
P4EAD: Securing the In-band Control Channels
on Commodity Programmable Switches

Archit Bhatnagar
∗†

National University of Singapore

Xin Zhe Khooi
∗‡

National University of Singapore

Cha Hwan Song

National University of Singapore

Mun Choon Chan

National University of Singapore

ABSTRACT
Conventionally, the control channel on network switches has al-

ways been out-of-band. With the emergence of high-performance

systems built upon programmable switches, the out-of-band con-

trol channel has become the bottleneck. Thus, there is an emerging

trend of implementing the control channel in the data path (i.e.,

in-band) on programmable switches to achieve high throughput

and low-latency control actions. However, the use of in-band con-

trol channels comes with the risk of security vulnerabilities that

have not been explored in prior literature. In this paper, we present

P4EAD, a cryptographic primitive to secure the in-band control

channels on programmable switches entirely in the data plane. This

ensures the integrity, authenticity, and confidentiality of in-band

control messages. We conduct micro-benchmarks on P4EAD and

demonstrate its integration with an existing high-performance in-

band control framework, showcasing minimal performance impact

when securing the control channel.

CCS CONCEPTS
• Networks→ Programmable networks; • Security and pri-
vacy→ Symmetric cryptography and hash functions.

KEYWORDS
P4, programmable switches, in-network, authenticated encryption,

ASCON, in-band control channels

ACM Reference Format:
Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan.

2023. P4EAD: Securing the In-band Control Channels on Commodity Pro-

grammable Switches. In Proceedings of the 6th European P4Workshop (EuroP4
’23), December 8, 2023, Paris, France. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3630047.3630242

1 INTRODUCTION
The commoditization of programmable switches has ignited the

“Cambrian explosion” of innovations in the network data plane.

∗
Both authors contributed equally to the paper.

†
Work done as part of the author’s undergraduate thesis at BITS Pilani.

‡
Corresponding author.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

EuroP4 ’23, December 8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0446-8/23/12.

https://doi.org/10.1145/3630047.3630242

This has induced a paradigm shift in designing a new breed of high-

performance mission-critical systems in the data plane, including

stateful load balancers [21, 26, 33, 51], cloud gateways [36], appli-

cation key-value store caches [23], 5G radio access network slicing

mechanisms [13], 5G user-plane functions (UPF) [9, 30, 31, 40] etc.

While the packet processing capacity in the data plane has seen

extensive growth over the years (e.g., up to 12.8 Tbps [17]), the I/O

performance of the communication channel between the control

plane and the data plane has largely fallen behind. Prior litera-

ture (DySO [41], AccelUPF [9]) have highlighted the significant

difference in data plane forwarding rates (10
9
operations per sec-

ond [16]) and control channel rates (10
4
to 10

5
operations per sec-

ond [51]). The control plane thus incurs a non-negligible delay in

reacting to ever-changing network dynamics and updating data

plane states. This reaction delay significantly impacts system per-

formance [14, 20, 41, 50, 52].

Generally, the bottleneck lies with the software agent [43] and

drivers [41, 51] used conventionally by the control plane, known as

out-of-band control channels, to communicate with the underlying

switching ASIC over PCI-E channel. To address this issue, there is

an emerging trend of the control plane shifting to using the high-

speed data path to directly update the data plane states [9, 13, 41, 51],
known as in-band control channels, bypassing the slower out-of-band
control channel for greater system responsiveness and performance.

Insecure In-band Control Channels: The advent of in-band
control channels prioritized performance over security. This departs

from the conventional model of out-of-band control channels where

various efforts have been dedicated to securing them [5, 8, 46]. As

a result, the emerging use of in-band control channels opens up
greater attack surfaces for adversaries to manipulate the system

behavior through the injection of maliciously crafted, or spoofed

control packets that affect the data plane states. To that end, in-band
control channels require immediate attention to safeguard emerging

high-performance networked systems.

Threat model: We consider an adversary within the network ca-

pable of intercepting, altering, and/or replaying in-band control

packets. The adversary’s aim is to hamper the system’s perfor-

mance and/or cause denial-of-service by manipulating the data

plane states.

Securing the In-band Control Channels: Intuitively, this threat
can be addressed by securing the in-band control channel to pro-

tect the authenticity and integrity of the corresponding in-band

control packets. This necessitates the data plane to support the nec-

essary cryptographic primitives. However, the restrictive pipeline

programming model, limited hardware resources and instruction

sets on commodity programmable switches make it challenging to

https://doi.org/10.1145/3630047.3630242
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630047.3630242

EuroP4 ’23, December 8, 2023, Paris, France Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

Slow Path
(on switch CPU)

Data Plane
(ASIC)

Control Plane

Runtime
interface

PCIe

Data
path

(a) Out-of-band.

Data Plane
(ASIC)

Control Plane

Slow Path
(on switch CPU)

In-band control

co
nt

ro
l p

ac
ke

ts

(b) In-band.

Figure 1: Overview on out-of-band/in-band control.

implement conventional cryptographic algorithms used in TLS [39]

like AES-GCM [19] or ChaCha20-Poly1305 [34]. These algorithms

involve complex operations such as modular arithmetic involving

large numbers and an extensive number of loop iterations that are

neither amenable nor practical to run on programmable switches.

To the best of our knowledge, this has not been investigated in

the context of commodity programmable switches. Now that data

plane behavior can be controlled through in-band control packets

that are processed entirely in the data plane, there is a need to ensure

that the forwarding states can only be modified by the “rightful”

party. Thus, we identify ASCON [18], a lightweight cipher suite

recently standardized by NIST [35] as a suitable candidate given its

hardware-friendly design – that requires only binary operations

like XOR, ROR, and AND. We present P4EAD1, an implementation

of the ASCON-AEAD2 algorithm that runs entirely in the data plane

to guarantee the authenticity and integrity of the control packets

transmitted over the in-band control channel. In this paper, we detail

the implementation challenges and solutions applied to implement

ASCON-AEAD on the Intel Tofino switches. Our contributions are as

follows:

(1) P4EAD: An implementation of ASCON-AEAD on both the Intel

Tofino and Tofino2 switches (§3) to enable secure in-band

control channels. The code is publicly available at [4].

(2) Extensive performance evaluations of P4EAD with different

pipeline configurations, input length alongside their hard-

ware resource trade-offs to act as a guideline for data plane

developers (§4).

(3) To demonstrate practicality, we integrate P4EAD to an in-

network key value store [23] using the state-of-the-art in-

band control channel framework [41] and observe negligible

performance degradation (§5).

2 BACKGROUND AND RELATEDWORK
In this section, we discuss the background and related work.

Control Channels on Programmable Switches: We begin by

depicting the two types of control channels, namely out-of-band

and in-band, that can be used with programmable switches in Fig. 1.

Out-of-band control channel: In out-of-band control channels,

the control plane can either be (i) locally on the switch – talk to

the OS kernel driver to communicate with the ASIC over PCI-E,

1
pronounced as "paid".

2
AEAD stands for Authenticated Encryption with Associated Data.

or (ii) situated on a centralized server that interacts with multiple

switches’ local runtime interface [46] over secure TLS sessions

(see Fig. 1a). It is well-studied in prior literature that the out-of-band

control channel rates are slow [41, 43, 51] in updating/exporting

data plane states. To that end, when compared to the data plane

forwarding rates, the out-of-band control channel [41] lags far

behind (10
9
versus 10

5
) and incurs significant latency.

In-band control channel: With in-band control channels, the con-

trol plane essentially communicates with the data plane directly

over the data path by sending dedicated control packets which con-

tain the corresponding instructions and/or states (see Fig. 1b). This

enables one to achieve a tighter control loop with higher through-

put and low latency control operations in updating the data plane

states. At the same time, the data plane states can also be man-

aged by distributed control plane instances [41] (e.g., each instance

manages a particular partition of the data plane states) for even

greater throughput. Prior literature (DySO [41], AccelUPF [9]) has

demonstrated that an in-band control channel approach can im-

prove system performance up to two orders of magnitude.

Key differences: Performance aside, there are three key differ-

ences between out-of-band and in-band control channels, as fol-

lows: (i) protocol used: for out-of-band control channels, control

actions are sent over TCP, which ensures reliable delivery, and they

are usually secured using TLS [8, 46]. In the context of in-band

control channels, there are no specific protocols used for it as con-

trol actions are carried over individual packets. To ensure reliable

delivery, the application has to implement the necessary retransmis-

sion, and loss-detection mechanisms [41]; (ii) control action packet
size: for in-band channels, the control packets must be within the

maximum parseable length [12] of the programmable parser on

the programmable switches. For cases where the control action is

larger than the maximum length possible, then it is broken down

into multiple packets. On the other hand, such limitations do not

exist in out-of-band control channels; (iii) data plane components
that can be updated: while in-band control channel approaches can

update the data plane directly, they are limited to the registers (or

stateful memory) only on existing programmable switches. On the

other hand, its out-of-band counterpart can update both the match-

action tables (MATs) and registers. To that end, existing works like

DySO [41], Tiara [51], FSA [13], and AccelUPF [9] utilize multiple

register arrays to construct MAT-equivalent functionalities for table

lookup purposes, and high-speed in-band updates.

Authenticated Encryption:TheNIST-standardizedAES-GCM [19]

and ChaCha20-Poly1305 [34] have been widely adopted and field-

tested authenticated encryption schemes for secure communica-

tions, e.g., TLS [39]. They include associated data (AD), e.g., se-

quence numbers in the clear, as additional context bound to the

ciphertext to prevent replay attacks [32]. They provide three key

security properties, namely confidentiality, integrity, and authen-

ticity. However, implementing them on commodity programmable

switches is infeasible, if not impractical. For instance, AES-GCM

involves the Galois Field (GF) multiplication process which has

to be done bit by bit [45], resulting in an unacceptably slow per-

formance. As for ChaCha20-Poly1305, it requires modular arith-

metic performed on large numbers. On one hand, modular arith-

metic is unavailable on commodity programmable switches. On

P4EAD EuroP4 ’23, December 8, 2023, Paris, France

Figure 2: Overview of a P-RND in a PERM. Here, 𝑥0 ...𝑥4 form the
320-bit VECT while 𝑡0 ...𝑡4 are the intermediate state variables.

Input

Keys &
Nonces

CIPHERTEXT

I/P
Abs

Tag
Final

TAGS

INIT
PERM
(12)

AD
Abs

PERM
(6)

Associated
Data

PERM
(6)

PERM
(12)

INIT - Initialization
AD Abs - AD Absorption
I/P Abs - Input Absorption
Tag Final- Tag Finalization

Figure 3: ASCON-AEAD authenticated encryption flow. Note
that the decryption flow is symmetrical with encryption,
with the exception that an additional tag verification action
is done in the final stage.

the other hand, even if possible through lookup tables, it requires

a non-negligible amount of SRAM in the data plane which makes

it inherently expensive. ASCON-AEAD being part of the lightweight

ASCON [18] cipher suite designed for resource-constrained systems,

presents a much more amenable option for implementation on

programmable switches over AES-GCM and ChaCha20-Poly1305,

while offering similar security properties using fewer resources and

being performant.

ASCON cipher suite: ASCON is a family of lightweight authenti-

cated encryption and pseudorandom functions (PRF) which has

been standardized for lightweight cryptography by NIST [6, 35] for

resource-constrained systems. Particularly, ASCON relies on only

simple operations (e.g., ADD, NOT, AND, ROR, and XOR), and the

computations operate over a constant 320-bit state vector (VECT),
making it memory efficient. At the core of ASCON, permutations

(PERM) form the key building block, consisting of 𝑛 × P-RNDs, de-
noted as PERM(𝑛). A PERM is either PERM(6),PERM(8), or PERM(12).
Each P-RND comprises three layers: addition, substitution, and linear
diffusion, which operate on VECT iteratively. We depict the opera-

tions within a P-RND in Fig. 2.

In this paper, we focus on one of ASCON’s variants for authen-
ticated encryption – ASCON-AEAD. Fig. 3 illustrates the high-level
workflow of ASCON-AEAD. To perform authenticated encryption,

there are four phases, namely initialization, associated data (AD)

absorption, plain text absorption, and tag generation & finalization.

In the init phase, the keys, nonces, and initialization vector are

copied to VECT before performing a PERM(12). Then, the associ-

ated data (AD), e.g., IP header/ sequence number in the clear, is

“absorbed” in 64-bit blocks and goes through PERM(6) sequentially.
After AD absorption, an additional PERM(6) is performed. The same

process is repeated for the plaintext to get the ciphertext. To get

the tag, VECT is sent through another PERM(12) and is retrieved

after XORing with the keys. The decryption flow is symmetrical to

encryption, except that it comes with an additional tag verification

step at the end for integrity checks.

Cryptographic algorithms on programmable switches: There
have been several efforts on the implementation and adoption of

cryptographic primitives on programmable switches like encryp-

tion schemes (e.g., P4-AES [15], ChaCha [49]), and secure keyed

hash functions (SipHash [44, 47, 48]). However, existing schemes

available cannot provide the three necessary security properties

to ensure end-to-end secure communication, and thus P4EAD is

orthogonal with the aforementioned. This also makes ASCON-AEAD
the first cryptographic primitive in the data plane to support se-

cure communication channels. While one can compose algorithms

like P4-AES and SipHash to construct an authenticated encryption

scheme, it is not proven secure [38] and requires more dedicated

hardware resources. Further, the P4-AES approach is not scalable, as

the number of sessions is strictly limited by the memory available

to maintain the per-key precomputed lookup tables. In contrast,

ASCON-AEAD requires little memory (see §3) to maintain the con-

stants (i.e., 12 × 16-bit numbers) used for the P-RNDs. Given the

low resource requirement of ASCON, it can be a viable option to be

integrated into and co-exist with existing data plane programs to

secure the in-band communication channels.

3 P4EAD

In this section, we present our implementation of P4EAD in P4 [11],

designed for the Intel Tofino [16] switch. The discussion here also

applies to the Intel Tofino2 [17]. The implementation of P4EAD is

publicly available at [4].

3.1 Preliminaries
First, we discuss the preliminaries on programmable switches that

relates to the P4EAD implementation. The switching pipeline con-

sists of the Ingress and Egress blocks, which share common hard-

ware resources [12] while remainingmutually exclusive. Thus, hard-

ware resources are at a premium. A key challenge to implement

P4EAD is that there is only a limited number of pipeline stages avail-

able (e.g., 12 [22] and 20 [3] on Tofino and Tofino2, respectively).

Within each stage, multiple operations (e.g., binary/ arithmetic) can

be performed on mutually exclusive variables by the ALUs. The

resulting output of any computation at a particular stage will only

be available to the next stage of the pipeline. This chain of depen-

dency determines the number of stages required for any particular

program [28]. If a program requires more stages than are available,

the program cannot be compiled. Finally, if a computation cannot

be completed within a pipeline pass, one common technique is to

recirculate the packet back into the pipeline for another pass. This

EuroP4 ’23, December 8, 2023, Paris, France Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

Ingress to Egress

STAGE N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11

PREPROCESSING
[INIT, I/P & AD ABSORB]

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER
POST
PROC

INGRESS

EGRESS

TAG FINALIZATIONP-RND I RecirculateP-RND I+1

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER

Figure 4: Stage layout of P4EAD on the Intel Tofino with a two
P-RND per pipeline pass configuration.

is analogous to loops. However, packet recirculation consumes the

available packet processing capacity, increases latency, and reduces

throughput.

3.2 Implementation
PERM is a core component in ASCON-AEAD. Naively implementing

PERM would result in a long, interwoven dependency chain that

would not fit within the switching pipeline. To that end, we employ

packet recirculations to do PERM over multiple pipeline passes – all

phases would share the same P-RND implementation.We implement

the P-RNDs in both the Ingress and Egress pipelines to increase the

number of P-RNDs that can be performed within a single pipeline

pass to reduce the number of recirculations required and its impact

on throughput and latency.

Fig. 4 illustrates how ASCON-AEAD is implemented on the Intel

Tofino. In this example, we perform two P-RNDs within a pipeline

pass, one each at the Ingress and Egress blocks
3
. Here, we lever-

age the fact that PERM always has an even number of P-RNDs, i.e.,
PERM(6), PERM(8), or PERM(12), we expect PERM to terminate at the

egress and proceed to the next phase at the ingress after the packet

is recirculated. Thus, we perform preprocessing (i.e., initialization

and absorption) at the Ingress and postprocessing (i.e., finalization)

at the Egress. Note that the pre- and postprocessing blocks are

bypassed when the packet is in the middle of a PERM.

Packet recirculation: Before recirculating packets, we add a spe-

cial metadata header to the packet to store the current P-RND num-

ber and relevant states for stateful processing across recirculations.

At the same time, we also save the original output port so that the

packet can be forwarded accordingly at the end of the computation.

Preprocessing: The preprocessing block handles three kinds of

packets: (i) newly received packets that needs to be encrypted/

decrypted, or (ii) recirculated packets in the middle of a PERM, or
(iii) recirculated packets at the end of a PERM.

For (i), we would initialize VECT, append it to the header stack,

and then proceed to the initialization phase with the retrieved keys,

nonces, and IV. The keys are always configured by the control plane
onto the programmable switch over the secure out-of-band control

channel. In the case of (ii), the preprocessing block is bypassed. For

(iii), absorption is performed by XORing the next input block with

VECT, before continuing with the next PERM of the next phase.

P-RND: Fig. 2 depicts the operations involved in a P-RND. To begin,
each round starts with the addition layer, where a pre-defined

3
More P-RNDs can be performed within a single pipeline by committing more hardware

resources, if available.

Table 1: P4EAD’s hardware resource consumption on the Intel
Tofino and Tofino2 for the maxed-out configs.

Resource tf1_2rnd.p4 tf2_4rnd.p4
SRAM 0.8% 0.8%

Hash Bits 13.2% 15.9%

Hash Dist. Unit 55.6% 66.7%

VLIW Ins. 6.5% 6.3%

PHV 29.3% 33.9%

constant is XORed with 𝑥2 from VECT. We use a match-action table

to implement a lookup table for the addition constants. This is

implemented within a single pipeline stage.

It is then followed by the substitution layer which spans across

4 stages. Here, VECT is manipulated multiple times in a way that is

non-trivial for the switch pipeline computation model. For example

(refer to Fig. 2), take the operation 𝑡0 = 𝑥0 ⊕ (¬𝑥1 ∧ 𝑥2). This oper-
ation needs to be broken down into two parts. We have to compute

(¬𝑥1 ∧ 𝑥2) before getting the final result for 𝑡0. This requires us to

break down the operation into two separate stages and store the

intermediate results as separate variables in the metadata.

The final layer is the linear diffusion layer which consists of

XORs and ROR operations. We implement RORs using bit-slicing

and concatenation [47]. Each operation involves two RORs and

two XORs. Initially, we break down the operations in the diffusion

layers into three parts by performing the RORs using the ALUs

and PHVs naively and storing them using different intermediate

variables during computation. This results in an extremely long

dependency chain for the linear diffusion layer and the program

would not compile. Instead, we exploit the hash engines within the

pipeline stages to perform the RORs using identity hashing and

then feed the three parts to the ALUs to perform XOR within a

single stage. This allows us to implement the linear diffusion layer

within 3 stages.

In total, our implementation of P-RND requires 8 stages.

Postprocessing: At the end of the final PERM tag finalization (and

tag verification for decryption) is performed at the postprocessing

block. After that the header containing VECT is stripped off before

forwarding the resulting packet.

The P4EAD pipeline flow is summarized at appendix A.

Formula on number of recirculations. Let 𝑝 and 𝑞 be the length

of the input and associated data in bytes, respectively. Then, we let

𝑟 be the number of P-RNDs per pipeline pass. The total number of

pipeline passes required, 𝑠 , is given by:

𝑠 =
30 + 6(⌊ 𝑝

8
⌋ + ⌊𝑞

8
⌋)

𝑟

For example, for 8 byte input (𝑝 = 8), 4 byte AD length (𝑞 = 4)

and 4 P-RNDs per pipeline pass using Tofino2 (𝑟 = 4), we require

30+6(0+1)
4

= 9 passes.

Hardware Resource UtilizationWe illustrate the H/W resource uti-

lization for maxed-out configurations of P4EAD, i.e., 2 and 4 P-RNDs
per pipeline pass for the Tofino and Tofino2, respectively in Table 1.

Notably, our implementation heavily uses the hash distribution

units (HDUs) for the linear diffusion layers in a P-RND. Here, each
individual P-RND consumes 27.8% and 16.7% of the HDUs on the

Tofino and Tofino2 respectively, for the maximal configuration (i.e.,

P4EAD EuroP4 ’23, December 8, 2023, Paris, France

tf1_2rnd.p4 and tf2_4rnd.p4, respectively). As for the other

H/W resources, they do not vary much except for the hash bits,

which increase linearly with the number of P-RNDs.

4 EVALUATION
In this section, we benchmark the performance of P4EAD. First,
we verify the correctness of our implementation against the refer-

ence implementation written in C [1] and the official test vectors.

Next, we evaluate how the pipeline configurations (i.e., the number

of P-RNDs per pipeline pass), and the input length (i.e., plaintext/

ciphertext) affect the throughput and latency. Finally, we also eval-

uate the scalability of our implementation by varying the number

of recirculation ports dedicated for P4EAD. For brevity, we mainly

focus our discussion on the results of the Intel Tofino2.

Evaluation Setup.Our setup consists of three Intel Tofino switches.
We compile and run the different variants of P4EAD using the Intel

P4 Studio v9.11.2 on a two-pipeline 3.2 Tbps Intel Tofino [16] and

four-pipeline 12.8 Tbps Tofino2 [17] switch. For traffic generation,

we make use of the packet generator on a separate Tofino switch.

The switches are interconnected using 100 Gbps copper DACs.

Methodology.The length of associated data (AD) is fixed at 4 bytes,
and we only vary the input (i.e., plaintext/ ciphertext) length. Unless

otherwise stated, we use a single port for recirculation. To measure

the best possible performance, we incrementally raise the packet

generation rate until the point where there are no packet losses.

We mainly highlight the encryption performance (with no packet

loss) and omit decryption given that they are symmetrical. The

experiments are automated and repeated 1000 times for consistency.

Interpreting the results. The presented results depict the maxi-

mum attainable performance of P4EAD under different configura-
tions, i.e., P-RND per pipeline pass, and number of recirculation

ports. Given the use of recirculation, the expected throughput will

be lower than that of the recirculation port’s speed. The use of

recirculation is usually perceived “negatively” given its overhead.

However, it is not the case if it is adequately planned, and perfor-

mance is profiled while setting aside sufficient resources for crucial

features like P4EAD. Moreover, it is worth noting that switches often

have spare packet processing capacity [37], e.g., idle ports and/or

under-utilized pipelines. Later (section §5), we showcase that the

resulting performance still meets the requirements to perform fast

in-band control channel updates.

Impact of #P-RNDs per pipeline pass:Wemeasure the throughput

and latency for different pipeline configurations on both Intel Tofino

and Tofino2 in Fig. 5 & Fig. 6 respectively. To ease the discussion,

we first look at the case when the input length is 8 bytes as a

similar trend applies to other input lengths regardless of the pipeline

configuration. We observe that the throughput increases linearly

from ∼10 Mpps to ∼40 Mpps when the number of P-RNDs per
pipeline pass increases from 1 to 4 for the Intel Tofino2 (see Fig. 6a).

As for the latency, we see a decrease from 25.6𝜇s to 8.5𝜇s (see Fig. 6b).

The improved throughput and latency are attributed to the fewer

recirculations needed with more P-RNDs per pipeline pass.

Impact of input length: Next, we evaluate the effect of different
input lengths

4
. For brevity, we only highlight the results for the

4
This also applies to the associated data (AD).

8 16 24 32
Input length (Bytes)

0

2

4

6

Th
ro

ug
hp

ut
 (M

pp
s) 1 RPP 2 RPP

(a) Throughput

8 16 24 32
Input length (Bytes)

0

10

20

30

40

La
te

nc
y

(u
s)

1 RPP 2 RPP

(b) Latency

Figure 5: Impact of the number of P-RNDs per pipeline pass
(RPP) and input length for the Intel Tofino.

8 16 24 32
Input length (Bytes)

0
10
20
30
40
50

Th
ro

ug
hp

ut
 (M

pp
s) 1 RPP

2 RPP
3 RPP
4 RPP

(a) Throughput

8 16 24 32
Input length (Bytes)

0
10
20
30
40
50

La
te

nc
y

(u
s)

1 RPP
2 RPP

3 RPP
4 RPP

(b) Latency

Figure 6: Impact of the number of P-RNDs per pipeline pass
(RPP) and input length for the Intel Tofino2.

1 2 3 4 8
No. of Recirculation Ports

5
39

100
146
200
250
300

Th
ro

ug
hp

ut
 (M

pp
s) Tofino2

Tofino2 (1 pipe)
Tofino1

Figure 7: Impact of the number of #recirculation ports. The
ports are 100 and 400 Gbps on Tofino and Tofino2.

4 P-RND variant (the bars in red). From Fig. 6a, we observed that

the throughput reduces from ∼40 Mpps for an 8-byte input to ∼25
Mpps when the input is 32 bytes. A reverse trend is seen for the

latency in Fig. 6b from 8.5𝜇s to 12𝜇s. Recall that for every increase

in 8 bytes, one additional PERM (6) is needed (see §2). This translates
to decreased throughput and longer processing latency.

Impact of #recirculation ports: In Fig. 7, we demonstrate how

P4EAD scales to support higher throughput by increasing the num-

ber of dedicated recirculation ports (up to 8) in Fig. 7 using the 2

P-RND and 4 P-RND variants for Tofino and Tofino2, respectively. As
more recirculation ports are used, the throughput increases linearly

up to ∼320 Mpps for Tofino2. However, when the dedicated recir-

culation ports all belong to the same pipeline (analogous to a CPU

core), the throughput tapers off at ∼146 Mpps due to the pipeline

being saturated at around 1.2 Bpps [3] with recirculated packets.

This corresponds to the clock speed on the Tofino ASICs which

is at around 1.2 GHz [3, 10]. This result indicates that dedicating

an entire pipeline may not yield the best possible performance.

Instead, the load should be shared across each pipeline respectively.

Another insight is that the throughput for Tofino with 8 ports is

approximately equal to the throughput for Tofino2 with only 1 port.

By dedicating the entire Tofino pipeline with 16 ports (not shown

in Fig. 7), the throughput saturates at ∼66 Mpps.

EuroP4 ’23, December 8, 2023, Paris, France Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

State management
module

Data Plane

P4EAD
encrypt

P4EAD Recircs

monitoring

Control Plane

Query

P4EAD decrypt
In-network

key-value store

Update
(encrypted)

In-band
control loop

(a) Evaluation setup for DySO-
NetCache with P4EAD.

0 20 40 60 80 100
(%) Miss-ratio

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

DySO
DySO w/ P4EAD

(b) CDF of DySO-NetCache miss
ratio w/ and w/o P4EAD.

0 10 20 30
Time (Seconds)

20%

40%

60%

80%

100%

(%
) M

iss
-ra

tio P4EAD Switch On

DySO DySO w/ P4EAD

(c) Time series plot of miss-ratio. We enable P4EAD at t=18.

Figure 8: Impact of P4EAD on DySO-NetCache.

5 CASE STUDY: IN-NETWORK KV STORE
In this section, we present a case study by integrating P4EAD with

an in-network key-value (KV) store that uses a high-speed in-band

control framework and study the potential performance impact.

To meet aggressive latency and throughput objectives under

highly skewed workloads, NetCache [23] caches hot entries on

programmable switches to load balance the key-value store servers.

As workloads can change rapidly in data centers, it is crucial that

stale key entries can be replaced swiftly to minimize the miss ratio.

However, as discussed in §2, the out-of-band control channel used

to update the cached entries in the data plane has become the

bottleneck. To address this, DySO [41] leverages the in-band control

channel to accelerate the cache updates in NetCache (referred to as

DySO-NetCache here onwards). As the cache entries are updated

through the in-band control channel, it is exposed to the potential

risks, where bogus cache updates are pushed to the data plane, thus

causing denial-of-service.

To mitigate these risks, we secure DySO-NetCache with P4EAD
to enable authenticated in-band updates to the cached entries in

the data plane. We evaluate the performance impact of P4EAD by
integrating it with DySO-NetCache’s publicly available implemen-

tation [2] on the Intel Tofino switch.

Methodology.We configure P4EAD at 1 P-RND per pipeline pass,

with the input length at 32 bytes to hold the key-value entries

that are to be updated to the data plane. This configuration has a

throughput and processing latency of ∼1.5 Mpps and 34.9𝜇s, respec-

tively. We generate a key-value query streamwith sudden workload

changes, i.e., shifting 1𝐾 unpopular items to top-rank popularity

every 5 seconds for 100 seconds. We use the same settings as the

evaluation in [2, 41]. The setup is depicted in Fig. 8a.

Results.We see that despite P4EAD incurring additional latency

overhead, the resulting performance is still comparable with the

state-of-the-art [41]. Fig. 8b demonstrates the CDF of key miss-ratio,

sampled every 1ṁs, with and without P4EAD. At the same time,

Fig. 8c illustrates the time-series pattern of miss-ratio with P4EAD
being enabled 18 seconds after the start. Both results demonstrate

that P4EAD can be introduced into state-of-the-art in-band control

channels without incurring a significant performance penalty on

the application performance. Notwithstanding, P4EAD can be con-

figured to support even higher in-band control channel update rates

if needed (see §4) with an expected negligible impact on system

performance.

6 DISCUSSION AND FUTUREWORK
In §5, we demonstrated P4EAD’s practicality with an in-network

key-value store system. We expect P4EAD can be introduced into

other existing systems requiring in-band control channels without

incurring performance degradations. For instance, in AccelUPF[9],

the average latency to process an (in-band) PFCP packet on an

Intel Tofino switch running AccelUPF was 35𝜇s (see Table 1 in [9]).

Assuming a minimal 1 RPP config for P4EAD with a latency around

72𝜇s (2 × 36, see §4) for the longest input length, the total latency
would be (35+ 72) = 107𝜇s. This is still four times more performant

than existing approaches. Besides, in the context of 5G fronthaul

slicing in FSA [13], the data plane states need to be updated in a

time-sensitive manner (i.e., every 1 ms). With a latency in the order

of 10s of 𝜇s, we believe P4EAD will be feasible in such systems too.

We plan to evaluate these systems with P4EAD in future work.

In the context of network inter-device communications, the sig-

nificance of P4EAD becomes evident, particularly for enhancing

security in emerging in-network applications. These applications

encompass various forms of inter-device communication, such as

switch-switch and host-switch interactions, wherein in-band sig-

naling is employed to update data plane states. A notable exam-

ple of this is observed in in-network load balancers [21, 26, 42],

which generate probe packets to disseminate and evaluate net-

work conditions, often involving vulnerable direct updates to data

plane states. Furthermore, vulnerable in-network applications like

network telemetry [7, 24], distributed state synchronization [29],

DDoS defense mechanisms [27], and precise network-wide time

synchronization [25] are also under consideration for integration

with P4EAD as future work.

7 CONCLUSION
We present P4EAD, an implementation of ASCON-AEAD on com-

modity programmable switches for securing the emerging in-band

control channels. We benchmark P4EAD on different configurations

in terms of throughput and latency, as well as demonstrate its scal-

ability. Finally, P4EAD incurs negligible overhead when integrated

with existing applications using in-band control channels.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their invaluable feedback.

We would also like to thank Raj Joshi, Satis Kumar Permal, and Yixi

Chen for their insightful comments and suggestions on the paper.

This work is supported by the NUS-NCS Joint Laboratory for Cyber

Security, Singapore.

P4EAD EuroP4 ’23, December 8, 2023, Paris, France

REFERENCES
[1] 2023. Ascon - Lightweight Authenticated Encryption & Hashing. https://github.

com/ascon/ascon-c [Commit: ba61330].

[2] 2023. DySO P4. https://github.com/dyso-project/dyso_p4 [Commit: 4a594eb].

[3] 2023. Intel® Tofino 2 12.8 Tbps, 20 stage, 4 pipelines. https:

//www.intel.sg/content/www/xa/en/products/sku/218648/intel-tofino-2-

12-8-tbps-20-stage-4-pipelines/specifications.html [Accessed: May 2023].

[4] 2023. P4EAD GitHub repository. https://github.com/NUS-CIR/tofino-ascon.

[5] AbdelRahman Abdou, Paul C van Oorschot, and Tao Wan. 2018. Comparative

analysis of control plane security of SDN and conventional networks. IEEE
Communications Surveys & Tutorials 20, 4 (2018).

[6] Jeffrey Avery, Bryson Fraelich, William Duran, Andrew Lee, Sullivan Agustin,

Zane Mechalke, Birrer Maj Bobby, Sameul Dick, and Jordon Cochran. 2022. Anal-

ysis of Practical Application of Lightweight Cryptographic Algorithm ASCON.

(2022).

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,

Minian Yu, andMichael Mitzenmacher. 2020. PINT: Probabilistic in-band network

telemetry. In ACM SIGCOMM 2021.
[8] Kevin Benton, L Jean Camp, and Chris Small. 2013. OpenFlow vulnerability

assessment. In ACM SIGCOMM HotSDN 2013.
[9] Abhik Bose, Shailendra Kirtikar, Shivaji Chirumamilla, Rinku Shah, and Mythili

Vutukuru. 2022. AccelUPF: accelerating the 5G user plane using programmable

hardware. In ACM SOSR 2022.
[10] Pat Bosshart. 2018. Programmable Forwarding Planes at Terabit/s

Speeds. https://old.hotchips.org/hc30/2conf/2.02_Barefoot_Barefoot_Talk_at_

HotChips_2018.pdf [Accessed: Mar. 2023].

[11] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.

2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
CCR 44, 3 (2014).

[12] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-

sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM CCR 43, 4 (2013).

[13] Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and

Tulika Mitra. 2021. FSA: fronthaul slicing architecture for 5G using dataplane

programmable switches. In ACM MOBICOM 2021.
[14] Huan Chen and Theophilus Benson. 2017. The Case for Making Tight Control

Plane Latency Guarantees in SDN Switches. In ACM SOSR 2017.
[15] Xiaoqi Chen. 2020. Implementing AES encryption on programmable switches

via scrambled lookup tables. In ACM SIGCOMM SPIN 2020.
[16] Intel Corporation. 2023. Intel Tofino. https://www.intel.com/content/www/us/

en/products/network-io/programmable-ethernet-switch/tofino-series.html [Ac-

cessed: Mar. 2023].

[17] Intel Corporation. 2023. Intel Tofino 2. https://www.intel.com/content/www/us/

en/products/network-io/programmable-ethernet-switch/tofino-2-series.html

[Accessed: Mar. 2023].

[18] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

2021. Ascon v1. 2: Lightweight authenticated encryption and hashing. Journal of
Cryptology 34 (2021).

[19] Morris Dworkin(NIST). 2007. Recommendation for Block Cipher Modes of Opera-

tion: Galois/Counter Mode (GCM) and GMAC. https://csrc.nist.gov/publications/

detail/sp/800-38d/final. (2007).

[20] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan

Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. 2015. Measuring

Control Plane Latency in SDN-Enabled Switches. In ACM SOSR 2015.
[21] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.

2020. Contra: A programmable system for performance-aware routing. In USENIX
NSDI 2020.

[22] Intel. 2023. Intel® Tofino 6.4 Tbps, 4 pipelines. https://www.intel.

sg/content/www/xa/en/products/sku/218643/intel-tofino-6-4-tbps-4-

pipelines/specifications.html [Accessed: May 2023].

[23] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores

with fast in-network caching. In ACM SOSP 2017.
[24] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi, and Mun Choon Chan.

2021. Debugging Transient Faults in Data Centers using Synchronized Network-

wide Packet Histories. In USENIX NSDI 2021.
[25] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. 2019. Precise Time-

Synchronization in the Data-Plane Using Programmable Switching ASICs. In

ACM SOSR 2019.
[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In

ACM SOSR 2016.
[27] Xin Zhe Khooi, Levente Csikor, Dinil Mon Divakaran, and Min Suk Kang. 2020.

DIDA: Distributed In-Network Defense Architecture Against Amplified Reflec-

tion DDoS Attacks. In IEEE NetSoft 2020.

[28] Xin Zhe Khooi, Levente Csikor, Jialin Li, Min Suk Kang, and Dinil Mon Divakaran.

2021. Revisiting Heavy-Hitter Detection on Commodity Programmable Switches.

In IEEE NetSoft 2021.
[29] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar, and Srinivasan Seshan.

2021. RedPlane: Enabling Fault-Tolerant Stateful in-Switch Applications. In ACM
SIGCOMM 2021.

[30] Yunzhuo Liu, Hao Nie, Hui Cai, Bo Jiang, Pengyu Zhang, Yirui Liu, Yidong Yao,

Xionglie Wei, Biao Lyu, Chenren Xu, Shunmin Zhu, and Xinbing Wang. 2023.

X-Plane: A High-Throughput Large-Capacity 5G UPF. In ACM MOBICOM 2023.
[31] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan,

Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz Sunay. 2021. A p4-based

5g user plane function. In ACM SOSR 2021.
[32] David McGrew. 2008. An Interface and Algorithms for Authenticated Encryption.

RFC 5116.

[33] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

Silkroad: Making stateful layer-4 load balancing fast and cheap using switching

asics. In ACM SIGCOMM 2017.
[34] Yoav Nir and Adam Langley. 2018. ChaCha20 and Poly1305 for IETF Protocols.

RFC 8439.

[35] NIST. 2022. Lightweight Cryptography Standardization Process: NIST Selects

Ascon. https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-

ascon [Accessed: May 2023].

[36] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao, Zhiguo Li,

Kun Liu, Jie Lu, Jianyuan Lu, et al. 2021. Sailfish: Accelerating cloud-scale multi-

tenant multi-service gateways with programmable switches. In ACM SIGCOMM
2021.

[37] Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu. 2019.

SQR: In-network Packet Loss Recovery from Link Failures for Highly Reliable

Datacenter Networks. In IEEE ICNP 2019.
[38] Phillip Rogaway. 2002. Authenticated-encryption with associated-data. In ACM

CCS 2002.
[39] Yaron Sheffer, Peter Saint-Andre, and Thomas Fossati. 2022. Recommendations

for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS). RFC 9325.

[40] Suneet Kumar Singh, Christian Esteve Rothenberg, Jonatan Langlet, Andreas

Kassler, Péter Vörös, Sándor Laki, and Gergely Pongrácz. 2022. Hybrid P4 Pro-

grammable Pipelines for 5G gNodeB and User Plane Functions. IEEE Transactions
on Mobile Computing (2022).

[41] Cha Hwan Song, Xin Zhe Khooi, Dinil Mon Divakaran, and Mun Choon Chan.

2023. DySO: Enhancing application offload efficiency on programmable switches.

Computer Networks 224 (2023), 109607.
[42] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon

Chan. 2023. Network Load Balancing with In-network Reordering Support for

RDMA. In ACM SIGCOMM 2023.
[43] Henning Stubbe, Sebastian Gallenmüller, Manuel Simon, Eric Hauser, Dominik

Scholz, and Georg Carle. 2023. Keeping Up to Date With P4Runtime: An Analysis

of Data Plane Updates on P4 Switches. In IFIP Networking 2023.
[44] Guangda Sun, Mingliang Jiang, Xin Zhe Khooi, Yunfan Li, and Jialin Li.

2023. NeoBFT: Accelerating Byzantine Fault Tolerance Using Authenticated

In-Network Ordering. In ACM SIGCOMM 2023.
[45] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle

Olukotun. 2022. Taurus: a data plane architecture for per-packet ML. In ACM
ASPLOS 2022.

[46] The P4.org API Working Group. [n. d.]. P4Runtime Specification version 1.3.
[47] Sophia Yoo and Xiaoqi Chen. 2021. Secure keyed hashing on programmable

switches. In ACM SIGCOMM SPIN 2021.
[48] Sophia Yoo, Xiaoqi Chen, and Jennifer Rexford. 2024. SmartCookie: Blocking

Large-Scale SYN Floods with a Split-Proxy Defense on Programmable Data Planes.

In USENIX Security 2024.
[49] Yutaro Yoshinaka, Junji Takemasa, Yuki Koizumi, and Toru Hasegawa. 2022. On

implementing ChaCha on a programmable switch. In EuroP4 2022.
[50] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive pro-

grammable switches. In ACM SIGCOMM 2020.
[51] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen

Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, et al. 2022. Tiara: A

scalable and efficient hardware acceleration architecture for stateful layer-4 load

balancing. In USENIX NSDI 2022.
[52] Annus Zulfiqar, Ben Pfaff, William Tu, Gianni Antichi, and Muhammad Shahbaz.

2023. The Slow Path Needs an Accelerator Too! ACM SIGCOMM CCR (April

2023).

https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://github.com/dyso-project/dyso_p4
https://www.intel.sg/content/www/xa/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://github.com/NUS-CIR/tofino-ascon
https://old.hotchips.org/hc30/2conf/2.02_Barefoot_Barefoot_Talk_at_HotChips_2018.pdf
https://old.hotchips.org/hc30/2conf/2.02_Barefoot_Barefoot_Talk_at_HotChips_2018.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.intel.sg/content/www/xa/en/products/sku/218643/intel-tofino-6-4-tbps-4-pipelines/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/218643/intel-tofino-6-4-tbps-4-pipelines/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/218643/intel-tofino-6-4-tbps-4-pipelines/specifications.html
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon

EuroP4 ’23, December 8, 2023, Paris, France Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, and Mun Choon Chan

Algorithm 1 P4EAD pipeline flow,

1: procedure p4ead_pipeline(pkt, curr_state, curr_rd, op_mode)
2: prnd_count← 0

3: while prnd_count < RPP do
4: if curr_state == START then
5: curr_state← INIT

6: pkt← INIT(pkt)
7: else if curr_state == INIT then
8: if curr_rd == 12 then
9: curr_state← ABS_AD

10: pkt← AD_ABS(pkt)
11: curr_rd← 0

12: end if
13: else if curr_state == ABS_AD then
14: if curr_rd == 6 then
15: curr_state← ABS_IP

16: pkt← IP_ABS(pkt)
17: curr_rd← 0

18: end if
19: else if curr_state == ABS_IP then
20: if curr_rd == 6 then
21: curr_state← FINAL

22: curr_rd← 0

23: end if
24: else if curr_state == FINAL then
25: if curr_rd == 12 then
26: curr_state← END

27: pkt← TAG(pkt)
28: break

29: end if
30: end if
31: pkt← p_rnd(pkt) ⊲ do one P-RND

32: prnd_count← prnd_count +1
33: curr_rd← curr_rd +1
34: end while
35: if curr_state == END then
36: if op_mode == DECRYPT then
37: valid_tag← verify_tag(pkt)
38: if ¬valid_tag then
39: drop(pkt)
40: end if
41: end if
42: pkt’← pkt
43: forward(pkt’)
44: else
45: recirculate(pkt)
46: end if
47: end procedure

A P4EAD PIPELINE
We outline P4EAD’s pipeline flow in Alg. 1. Alg. 1 takes four inputs,

i.e., pkt, curr_state, curr_rd and op_mode. Here, the current state
(curr_state) can either be any of the following states: START, INIT,

ABS_AD, ABS_IP, FINAL, and END. Similarly, the operation mode

(op_mode) can be ENCRYPT or DECRYPT. In line 3, RPP denotes
the number of P-RND per pipeline pass configuration of P4EAD,
which can be 1 or 2 for Tofino and among 1,2,3, or 4 for Tofino2.

For brevity, we assume that the AD and input absorption happens

only once, i.e., the packet having a short AD and input, in Alg. 1.

As larger input/ AD sizes, the absorption happens sequentially in

chunks of 8 bytes.

When a packet is newly received, it is at the state START, and

depending on the packet type, the op_mode is set. The recirculated
packets which are in the middle of processing will have curr_state
set to other than START. We keep track of the current P-RND using

prnd_count and the current ASCON state using curr_state. A newly

received packet’s flow starts from the START state and moves onto

INIT, which after PERM(12) moves onto AD absorption, and so on

(as depicted in the flow in Fig. 3). The curr_rd parameter keeps

track of the P-RND number for PERM(12) or PERM(6).
Finally, once the packet payload is absorbed and the tags are

finalized, the END state is reached. If the op_mode is DECRYPT,
then a tag verification happens before forwarding or proceeding

with further packet processing logic with the final processed packet,

pkt’.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 P4EAD
	3.1 Preliminaries
	3.2 Implementation

	4 Evaluation
	5 Case Study: In-Network KV Store
	6 Discussion and Future Work
	7 Conclusion
	References
	A P4EAD pipeline

