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Abstract

Lifetime of a link defines the amount of time the link is available for transmission. In
this work, we begin with associating a statistical parametric model for link lifetime
distribution for commonly used mobility patterns. The study reveals interesting
properties about link lifetimes, including findings showing that lifetimes of the mo-
bility patterns studied are of wear-out type, rather than random failure. Next, we
propose a heuristics based link lifetime estimation process that exploits knowledge
of the associated mobility pattern and show that the estimation performs well under
diverse operating conditions. Finally, we present an application of link lifetime. In
this application, link lifetime is used as an indicator of end-to-end channel-quality
to carry out packet scheduling decisions.

Key words: Link Lifetimes, statistical parametric models, estimation,
packet-scheduling.

1 Introduction

A Mobile Ad Hoc Network (MANET) is a wireless network consisting of mobile
nodes, which can communicate with each other without any infrastructure
(base-stations) support. The nodes are free to move randomly and organize
themselves arbitrarily. Every node communicates via wireless radios that have
limited transmission capabilities. Due to this constraint on transmission, not
all nodes are within the transmission range of each other. If a node wishes
to communicate with a node outside its transmission range, it needs the help



of other nodes in constructing a multihop route. A key challenge in MANET
is that communication has to be carried out with changing network topology
due to node mobility.

The goal of this work is to have a detailed study of the link lifetime character-
istics associated with commonly used mobility patterns. Such understanding
is helpful in exploring different ways in which link lifetimes can be used across
various networking layers. In this regard, we begin with collecting link life-
times over diverse mobility patterns, and associating a statistical parametric
model for link lifetime distribution. This study reveals interesting properties
about link lifetimes, including findings showing that lifetimes of the mobility
patterns studied are of wear-out type, where lifetimes are dependent on the
current age. Random failure, a common assumption in many existing works,
does not fit any one of the mobile patterns studied. Next, we propose a link
lifetime estimation heuristic that exploits knowledge of the statistical prop-
erty of associated mobility pattern. This estimation process provides higher
accuracy and requires fewer samples than a histogram based method.

Finally, we present an application of link lifetimes. In the application, residual
link lifetime is used to indicate end-to-end channel quality, in order to provide
“channel-awareness” to packet scheduling mechanism. A packet scheduling
mechanism, CaSMA, uses link lifetime as a channel-quality indicator. We pro-
vide detailed description of CaSMA, including performance comparison with
similar packet scheduling schemes.

The paper is organized as follows. Section 2 describes the related works on
link durations. Section 3 focuses on the study of link lifetime, in which a
parametric statistical model is associated to the lifetime distribution of various
mobility models. Section 4 describes the link lifetime estimation process and
its performance evaluation. Section 5 describes the application of link lifetime
estimation in channel-aware packet scheduling. The paper is summarized and
concluded in Section 6.

2 Related Work

In majority of the earlier works [1-5], Link Change Rate (LCR) and Link
Duration (LD) metrics are used to infer link quality. The LCR [1] metric is
defined as the number of communication links forming and breaking between
nodes over a given time T. The LD metric describes the lifetime of communi-
cation links. Cho et al., [3] show that LCR is not suitable as a metric for link
lifetime estimation as its relation with the route lifespan depends on the node
density, which may not be uniform in many mobility models. The conclusion
that LD is a good unified mobility metric based on constant velocity (CV)



model. This conclusion is mainly because of relation between LD and route
lifespan, which they say is invariant of the mobility model used.

Lenders et al., [4] analyze the impact of human mobility on the link and route
lifetime of mobile ad hoc networks. They analyze the data gathered from a real
ad hoc network of 20 PDAs connected via 802.11b wireless interfaces. They
found that interruptions due to human mobility and collisions/interference
have a completely different impact on the lifetime of links and routes. Au-
thors also compared the empirical link lifetime with those obtained by statis-
tical mobility models. The results show that the distribution of the random
waypoint and the random reference point group mobility models are close to
the empirical distribution.

One of the first studies concerning the analysis of path duration was by Bai et
al., [2]. Based on experimental results obtained by simulations, they assume
that the lifetime of a path with four or more hops can be approximated by
an exponential distribution. However, the authors do not consider the fit of
any other standard distribution. Moreover, they do not justify the selection of
an exponential distribution with any mathematical validation. To cope with
this shortcoming, Han et al., [6] basing their work on Palms theorem, state
that, under certain circumstances, the lifetime associated to those paths with
a large number of hops converges to an exponential distribution. The previous
works present a clear disadvantage as they provide a solution for the analysis
of paths which is valid only for routes with a large number of hops. Therefore
their study could not be fully applied to many ad hoc networks and practi-
cal MANET applications where the paths only consist of 1 to 4 hops. The
popularity of the exponential fitting has made it a common approximation in
other works like [7]. Most authors have analyzed path duration by means of
empirical results. For instance, [3] have shown that the mean residual lifetime
of routes depends on the number of hops as well as on the mean link duration.
On the other hand, [8] analytically proves that the average lifetime of a path
decreases with its length. An analytical study on this aspect is carried out by
Tseng et al. They based the analysis of the route lifetime on a spatial discrete
model [9]. This study simplifies a MANET into a cellular network composed
of hexagonal cells to compute the path availability. In [10], authors formally
describe the distribution function of path duration assuming that nodes move
according to a CV model.

The work by Gerharz et al. [11] on link duration in mobile wireless ad hoc
network is closest to our work. They found that link durations vary with
age and proposed techniques to measure residual lifetime online. They then
proceed to propose two metrics for selecting a stable link: highest average
residual lifetime and highest 75% quantile. From their analysis they found
that initially a link’s average residual lifetime decreases with increasing current
age, and after a threshold, where threshold corresponds to the modal value



of link duration distribution, the residual lifetime increases with current age.
However, in our simulations we found that this may not be true in some cases.

Cheng et al., [12] also study the distribution of link lifetimes in ad hoc net-
work. However, they focus mainly on the factors which influence link lifetime.
They consider the number of mobile nodes, node minimum speed and moving
probability as dominating factors that influence link lifetime. From our ex-
periments, we observe that average node density does not differ much across
different mobility models. In [12], the authors also mention the possibility of
considering route length along with route lifetimes though no algorithm was
proposed.

Yih-Chun Hu et al., [13] explore the cache strategies in DSR and propose some
mobility metrics. They found that link-cache strategies are better than path-
cache strategies. As one of the link-cache strategy, they propose technique to
combine stability value of a link, which is dependent on the usage of the link,
and hop-count. They found that this technique though performs better, not
better than a static scheme of 5 seconds expiration. We will show that our
scheme performed better than the best link-cache schemes.

3 Study of Link Lifetime

In our work, we define link lifetime as follows. Consider a node ny, with trans-
mission range 7. Let node ny comes within the transmission range of n; at
time ¢;. We call this time ¢, the link initiation ttme. Now, let us consider, at
some point of time in future ¢y (ty > t1), the node ny moves out of transmis-
sion range of n;. Then the time ¢y is termed as link termination time. Link
lifetime is the difference between the link initiation time and link termination
time (tg — tl)

An implicit assumption in our work is that distance is the dominant factor in
determining the link quality. While we know the perfect disk communication
model is not true in practice, we believe that using distance as the key pa-
rameter to determine transmission range is sufficient to provide useful insight
into the statistical properties of link lifetimes.

3.1  Qwerall Approach

The approach we have taken is based on the techniques used in the field of
reliability engineering. In reliability studies, engineers study the probability
that a system (vehicle, machine, device) will perform its function for a spec-



Model
Analysis &
Application:

Associate
Statistical
Model

Collect
Lifetime Data

Maximum
Likelihood
Anallyss
Degradation
Analysis

Fig. 1. Link lifetime study process

ified period [14]. The study considers the lifetime of the entity and various
parameters that affect this lifetime. We believe that a link between two nodes
can be one such entity, and we can adopt similar techniques.

Our approach is depicted in Figure 1, and has three steps, namely: (1) col-
lection of lifetime data (2) association of statistical model and (3) analysis of
model.

A statistical study on entity lifetime begins with collecting failure-time data
(link lifetime data). Along with failure data, degradation data is also collected
whenever it is available. Assume that a link “fails” when the two associated
nodes move too far away from each other, degradation data in our context
refers to how the distance between the two nodes varies. This is presented in
Section 3.2.

The next step in the process is to associate a parametric statistical model
to describe a set of data or a process that generates the set of data. A sta-
tistical model serves a number of purposes [14], including studying system
stability and making estimations (lifetime durations), comparing different en-
vironments under which, the entities operate and checking the veracity of the
performance claims.

Typical procedure in associating the statistical model involves two steps. First
step uses the failure data and maximum likelihood (ML) approach, whereas,
the second step uses the degradation data and carries out degradation anal-
ysis. The maximum likelihood method is the most popular method used for
fitting statistical models to data. It has been shown that [15], under regu-
lar conditions, ML estimators are optimal when the samples are large. From
the point of view of statistical studies, ML estimation and degradation anal-
ysis can be categorized as enumerative study and analytic study, respectively.
Typically, enumerative study begins by collecting and carefully evaluating the
samples, and further making an inference about the population from which the
samples were collected. On the other hand, analytic study answers questions
about processes that generate samples over time. Together, they enhance the
accuracy of lifetime distribution model estimation. The details for association



of statistical model is presented in Sections 3.3 and 3.4.

Once a statistical model is associated with the lifetime, including the degra-
dation data analysis, we perform the final step. In this step, we evaluate the
accuracy of the associated statistical model by assuming that the associated
model is correct, and look at how well the generated hazard function matches
the measured data. This is presented in Section 3.5.

3.2 Collection of Lifetime Data - Lifetime Duration Distribution

3.2.1 Mobility Patterns

There have been various mobility models or patterns proposed for MANETS.
These patterns try to capture most of the common mobility patterns, but few
patterns capture realistic movements of nodes in MANETS.

In our work, we use the following mobility patterns: random waypoint (RWP),
Reference Point Group Mobility (RPGM), Manhattan mobility model [16] and
a scenario based campus mobility model.

The first three mobility models are popular but generic models, and are cho-
sen based on the recommendations of the IMPORTANT framework [2]. The
IMPORTANT framework defines protocol independent metrics such as the
average degree of spatial dependence, average degree of temporal dependence,
average relative speed and geographic restrictions to capture the mobility char-
acteristics. It also argues that the mobility models chosen (for simulation stud-
ies in MANETS) should span all the mobility characteristics described in the
framework. Further, authors also show that the set of mobility models we have
chosen satisfy these characteristics.

However, the above mobility patterns are still generic models. In order to eval-
uate a more realistic mobility pattern, we include a fourth mobility model that
models movement in small campus environments, generated by the EGRESS
tool [17,18]. EGRESS models signal degradation due to obstacles in an envi-
ronment with buildings, and allows different movement patterns for different
user types. The node mobility also includes mobility inside buildings. The
model is scenario based as the building structures, obstacle types and user
behaviors have to be pre-defined for a specific scenario.

3.2.2  Simulation Environment and Data Collection

We use different generators for different mobility patterns. In addition, a single
mobility pattern is generated using three different tools so that when we draw
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a conclusion, the probability of the conclusion being correct is higher. We use
the “setdest” tool, which comes with the distribution of NS-2 [19], mobility
generator obtained from the Toilers group [20] and the tool from the bonn-
motion group [21] to generate random waypoint mobility pattern. Similarly,
mobility generator obtained from the Toilers group [20], the tool from the
Nile group at USC [22] and the tool from the bonnmotion [21] group is used
to generate the group mobility (RPGM) patterns. For Manhattan mobility
patterns, the generators from the Nile group at USC [22] and the bonnmo-
tion [21], respectively, are used. For the group mobility models, we consider
three cases. In the first case, termed as RPGM]1, we have a single group with
50 nodes. In the second case, termed as RPGM2, we consider 5 groups with
10 nodes each. Finally, in RPGM3, there are 10 groups with 5 nodes each.

For the campus mobility model, we use the EGRESS tool provided by the
authors. The topology generated has 9 buildings (3 office buildings, 5 lecture
theaters and 1 cafeteria). The buildings are connected by various pathways
and junction points. Each building type has multiple floors (except cafeteria,
which has single floor), with same layout on all the floors, and a different floor
layout for different type of buildings. Two mobility speeds are considered,



walking (0 - 1m/s) and driving (0-10 m/s). The speeds are chosen based on
the context (type of the node and the position of the node).

In each simulation, there are 50 nodes, with each node having a transmission
range of 250 m. The simulation area is 1000 m x 1000 m. For Manhattan,
there are 4 vertical and 4 horizontal roads. Each road has 2 lanes. So a single
block would be of size 200 m x 200 m. The simulation duration is 1000 secs. To
remove the effects due to congestion, there is no data traffic among the nodes.
Therefore, link breaks are predominantly due to the mobility. For the study
of link durations and residual lifetimes in RWP, RPGM and Manhattan, only
the speeds of 1 m/s and 10 m/s are presented.

The same simulation environment is used in all simulations in subsequent
sections. Other specific simulation parameters, or any modifications would be
mentioned as needed. In order to improve the accuracy, 15 runs are performed
for every case.

Link lifetime duration is calculated as the duration of continuous connection
time between a node and its neighbor. In order to remove any edge effect, a
link duration is considered only when the link is broken before the end of the
simulation.

As an illustration, Figure 2 shows the plots for link lifetime distribution for
the random waypoint model. Plots of lifetime distribution for other mobility
models can be found in [23]. To remove the effects of short simulation time
for low speeds (1 m/s), we conducted experiments for 9000 secs. We can see
that both plots exhibit similar behavior: unimodal and positively skewed. The
modal values of link durations is a significant property in these plots. The
modal values tend to decrease with increase in speed. As the speed increases,
the duration at which the 99 percentile value occurs also decreases. At a
speed of 10 m/s, link durations above 500 secs are rare. Gerharz et al. [11]
show in their link duration study that the histogram’s peak (modal value)
occurs roughly at the transit time of two mobile nodes crossing each other’s
transmission range. From our results we did not find this pattern in majority
of the cases.

The collected link duration values are used to calculate the residual link life-
time. The residual lifetime value is computed as follows. Let ; be the number
of links with link duration 7 secs and R, be the average residual link lifetime
when the current link age is a.

Ry =(Q_(Lixi)/> L) —a (1)

i>a i>a

In other words, the residual lifetime for a link of age a is the average lifetime



of all links with durations above the age a, minus age a.

3.8  Associating Parametric Statistical Model for the Lifetime Data

The problem we consider can be described as follows. Suppose we have a ran-
dom sample X, X, ..., X, of a parent random variable X, with distribution
function F. Given that F' is a member of one of a set of parametric families
of distribution functions, say Fi, Fs, ..., Fy, we have to decide which one of
these k families best fits the sample.

3.83.1 Choice of Lifetime Distribution Models

In the field of reliability engineering, the lifetime of entities are typically de-
scribed using a “graphical representation” called Bathtub Curve [24], as shown
in Figure 3. By definition, bathtub curve is a plot of instantaneous failure rates
versus time, which is used to classify the failure rates. Bathtub curve describes
the relative failure rate of an entire collection of entities over a period, and not
just a single entity. A bathtub curve can be described as consisting of three
sections: infant mortality failures, random failures, and wear-out failures.
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Fig. 3. Bathtub curve

Typical distribution models used for lifetimes are exponential, Weibull, log-
normal and gamma [25]. The exponential distribution has a single parameter
whereas other distributions have 2 parameters.

The probability density function of X having exponential distribution is given
as:

fla) = xe™™
The failure rate (also termed as Mean Time To Failure (MTTF)) reduces to
the constant A for any time. The exponential distribution is the only distribu-
tion to have a constant failure rate and is an excellent model for the second
section (random failures, with constant failure rate) of the bathtub curve.



These type of failures are sometimes also referred to as “Intrinsic” failures.
The exponential distribution has been used for link lifetime [7,26] and path
durations [6,27].

The Weibull distribution is one of the most widely used lifetime distributions
in reliability engineering. It is a very flexible lifetime distribution model with
two parameters [28]. The probability density function of X having Weibull
distribution is given as:

3
) x>0

Q|+

(1)’

0 z <0

fx) =

where 3 is called the shape parameter and is typically between 0.5 and 8,
which determines the shape of the Weibull probability density function. For
specified value of 3, Weibull is identical to various one parameter distribu-
tions, including exponential and normal. « is the scale parameter, and is also
known as characteristic life (63.2 percent of the link population fails by the
characteristic life point, regardless of the value of 3). Weibull can be used to
model all three types of failure.

According to the central limit theorem (CLT), the probability distribution of
a variable, that is the product of many independent random variables (none
of which dominates the result) is lognormal [29]. Typically, lognormal distri-
butions are generated by processes that follow the law of proportionate effect
(multiplicative process) [30]. It is commonly used to model the lives of units
whose failure modes are of a fatigue-stress nature.

The probability density function of X having lognormal distribution is given
as:

1 (In_z—p)*
— €IP (g [ T > 0
fla) = { 0

0 <0

Here z is the variate, u is the mean value of the log of the variate, and o2 is
the variance of the log of the variate.

For smaller values of o, lognormal shapes are similar to Weibull shapes with
larger 3s, and for larger o values, the curves are similar to Weibull shapes with
smaller Fs. Therefore, both the distributions are flexible and a careful decision
should be made when choosing the one to use (especially for smaller samples).
For larger samples, however, this difficulty on choice is reduced drastically [29].

Gamma is also one of the popular models used in system reliability studies.
Similar to Weibull, Gamma can also be used to model in different applications,
and for different type of failures. Gamma also includes exponential distribution
as a special case, and also has monotonous failure rate (only lognormal exhibits
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unimodal failure rate).

3.3.2  Selection of Model - Maximum Likelihood Analysis

In some circumstances, physical considerations alone can identify the appro-
priate family of distributions [15]. For example, when there is “no premium
for waiting” and “lack of memory” property, the family of exponential distri-
butions can be the ideal model. In practice, however, when such consideration
is not available, a choice may be based upon mathematical analysis or on an
understanding that a particular family is “rich” enough to include a good fit
to the data [14].

The technique chosen is the maximum likelihood estimation, where for ev-
ery alternative family under consideration it selects the family that yields
the largest maximum likelihood. In our work, we use minimum Kolmogorov
distance method [31], which is similar to maximum likelihood method. The
additional process involved here is to determine the “Kolmogorov distance”
between the specific candidate and the empirical distribution. The distribution
that yields the minimum distance is chosen.

For the actual data processing, we used a curve-fitting software called Easy-
Fit [32] which implements the minimum Kolmogorov distance method.

Table 1 provides a summary of the decision process derived from [15]. Given
a data set and the maximum likelihood criteria, the most likely parent distri-
bution is selected. Table 1 also provides the conditions whereby the decision
can be made with high confidence.

In the following section, we will describe our initial findings based on the
application of maximum likelihood analysis. Note that this is only the initial
guess and additional confirmation based on degradation analysis and model
analysis are needed.

3.3.8  Distribution Model for Random Waypoint

Using the data collected, the best fit distribution for random waypoint based
on maximum likelihood method is lognormal distribution.

We know that the shape of the lognormal is affected by the values of both p
(scale parameter) and o? (shape parameter). The density is more spread for
higher values of 1, whereas, it is more skewed (towards left) for higher values
of o2. For low speed RWP, the parameters p and o (considering lognormal)
are 6.3757 and 0.8181. Whereas, for high speeds the parameters are 4.163
and 0.7253. A small (less than 1) shape parameter indicates a narrow range

11



Selection Alternatives| Probability of Choosing Correctly
exponential | very high even for lesser samples
Lognormal | weibull exceeds 0.97 even for samples less than 100
Gamma very high for shape parameter greater than
0.25
exponential | very high when shape parameter is greater
than 1
Weibull Lognormal | very high even for lesser samples, and inde-
pendent of shape parameter
Gamma high only using minimum Kolmogorov dis-
tance technique, with larger sample size
exponential | very high when shape parameter is greater
than 1
Gamma weibull high only using minimum Kolmogorov dis-
tance technique, with larger sample size
Lognormal | very high for shape parameter > 1 and mini-
mum Kolmogorov distance technique
Table 1

Selection of best-fit Distribution

of failure times and implies few early failures will occur. Also, large scale
parameters implies a longer mean time to failure (MTTF) [25,33].

From these parameters we can conclude that the failure rates follow the wear-
out type of failure. For wear-out failures, the lifetimes are dependent on the
current age, and the link wears out rather than experiencing a random break.
From the plots for random waypoint, we can see that the lifetimes 0 - 400 secs
(for low speeds) and 0 - 40 secs (for low speeds) are not the modal class. This
also shows that the exponential distribution is a poor fit to the data collected.

From Table 1, we see that with lognormal data and with lognormal and Weibull
as alternatives (or vice versa), the probability of choosing the correct dis-
tribution (using minimum Kolmogorov distance) is close to 1 with sample
size greater than 100. Similarly, with shape parameter much larger than 0.25,
Gamma distribution can be ruled out.

In summary, we conclude that with high probability the data generated by
the experiments on random waypoint model is lognormal.

12



3.3.4  Distribution Model for RPGM

Considering Kolmogorov minimum distance technique, the best fit is Weibull
for RPGM 2/3 low speed (1 m/s) and RPGM1(single group of 50 nodes) high
speed (10 m/s). On the other hand, the best fit is again lognormal for high
speeds RPGM2 and RPGM3. As the reasoning for selecting lognormal distri-
bution has just been presented for RWP, we will present only the reasoning
for picking Weibull.

For low speed RPGM 2/3 mobility models, the 3 (shape parameter) value
is around 1.5 to 2.5. This parameter gives clue about the failure mechanism,
since different slopes (3’s), imply different classes of failure modes. For Weibull
distribution, if the shape parameter is less than 1, then the failure mode is
infant mortality, if the parameter is equal to 1, it is random failure, and if it
is greater than 1, the failure mode is wear-out [25,33]. From the values of 3
obtained, we can conclude that the failures are purely wear-out failures.

We can also show that the best-fit model is Weibull by considering the al-
ternatives. Based on the shape parameter, which is much larger than 1, we
can exclude exponential distribution. Based on maximum likelihood criteria,
lognormal is unlikely to be an alternative. Finally, for gamma, a large number
of samples is needed, and this is available. Therefore, with high probability,
the distributions chosen (Weibull for lower speeds RPGM and lognomal for
higher speeds) is correct is very high (close to 1).

3.3.5  Manhattan and Campus Mobility

For Manhattan mobility scenarios, the best fit for both low and high speeds
(Im/s and 10m/s) is Gamma distribution. The shape parameter for low speed
was 1.6338 and for high speed was 1.8036.

For campus mobility, the best fit for both low and high speeds (1m/s and
10m/s) is Lognormal distribution, with shape parameters 1.54 and 1.40, re-
spectively. The scale parameters are 4.08 and 4.22.

A summary of the findings for all the mobility models studied is presented
in Table 2. Across all mobility models studied, link exhibits wear-out failures
rather than random or infant-mortality failures.

3.4 Link Degradation Analysis

With the initial guess, the next task is to perform additional verification based
on degradation analysis. In this work, the term degradation refers to how a

13



Distribution PDF Estimated Cases
Exponential e A
Lognormal 271wx exp { — % } RWP,
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Table 2
PDF of different distribution models with estimated best-fit cases. (HS) - High
Speed, (LS) - Low Speed

node gradually moves out of another node’s transmission range. Therefore,
the degradation level is measured in terms of distance between the nodes.

We denote the degradation level, or true degradation path of a particular link,
by D(t), t > 0. In simulations, values of D(t) are sampled at discrete points
in time, (¢1,%2,...). Observed sample degradation path of link i at time ¢; is

Yij = Dij + €;

where D;; is the degradation path D(t;;) for unit i at time t. ¢; describe a
combination of measurement and model error.

As an illustration of the degradation process, we show the result of an exper-
iment using only 2 nodes, which are separated initially by 100 m. The area
of the simulation is 1000 m x 1000 m, and other node parameters (like trans-
mission range) remain the same. The nodes randomly pick a destination and
speed (maximum speed of 10 m/s, same as random waypoint model) and move
towards that destination with the chosen speed. Each simulation runs for 50
secs and is repeated for 1000 times.

The best-fit distribution for this degradation process is lognormal (using the
minimum Kolmogorov distance technique). The fit-curve and the measurement
data are shown in Figure 4 using bin size of 4s.

In the next step, we model the degradation process analytically to justify the
associated distribution of the link lifetimes of the different mobility model. Due
to space constraint, we will only outline the approach for showing that link

lifetime under random waypoint mobility scenarios has lognormal behavior.

If T"is a random variable describing the failure time of a link, then the failure

14



nnnnnnnnnnnnnnnnnn

Fig. 4. PDF of lifetimes considering 2 nodes

(probability distribution of failure time) can be written as:
Pr(T <t)=F(t) = Pr(D(t, (1, 2, 8n) < Dy)
Dy is the threshold degradation level (which is 250 m in our experiment).

Variability causes links between nodes to fail at different times. A degradation
model should account for the important sources of variability in a failure
process. Considering the link degradation process, and the underlying reasons
behind the link degradation, we can represent degradation path of a particular
link as:
D(t) = p1+ Baxt

(1 is the initial amount of degradation, and in our previous experiment the
value of (; is fixed (100m). We know that the distance between two nodes,
when nodes are moving, is largely dependent on the node speeds and di-
rections. Therefore, we consider (3, to be the reciprocal of relative velocity.
Further, we know that failure time is proportional to reciprocal of relative
velocity times Dy — ;. Let v(n,t) and 6(n,t) be speed and direction of node n
at time ¢, then magnitude of relative velocity is: RV (i, j,t) = Va? + b2, where
a = v(i,t)cosO(i,t) —v(j,t)cosO(j,t) and b = v(i,t)sind(i, t) — v(j,t)sinb(j,t).

Therefore, F'(t) of link lifetime, in terms of D(t) the link degradation can be
written as:

Dy — B

E(t; 81, 82) = Pr(D(t) > Dy) = Pr(6; > :

)

Now, to show that F(t) is log-normal we have to show that right hand side
(RHS) is lognormal, or (3, has lognormal rate.

We measure the reciprocal of relative velocities between two nodes moving at
random speeds and found that the data follows lognormal distribution using
the Kolmogorov minimum distance technique.

15
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3.5 Model Analysis

In the previous section, we collected the link lifetime data and associated a
parametric statistical model to the data. The obvious question at this point
will be: how good is the fit between the chosen distribution and the measured
data? This issue is addressed in the final step as shown in Figure 1. Here, we
assume that the model associated to the data is correct and try to predict the
behavior.

In the context of reliability engineering, typically questions are of the following
form. What is the probability that a link will sustain beyond some time t?
What is the probability that a link will break in the next instant, given that
it has survived to the time t7 The answers to these questions are obtained by
expressing the earlier distribution functions differently. Such different repre-
sentations are hazard and survival functions.

We will illustrate how the analysis is performed using hazard function for the
lifetime distribution model of random waypoint. The procedure for the other
models is similar.

The hazard function (hazard rate, instantaneous failure rate) of the link is
defined as the rate of change of the cumulative failure probability divided by
the probability that the link will not already be failed by time ¢ [29]. That is:

\_ dF@)/dt - f(1)
S 1-F() 1-F(@)

The hazard function of a lognormal process is defined by [34]

¢(d)

M= e -
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where d is given as loge%, ¢ is the probability density function of the stan-
dard normal distribution and ® is the cumulative distribution function of the
standard normal distribution.

Figure 5 shows the hazard function for random waypoint. It can be seen that
the values for simulation and analysis match fairly well. The difference tends
to be larger at larger values of time, at high speed, because there are less
samples available.

The initial part of the hazard function is concave for higher speeds, indicating
the increase in failure rate (at a decreasing rate) as the time increases. For
lower speeds, the hazard function still increases with time, but the increase is
less. After 100 secs, for higher speed, however, the hazard function decreases
with respect to time (approaching to 0 as ¢ — o00). For higher speeds, such
large durations are not of interest since few links last for periods longer than
that. Lognormal model is thus adequate to represent lifetimes.

Hazard function, in addition to being an useful function for reliability calcula-
tions, provides the information needed for troubleshooting, or classifying fail-
ure types. Similar to lognormal distribution (random waypoint and high speed
group mobility), we plotted out reliability and hazard functions for Weibull
and Gamma distribution. We found that the change in reliability decreases
slowly in the initial period and then decreases sharply as the characteristic
life is approached.

3.6 Discussion

After completing the lifetime distribution study, it is useful to summarize the
findings here.

(1) Link failures of all models studied are of wear-out type. Random failure
(modeled by exponential distribution) is not appropriate.

(2) Lognormal is a good model for the mobility with sufficient amount of
“randomness” and changes. That includes RWP, campus mobility and
RPGM 2/3 moving at high speed (10m/s).

(3) For mobility models with relative stable links, for example, RPGM1 and
RPGM 2/3 moving at low speed (1m/s), Weibull is a good model.

(4) Finally, for the Manhattan model, where the links lifetime among objects
is highly dependent on the independent decision made at road junctions,
Gamma distribution is a good (and natural) fit.
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4 Residual Lifetime Estimation

The basic approach to link lifetime estimation is for each node to maintain
the history of link lifetimes of all neighboring nodes seen. By collecting this
information and aggregating them into bins of say 10s, each node makes an
estimate of the residual lifetime distribution using all the samples collected in
equation (1) for all nodes. The approach is simple and the storage overhead
of history maintenance is fixed since the number of bins is fixed.

A disadvantage with history based estimation approach is in deciding how
much history is useful, as more history is not always better. For example,
when the node mobility pattern changes, the estimation errors can be high
since past history is no more relevant. Hence, the estimation process must
be able to flush the history when necessary. The second and related problem
is in the initialization phase when there is insufficient history. In these cases,
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knowledge about link lifetime distribution would help to reduce the estimation
error. We will discuss how our link lifetime estimation approach tries to address
these issues.

In this section, we first present the residual link lifetime estimation process
based on simple history values for all 4 mobility models. We also considered
the additional cases of changes in mobility patterns. Finally, we show how
availability of link lifetime distributions helps to reduce the estimation error.

4.1  Estimation Errors for Various Mobility Models

Figure 6 shows the estimation plots for all 4 mobility models at low and high
speeds. The RPGM simulated is RPGM1. The y-axis shows the absolute value
of the estimation error in seconds. The x-axis shows the amount of history
data available, measured in number of samples available. The amount of his-
tory available depends on average node density and amount of link breakage
observed. RWP tends to have the most history, while Campus and Manhattan
have the least.

In general, speed has the largest impact on the amount of estimation errors.
The errors are much larger for low speed than high speed. The difference is
particularly large for Manhattan. The reason behind this difference in errors
(for high speeds and low speeds) can be mainly attributed to the lack of history,
when simulations are run for 1000 secs. Considering this lack of history, for low
speeds, simulations were run for 9000 secs. This results in estimation errors
(in secs) of larger durations. Whereas, this effect was not observed for high
speeds. Overall, RWP has the smallest error with history based estimation,
while campus and Manhattan tend to have much higher errors. For the campus
model, this could be due to the presence of building structures and mobility,
which depends on the user types.

The results also clearly show that more history is not always better. For high
speed RWP and RPGM1, estimation errors decrease steadily over time. How-
ever, for low speed RWP and Manhattan, estimation error increases over time
with more history.

4.2 Scenarios with Transitions between Random and Group Mobility

In this section, we consider cases where the mobility patterns change from
random waypoint to group mobility or vice versa. This transition occurs after
1000 secs of simulation period, where the total simulation period is for 2000
secs.
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Fig. 7. Amount of history Vs error with changes in mobility

Figure 7 shows the estimation errors for transition from RWP to RPGM1 and
vice versa, for both low speed and high speed. The disadvantage of history
based approach can be clearly seen in this case. After a change in mobility
pattern, estimation error increases. For high speed RWP to RPGMI1 transition,
we can see that there is a large increase in the estimation errors after the
transition. This is because, after the transition from random to group mobility
the history contains more number of short link lifetimes compared to RPGM1.
As a result, significant underestimation of link lifetime occurs. Further, after
the transition, there will be fewer amount of new-samples of link lifetimes, as
the nodes will follow group mobility. For the opposite case (RPGM1 to RWP
transition), the increase in estimation errors (after transition) is not seen. This
is because, after the transition from RPGM1 to RWP, the nodes tend to collect
larger amount of new-samples of link lifetimes, and this helps in mitigating
the estimation errors. In fact, the combined mean estimation error (for all
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amount of samples combined), for transition from RPGM1 to RWP; is lesser
for “after transition” compared to “before transition”. Similar effect can also
be observed for the transition cases at low speed.

One technique to address this problem (increase in estimation errors when
there are transitions from one mobility model to other) is to let a node detects
the transition and reduces the amount of history kept so that the estimation
errors can get reduced in a short period. There are a number of ways for
a node to detect the transitions. In this work, we propose a technique where
nodes maintain the information about its neighboring node densities. Neighbor
densities give an indication of the mobility pattern. From simulations, we
found that for RWP-to-RPGM and RPGM-to-RWP (for both high and low
speeds) after transition, there is a change (either increase or decrease) in the
node-density values. This shows that node-densities can be used to detect the
transition. Unfortunately, the detection may not be straightforward for other
combinations of mobility patterns.

4.8 Improving Estimation Process Using Distribution Information

There are various ways in which we can exploit the link lifetime distribu-
tion information, including network reliability studies, estimating lifetimes
and understanding of failure rates. In this section, we describe how we use the
temporal properties study in preceding sections to improve the link lifetime
estimation technique.

We illustrate our approach using the scenario when the mobility pattern
changes. First, we utilize node-density measurements to detect the transi-
tions from one mobility model to another mobility model (between RWP and
RPGM or vice versa). Once a node estimates the transition, it gives up all
the collected history, and starts collecting the lifetimes from stretch. In addi-
tion, knowledge of the associated statistical distribution is used to improve on
link lifetime estimation. Note that estimation using distribution information
is better because much fewer samples is needed than using historical values
and the estimates will also be much more accurate.

To evaluate the improvement, we conducted a comparative study, considering
the 2 mobility transition cases with the enhanced estimation procedure. For
comparison, we look at 2 other approaches in which lifetimes are assumed
to follow either a “uniform” or “exponential” distribution when there does
not exist any history. We have seen that the uniform and the exponential
distributions are not good-fit for either random or group mobility patterns
but they provide convenient baseline comparison.

Figure 8 shows the mean estimation error values for all three approaches. The
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approaches that use the uniform and exponential distribution are called orig-
inal (uniform) and original (exponential). Our approach is labeled Enhanced.

We can clearly see the improvements in both stages, before and after the
transitions for both types of transitions. Compare to basing the estimation on
either uniform or exponential distribution, use of the correct (Lognormal and
Weibull) distributions reduces link lifetime estimation errors by 30% to 50%
for RWP to RPGM and vice versa.

5 Application: Link lifetime aware packet scheduling

In this section, we describe the application of link lifetimes, where link lifetime
is used as one of the packet scheduling parameters. Packet scheduling focuses
on solving the problems associated with multiple sessions, within a single node,
sharing the wireless link.

Our scheduling mechanism is termed as Channel aware Scheduling for Mobile
Ad hoc networks (CaSMA). The term “channel-aware” in our work refers
to having the knowledge of channel conditions or channel state. In CaSMA,
congestion state and end-to-end path lifetime are used to represent channel
conditions.

We use the term path lifetime (or path residual lifetime) to define the time
interval for which the path associated for a flow is valid or exists. If the life-
time of each and every link of path P from node 7 to node j is estimated as
li,1lg, ..., 1, then the path lifetime P;; = min(ly,ls, ..., 1,). We use queue-size
to represent the congestion state.

During the path setup, estimates of the path lifetimes are collected and stored.
This path lifetime value is used as a parameter to represent the end-to-end
channel condition. During packet scheduling, CaSMA selects the packets,
which have high probability of reaching the destination, and takes into ac-
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count the cost of a link break by giving priority to flows that have a longer
normalized (with path residual lifetime) backlog queue. We show that CaSMA
approximates an ideal scheduling mechanism in terms of maximizing the good-
put and sharing the throughput (losses) fairly among the contending flows.

Our motivation for considering path residual lifetime and queue size can be
understood by considering the impact of mobility on link lifetimes and the
impact of link breakages. We found that the lifetime of the links can vary
widely across different node-mobility speeds. That is, if there are n flows at any
node, the lifetimes of those flows are unlikely to be similar and can vary over a
large range. Hence, considering these lifetimes as a scheduling parameter can
be useful, and can play a significant role in improving the performance. After
link breakages, route re-establishment time can be in the order of milliseconds
to tens of seconds. Further, the packets that are buffered by the nodes before
any link breakage on the path can be lost, and may have to be retransmitted.
Hence, it is also important to include the queue size on the scheduling decision.

In the succeeding section, we will describe the importance of link lifetimes
by defining an ideal scheduler and explaining how CaSMA approximates the
defined ideal scheduler.

5.1 Ideal Global Scheduler and Approximation

Before describing CaSMA in detail, we would first introduce the flow model
considered and the optimizing parameters that we focus on in this part of the
work.

5.1.1 Flow Model and Optimizing parameters

Each request or flow ¢ running through a path is described by a 6-tuple
(T3, Ci, siy€5,{0i }, {b;}), where T; is the minimum packet inter-arrival time,
C; is the maximum packet transmission time over a link, s; and e; are the
start and termination period of a flow, {o;} and {b;} are the sets of continu-
ous (duration for which the path exists or duration between link breakages)
and breakpoint periods (duration for which path does not exist), respectively.
We use o; to represent single continuous period of flow i. The relation between
s,e and o;, b; is as shown in Figure 9. If we focus only on the important flow
parameters, we can reduce the flow representation from 6-tuple to 3-tuple:
(T;, C;, 0;). This is mainly because at any given time the scheduler is aware
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Notation Description
o Continuous period
n, m No. of flows
r No. of packets existing in a queue
X No. of packets served for a flow
Q Proportion of r of service received by a flow
¢ Schedulable set
r Flow set
T Minimum packet inter-arrival time
C Maximum packet transmission time

Table 3
Notations used

of a single continuous period value, and the other three parameters s, e, b; are
not available to the scheduler. Important notations used in the remaining part
of this work is summarized in the Table 3, to make the reading easier.

The important optimizing factors of CaSMA are merit and backlog of a sched-
ule. The merit M(H) of a schedule is based on the number of packets scheduled
for transmission that successfully reaches its destination. Packets which do get
transmitted for a few hops and get dropped at any of the intermediate nodes
will not contribute for the merit of the schedule. The backlog is defined as the
amount of packets of all the flows that remain in the network at the end of
their respective continuous period.

Hence, the goal of CaSMA is to maximize the merit and minimize the backlog,
distributed fairly across all the existing flows in the node, to reduce the delay
and loss due to link breakages.

5.1.2 Global Ideal Scheduler

Let us consider a simple model with multiple flows over a single bottleneck link
where we have a single scheduler. After the single shared link (with infinite
lifetime), these flows use different (non-shared) links with different lifetime.

Let us assume a global scheduler - S;, which schedules these flows (“m” flows).
Let us consider a single continuous period o of “m” flows, with arrivals within
this continuous period, and no further arrivals. That is, let us take a single
snapshot in time of m flows with each flow having single continuous period of
varying durations. For simplicity, let all flows have same T = 1, and C' = 1.
Therefore, S; can schedule at most r,,,, packets in 0,,,, period, where 0,4, is
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the maximum continuous period of any flow (or total interval of the snapshot).
r; represents the number of packets existing for flow 1.

We, however, know that maximum number of packets existing in all the queues
n

is Z r;. Let us call this value as rg,,,. Therefore, percentage ratio of through-
pult 1Would be mez Now, we adopt a fairness criterion, where this ratio is
maintained across all the flows. In other words, the losses/backlog is propor-
tionately distributed across all the flows. The idea here is that all sharers
constrained by the same problem are treated fairly by assigning the propor-
tionally equal throughputs. That is, for each flow i, the throughput it would

receive is
rmax

r; k
Tsum

Further, losses at each queue would be

rma:):
r(1 —
7/( rsum )

The rationale behind having this formulation for an ideal scheduler is based
on the argument that shorter continuous periods of flows are purely due to
the inherent property of ad hoc networks. Therefore, we should not penalize
flows which suffer due to the inherent property of the network. Further, the
scheduler will not be aware of the amount of service a flow has received in
the previous continuous period (if existed) or the amount of service a flow will
receive in the next continuous period. Therefore, we go by the assumption that
providing equal proportion of service in the current set of continuous periods
should prove to be advantageous.

5.2 Design of CaSMA

CaSMA is designed to approximate the global scheduler through two features.
First, through the design of parameters used to make packet-scheduling de-
cisions. Second, by introducing the concept of schedulability condition. The
parameters focus on minimizing the backlog, whereas the schedulability con-
dition maximizes the merit of the scheduler.

5.2.1 Parameters used for scheduling decisions
In CaSMA, the parameters are chosen to achieve following two goals:
e provide higher priority to flows which take short-lived paths, and

e proportion of service received for each flow will remain similar.
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CaSMA uses %, where QS is queue size and RLT is the residual life time,
and eligible-service as parameters to make scheduling decision. It can be shown
easily that, serving queues which has higher -2 m values first will result in
providing higher priority to flows which take short-lived paths. However, there
are cases where short-lived flows can receive proportionately greater service.
We avoid this by having an additional parameter termed as eligible — service,
for each flow. This eligible — sevice for any flow 7 is equivalent to Tmaz and is

computed by considering the r;s, which is given as follows:

(Tl * ) (T Omaa; )
n C] mazx Tmag:

ZT]*?

Jj=1

<.

Cinaz and T}, indicates maximum possible C' and T', respectively. The first
term indicates the ratio of the work to be performed for a flow ¢ and the total
amount of work considering all flows. Whereas, the second term indicates the
maximum work that can be done, and this term, in practice, is related to the
maximum wireless link rate.

We update this parameter (eligible — service) only when new flows arrive or
existing flows leave. The priority is given to flows considering both the request
rate and eligible-service. Higher priority is given to flows whose request rate is
high, and which has not yet received its eligible-service. This parameter will
ensure that flows do not receive greater service (in proportion) at the cost of
other flows.

It can be seen that the combination of these two parameters ( 7 LT and eligible—
service) achieve the above mentioned two goals. The detailed description of
the design of the parameters can be found in [35]

In the remaining part of this section, we will describe how we enhance the
approximation of ideal scheduler by considering end-to-end packet scheduling.

5.2.2  Schedulability

A set of flows I is said to be “schedulable” (.5) if none of the flows has packets
queued in the intermediate nodes at the end of their respective continuous
periods. Any set of flows at a node that are schedulable over a link is termed
as “schedulable set”.

A schedulable set (set of flows that are schedulable) is derived as follows. Let
us assume that a node has n flows, of which it has to choose m flows to form
a schedulable set. We use the classic result of real-time scheduling [36], and
define the necessary condition for a set of flows to be schedulable over a link
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is given as

(< @)

i=1

In addition, we know that there are different combinations that are possible
in choosing m flows out of n flows (C]""). We know that the value of m is
dependent on the C; and T; values. For example, value of m becomes smaller
for smaller values of T;. Hence, we have to decide on a specific way to choose
m flows out of n flows.

In our work, we choose the m flows considering the residual lifetime values of
the flows. Scheduling based on residual lifetime is similar to earliest deadline
scheduling (EDF). Therefore, based on the results from EDF scheduling [37]
and adhering to the approach of choosing smallest residual lifetime first, we
sort all the n flows in terms of the increasing residual lifetime, and from this
sorted set we choose the first m flows. These m flows form our schedulable set

C.

Let us illustrate the process using an example. As shown in Figure 10. Let
{a,b,c,d} be the flows at node ‘D’. Let {2,4,4,6} and {1/2,1/4,1/4/,1/6}
be their continuous periods and rates (%), respectively. SCH indicates sched-
uler at a node. The scheduler at node ‘D’ chooses flows {a, b, ¢} as schedulable
following the condition given by equation 2. Flows {a, b, ¢} are chosen consid-
ering their continuous periods and the rates. We can see that an addition of
flow d will violate the condition, that is, summation of the rate values (&)

T;
will be greater than 1.

We know that if a flow is schedulable at all the intermediate nodes, then it
is schedulable over the path. The idea is analogous to the series of traffic
lights. Tt is useful to turn the first light green when all the remaining lights
will turn green within some acceptable duration. This technique helps in in-
creasing the merit of a scheduler, as priorities are given to packets which will
be “completely served”.

The notion of schedulability takes on only binary values (TRUE/FALSE).
When we use this parameter in the algorithm, the mechanism just makes
the decision for given values and existing conditions. This decision process is
used to build the schedulable-list message, as described below, following the
example in Figure 10.

Consider three nodes S, I, and D as shown in Figure 10. We will focus on a
single flow ‘a’ starting at node ‘S’, with intermediate node ‘I’ and terminating
at node ‘D’. Let {a, b, ¢, d} be the flows at ‘D’. Let {2, 4, 4, 6} and {1/2, 1/4,
1/4, 1/6} be their continuous periods and rates (%), respectively. Node ‘D’
chooses flows {a,b,c} as schedulable following the condition given by equation
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2, and creates a schedulability-list message (list of flows schedulable), which
is transmitted to the upstream neighboring nodes. When ‘I’ receives this mes-
sage, it marks flow ‘a’ as schedulable at downstream (sets the schedulability
value to TRUE), and builds its own schedulable-list (let it be {a, y, z}) and
transmits it to its upstream neighbors. In this manner, the schedulable-list
message flows upstream until it reaches source node ‘S’, which upon receiv-
ing will mark flow ‘a’ as schedulable (at downstream). If either the destination
node or any of the intermediate nodes does not include flow ‘a’ in their schedu-
lable list message, then the source node will not set flow ‘a’ as schedulable (at
downstream).

5.8 Algorithm

A single queue is maintained for every destination of the flows that a node
carries, i.e., different flows to the same destination are enqueued in the same
queue. The Dynamic Source Routing (DSR) [38] is enhanced to implement
schedulability-list technique. The algorithm is as shown in Algorithm 1.
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Fig. 11. Packet delivery ratio for different flows

5.4 Ezxperimental Evaluation

In this section, we describe the experimental evaluation of CaSMA. In the
first part of the simulation we consider a scenario where the scheduler has
perfect knowledge of the link lifetimes. The goal is to provide the reader a
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Algorithm 1 Packet selection in CaSMA
Require: Initialize
e Per-destination queues are maintained,
e Each queue has [ queue size, residual life-time, eligible-service, schedu-
lability, and throughput received |
1: repeat

2:  Consider a set of high-priority (real-time) queues

3:  From this set of queues.

4:  Select the set of queues, such that for every queue ¢, q.schedulability =
TRUE

5. if No queue satisfies the condition (q.schedulability = TRUE) then

6: Select all the queues.

7. end if

8:  From these selected queues:

9:  Select queue ¢ such that the value }?L%?g) is the maximum, and who

have not yet received eligible-service
10:  In case of tie select flow that has received least throughput
11: until all queues are empty

- aFFo
a = mCagMA
£ 03 QQEALT

Destination lds

Fig. 12. Packet delivery ratio for different flows

better understanding of the advantages of CaSMA, when there are no lifetime
estimation errors. In the second part of the simulation, we consider scenarios
where link lifetime is estimated, and we compare the performance of various
scheduling mechanisms. All our evaluations are carried out on NS-2 [19] simu-
lator. Each mobile host has a transmission range of 250 m and shares a 2 Mbps
radio channel with its neighbors. The simulation includes a two-ray ground
reflection model and IEEE 802.11 MAC protocol.

5.4.1 Performance Comparison with Known Path Lifetime

In this section, we focus on understanding the significance of the parameters
considered (QS, RLT and eligible-service). We considered a simple topology
of 11 nodes, and simulation duration of 100 seconds. The topology is as shown
in Figure 11(a). The source-destination pairs are [(0,6),(1,7),(2,8),(3,9),(4,10)],
with single intermediate node 5. In Figure 11(a), the numbers shown on links
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between node 5 and {6, 7, 8, 9 and 10} indicate the respective link lifetimes.

We consider CBR flows transmitting at 400 kbps. The packet delivery ratios
are shown in Figure 11(b). The delivery ratios for CaSMA are both even and
higher compared to FIFO. For flow [0-6], FIFO has slightly better delivery
ratio than CaSMA, but it performs badly for other flows. The delivery ratios
are higher for CaSMA because CaSMA does not make an attempt to transfer
those flows, whose link lifetime has expired. This shows that CaSMA is de-
signed to provide service to the flows within their “lifetime” and not beyond
that.

To focus on the importance of eligible-service, we slightly modified the source-
destination pairs. Now, all the 5 flows initiate from node 5, flowing towards
same destination, with same RLTs. The transmitting rate, however, is in-
creased from 400 kbps to 600 kbps. Figure 12, shows the packet delivery ra-
tios for FIFO, CaSMA and % (without eligible-service). We can see that
CaSMA, achieves both better packet delivery ratio and proportionate share.
Though % (without eligible-service) performs better than FIFO, the divi-
sion of share is not fair ( flow [5-6] gets proportionately greater share). This is
precisely the case for which eligible-service is included to handle, which results
in providing fair share. It can also be seen that performance trend of FIFO
and % tend to be C;)Spposite. That is, FIFO’s performance increases with link

lifetimes, whereas 72%=’s performance decreases with link lifetime.

In summary, CaSMA is designed to perform such that flows with lesser resid-
ual lifetime get higher preference, and the losses (throughput) will remain
proportionately same for all contending flows.

5.4.2  Performance Comparison with Estimated Path Lifetime

In the second part of our simulation, we consider scenarios where lifetimes are
estimated. We consider a network with 50 mobile nodes, with area 1000 m x
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1000 m. All the simulations are run for 1000 seconds, with 8 replications. In
this part of evaluation, maximum speed of the node is varied from 1 m/s to
20 m/s.

The five mechanisms chosen are: FIFO (First In First Out), RLT (considering
only residual life time), QS (considering only queue size), QS/RLT (consid-

ering both queue size and RLT), CaSMA (considering, queue size, RLT and
schedulable-list).

For the first set of plots, we use 10 CBR flows with the transmission rate
of 500 kbps. Figure 13 shows the plot of average delay values for all the
five mechanisms. Considering the Figure 13, CasMA performs best among
all the schemes. This can be attributed to both the parameter chosen and the
schedulable-list technique. Considering only the performance between QS/RLT
and CaSMA, we can see the advantage of using schedulable-list technique.

To have a better understanding of the advantage we note the maximum and
minimum of delay values, considering only FIFO and CaSMA. We found that
the maximum values of CaSMA are also lesser compared to FIFO, whereas
minimum values are almost the same. The main reason behind the reduction
in delay values (average and maximum) is due to a reduction in the backlogs
(or ~y values, as described in preceding sections). The increase in backlogs can
result in transmissions after a route-recovery delay. The backlog increase also
has effect on the losses.

We also found that, with CaSMA the sharing of bandwidth is more fairer and
better and had 25% less packet loss compared to FIFO. Figure 14 shows the
number packets that are dropped at the queue due to link breakages (CaSMA
in comparison with only FIFO). This parameter is directly related to the
amount of backlog. From the figure, we can see that the backlogs using CaSMA
is reduced by more than 30% - 40%. Further, we can see that increasing the
frequency of topology changes, the amount of backlog also increases.

We further consider 10 TCP flows, and study the TCP performance in such
scenarios. TCP flows are considered because, if the scheduler attempts to
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schedule a packet whose path residual lifetime has expired, with high prob-
ability, it will result in dropping. This dropping will force TCP to reduce
the congestion window, and in turn reduce the throughput. We studied the
throughput performance of various schemes. We found that the TCP through-
put for CaSMA increased in some cases up to 50% over FIFO. The reasons
behind better TCP performance are the same as provided in the first part of
this section.

In summary, we found that considering link lifetimes in packet-scheduling
reduces the accumulation of packets (backlogs) at the end of flow on-times,
and provide better end-to-end co-ordination and increases the merit of the
scheduler.

6 Conclusion

This work emphasized the importance of having a accurate and thorough
understanding of link lifetime behavior. We first carried out a detailed study
of link lifetime distributions covering different mobility patterns. We found
that link typically encounter wear-out failures, and lognormal and Weibull
distributions prove to be a better fit.

As an application of the life estimation process, we described a novel packet
scheduling mechanism CaSMA. CaSMA considers end-to-end channel condi-
tion represented as residual lifetime for channel-awareness, and also included
a queue size parameter to make the scheduling scheme congestion-aware. This
combination of parameters avoids the congestion and reduces the accumula-
tion of packets (backlogs) at the end of route lifetimes.
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