB′ has a longer route failure time compared
to LRR. While SQR helps in cutting down the overall tail
FCT for both SB′ and LRR, its reduction in FCT for LRR
is slightly more than that for SB′. This is because although
SQR prevents packet loss, it inflicts a recovery time delay (see
§IV-B) which is higher for SB′ than that for LRR.

D. Overhead

Finally, we investigate the overheads incurred by SQR
by measuring: (i) the packet buffer consumption, (ii) the
reduction in switch throughput; (iii) the additional hop latency
on the switch; and (iv) the hardware resources required when
implemented on a programmable switch.

Packet Buffer Consumption. SQR uses the switch packet
buffer to cache packets for the delay time (see §III-C). Since
SQR uses a ring of queues, the packet buffer consumption
at any time is equal to the total number of cached packets
across the different caching queues. To measure the packet
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buffer consumption, we configured SQR’s Multi-Queue Ring
to use only a single queue (just for measurement). Then using
the queue depth provided by the programmable dataplane, we
measured the depth of the queue to obtain the packet buffer
consumption. During steady-state (no link failure), SQR only
caches packets for the link failure detection delay. Therefore,
its steady-state packet buffer consumption depends only on
the link failure detection mechanism. For a generic route
recovery scheme (which we denote with X), Fig. 13 shows
how the steady-state packet buffer consumption (per-port)
increases with SQR traffic volume while using F10’s link
failure detection mechanism (detection delay = 30µs). Clearly,
the packet buffer consumption increases with increase in SQR
traffic. For a 10 Gbps link, SQR will only need to handle up
to 10 Gbps traffic in the worst case, even when there is an
incast (>10 Gbps) of incoming latency-sensitive traffic. This
is because SQR protects traffic on the egress link whose rate
is constrained by the link speed. Therefore, the worst case
packet buffer consumption per SQR-enabled port is given by,

Worst Case Pkt Buffer = Link Speed× Delay Time (1)

From equation 1, we would expect the worst-case steady-
state buffer consumption for a 10 Gbps port with a 30µs failure
detection delay to be 37.5 KB. This matches our experimental
results in Figure 13. However, when a link failure is detected,
the delay time is increased to 760µs in case of SB′+SQR. In
this instance, according to equation 1, the buffer consumption
for SB′+SQR would be 950 KB in the worst case. Fortunately,
the failed-state is very short-lived (and will last only until the
route is reconfigured), after which SQR returns to steady-state
caching.

Impact of SQR on Normal Traffic. SQR incurs some
additional egress pipeline processing to send insufficiently
delayed cached packets back to the BQE (§III-A). To measure



 9
 9.2
 9.4
 9.6
 9.8
 10

 1  2  3  4  5  6  7  8  9  10 0

T
h

ro
u

g
h

p
u

t 
(G

b
it
s
/s

)

SQR Traffic (Gbits/s)

Fig. 14. Impact of SQR processing on normal line-rate traffic.

the impact of SQR’s processing (maintaining a delayed queue)
on the normal traffic, we configure SQR’s Multi-Queue Ring to
contain only a single caching queue on a port, say p1. We then
start line rate TCP (10 Gbps) background traffic whose egress
port on the switch is also p1. The background traffic uses a
queue on port p1 that is different from the SQR’s caching
queue, but has the same scheduling priority. A SQR-enabled
flow (SQR traffic) is then started on another port p2. All
packets from this flow are cached using p1’s caching queue.

Fig. 14 shows the throughput of the line-rate background
traffic for different rates of SQR traffic. We see that even
at 10 Gbps, SQR traffic will occupy only about 750 Mbps of
egress processing. This means that as long as the normal traffic
is less than 9.25 Gbps, it will not be impacted by the processing
overhead of 10 Gbps SQR traffic. In other words, a single
10 Gbps port can simultaneously support 9.25 Gbps of normal
traffic and egress processing of 10 Gbps SQR traffic. Given
that SQR uses dynamic queue selection (§III-D) to utilize only
the LeastLoadedPort each time the next caching queue in
the Multi-Queue Ring is chosen, the likelihood of negatively
impacting the normal traffic is very low.

Switch Processing Latency. SQR is mostly non-intrusive to
the SQR-protected original traffic, but incurs some additional
dataplane processing. To measure the latency added by this
additional processing, we send traffic from h1 to h2 along
sw7 → sw4 → sw8 (Fig. 2). When a packet arrives at the
ingress pipeline of sw7 or sw4, we add the ingress timestamp
(IngressTs) to it. The difference between the two IngressTs
of adjacent switches is the hop latency. We found that, on
average SQR adds a negligible 4.3 ns of additional hop latency
compared to a P4 program that does only L3 forwarding.

Hardware Resources Requirements. In Table II, we com-
pare the hardware resources required by SQR to that required
by switch.p4, which is a close-source production P4 program
that implements all the network features of a typical datacenter
ToR switch. SQR uses a relatively larger proportion of stateful
ALUs for operations such as calculating the ElapsedTime, de-
termining the LeastLoadedPort, and comparing the PktTag
with the NextPktTag. SQR’s logic is achieved using exact
match-action tables which require SRAM. However, SQR’s
overall resource consumption remains low. Also, since the
combined usage of all resources by switch.p4 and SQR is less
than 100%, switch.p4 can easily be enhanced by incorporating
SQR.

V. RELATED WORK

Two broad categories of related work relevant to SQR are
route recovery and packet loss recovery.

Table II
RESOURCE CONSUMPTION OF SQR COMPARED TO SWITCH.P4

Resource switch.p4 SQR switch.p4 + SQR
Match Crossbar 51.56% 10.22% 61.59%
Hash Bits 32.79% 13.28% 44.75%
SRAM 29.58% 15.31% 41.35%
TCAM 32.29% 0.00% 32.29%
VLIW Actions 36.98% 6.77% 43.23%
Stateful ALUs 18.75% 15.63% 33.33%

Route Recovery. Among existing route recovery schemes,
many attempt to achieve fast re-routing for multi-path data-
center topologies. Failure carrying packets [43] are proposed
to avoid route convergence delay by carrying failed link(s)
information inside data packets to notify other nodes. Fast
Reroute (FRR) [12] used in MPLS networks can provide re-
covery in less than 50 ms during a link/node failure. Packet Re-
cycling [44] takes advantage of cycle in the network topology
where routers implement a cyclic routing table. SPIDER [11]
and Blink [45] maintain a pre-computed backup next hop
in the switch. Sedar et al. [13] implement the fast reroute
primitive based on known port status in programmable data
planes and in Data-Driven Connectivity [46] dataplane packets
are used to ensure routing connectivity. Flowlet switching
[47] based load balancing schemes such as CONGA [16] and
HULA [17] are an implicit form of fast re-routing schemes
since they avoid a failed path for routing subsequent flowlets.
Another group of route recovery schemes consist of multi-
path network architectures that allow fault-tolerance [38],
[48]–[52]. Notably, F10 [18] designs an AB fat-tree and a
centralized rerouting protocol to support downlink recovery.
ShareBackup [19] uses a shared pool of backup switches
for on-demand failure recovery which is facilitated by circuit
switches. SQR is complementary to existing route recovery
schemes as it helps them to avoid packet loss during their
route recovery time and link failure detection time.

Packet Loss Recovery. Traditionally, packet loss recovery
is left to end-point transport. However, for short latency-
sensitive flows, end-host recovery incurs FCT penalty due to
packet loss and timeout before recovering the lost packets
(c.f. §II). Alternatively, end-to-end redundancy approaches can
be used [33], [53], where the sender sends duplicate un-ACKed
packets on separate paths. However, duplicating packets on
the entire path increases the required network bandwidth.
Since datacenter networks are often oversubscribed [54], this
approach may increase network congestion. Instead taking up
network bandwidth, SQR opportunistically utilizes free packet
buffer on the switch to store the duplicate packets. In addition,
the end-to-end redundancy methods require changes to the
end-host TCP stack. To the best of our knowledge, SQR is the
first attempt at in-network packet loss recovery and requires
no changes to the end hosts.

Overall, all existing route recovery and packet loss recovery
schemes cannot seamlessly divert traffic from a failed path to
an alternative path. The main reason is that they do not take
into account the inevitable delay and the corresponding packet
loss arising from link failure detection and route reconfigura-
tion. Furthermore, since majority of the flows in datacenter



networks are small [55], competing approaches of reducing
route failure time or flowlet-level switching to alternative paths
are not able to mitigate the impact of link failures on short
flows. This is precisely the gap that SQR addresses.

VI. DISCUSSION

Hardware-assisted Link Failure Detection. High-speed
network cable connectors such as QSFP+ and QSFP28
“squelch” their data input/output lanes on detecting loss of
input/output signal levels [56]. Modern switching ASICs are
able to detect such data lane squelching and provide primitives
for fast failover [27]. We investigated such hardware-assisted
link failure detection in our testbed using a Barefoot Tofino
switch and an Intel XXV4DACBL1M (QSFP28 to 4xSFP28)
cable. We found the worst-case detection delay to be around
2.755µs. This implies that, with hardware support, link failure
detection delays are even lower, and SQR’s steady-state packet
buffer consumption can be further reduced.

Alternatives to on-chip Packet Buffer. An alternative way
to store cached packets could be to leverage the relatively large
(∼ 4 GB) DRAM available on the switch CPU. However, the
switch CPU’s limited bandwidth on its interface to the ASIC
(PCIe 3.0 x4 [57]) and its limited processing capacity make
this approach infeasible for implementing SQR. This limitation
is common for all switches including fixed-function [23] or
partially programmable [57]. In highly congested networks
where the on-chip packet buffer is a scarce resource, using
expandable packet buffers implemented via DRAM and con-
nected directly [58], [59] or indirectly [60] to the ASIC is
a better approach, since a CPU is not required to access the
DRAM. Note that SQR’s overall architecture still remains the
same even when implemented with expandable packet buffer.

Handling Traffic Surges. SQR exploits the availability of
spare buffer and egress processing from the least loaded ports
dynamically. A prior measurement study has shown that high
utilization and thus congestion happens on a small number
of ports and not on all the ports of a switch at the same
time [26]. Nevertheless, there remains a small possibility that
when a switch is saturated on all ports, SQR could make the
congestion worse by partially occupying the packet buffer. To
address this, SQR implements a backstop mechanism that can
dynamically pause packet caching (within nanoseconds) when
we detect high buffer consumption, and resume only when
spare buffer becomes available. With increasing adoption of
delay-based congestion control protocols in datacenters [6], we
expect such high buffer pressure events that can overwhelm
an entire switch’s packet buffer to be rare.

Deployability and Fault Tolerance. SQR runs indepen-
dently on a singleton switch and thus SQR-enabled switches
can be deployed incrementally in a network. A SQR-enabled
switch adds link failure tolerance for each port, i.e. it can
handle failures on multiple links emanating from it. Since link
failures tend to be uncorrelated [7], a partial deployment of
SQR-enabled switches can effectively bring down the impact
of link failures. SQR will also be effective against failures such
as line-card or switch failures that cause link failure detection

schemes to report corresponding link failures. One limitation
is that SQR will not be able to help in the event of link
failures between the end hosts and the ToR switches due to
the lack of alternative paths. Also, it is not designed to handle
packet corruption losses. For datacenter networks, since most
switches have higher availability than the links and concurrent
traffic bursts on multiple switch ports [26] and concurrent link
failures are rare [7], the probability of packets being lost due
to simultaneous link and switch failures will be low.

Higher Link Speeds. SQR can scale to higher link speeds
(25/50/100 Gbps) with an increase in buffer consumption (see
equation 1). For a 100 Gbps port with a 30µs link failure
detection time, the worst-case steady-state buffer consumption
is expected to be 375 KB. However, on average, latency-
sensitive short-flows only comprise about 20% of the total
bytes in typical datacenter networks [1]. Therefore, even at
100% link utilization on a 100 Gbps link, we expect SQR
to handle about 20 Gbps of latency-sensitive traffic. For this
average case, the worst-case steady-state buffer consumption
is about 75 KB per port. When the link fails, the average case
requirement of SB′+SQR spikes momentarily to 1.9 MB per
port. Switching ASICs supporting 100 Gbps switches currently
have around 42 MB (> 1.9 MB) of packet buffer [61]. Also, the
on-chip packet buffer size for ASICs increases with supported
link speeds [62]. Therefore, SQR’s consumption of packet
buffer can be supported comfortably by modern ASICs.

VII. CONCLUSION

Achieving low and bounded FCTs under link failures is a
step towards providing SLA guarantees on network latency
in datacenter networks. We show that existing link failure
management techniques fail to keep the FCTs low, as they
cannot completely eliminate packet loss during link failures.
By enabling caching of small number of recently transmit-
ted packets, SQR completely masks packet loss during link
failures from end-hosts. Our experiments show that SQR can
reduce the tail FCT by up to 4 orders of magnitude for latency-
sensitive workloads. While caching packets on the switch
is an obvious idea, it is not straightforward to achieve and
was not feasible until now. The significant reduction in route
recovery times and increase in packet buffer sizes have made
it feasible, while our design, implementation and evaluation
of SQR demonstrates that it is both effective and practical.
Our work suggests that on-switch packet caching would be a
useful primitive for future switch ASICs.
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