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Abstract— Development in new radio technologies and increase
in user demands are driving the deployment of a wide array
of wireless networks, ranging from 802.11 networks in the
local area, to third generation data-only wireless networks in
the wide area. With their complementary characteristics, these
heterogeneous Radio Access Technologies (RATs) are expected
to be integrated together to provide mobile users “Always
Best Connections”. Base Stations (BS) using different RATs
will coexist and have arbitrary overlapping coverage without
interfering with each other, and Mobile Stations (MS) equipped
with multi-interfaces or “Software Defined Radio” technology
can be associated with one or more BSs using different RATs.

In this work, we study the Common Radio Resource Manage-
ment (CRRM) problem, i.e., how should the network manager of
these integrated heterogeneous wireless networks jointly allocate
resources from various networks such that the scarce radio
resources are used efficiently. We focus on applications with
bandwidth reservation requirement, such as voice or video calls.
We extend earlier works to consider the different increase in load
when a single MS request is assigned to different BSs, due to
independent channel condition and adaptive modulation/coding
efficiency among different MS-BS pairs. We formalize CRRM
problem as an online load balancing problem for temporary
tasks with unrelated processors, and represent the input of
problem using a weighted BS-MS graph, with a weighted BS-
Region graph as its compact form. We study the computational
complexity for the optimal solution. We also characterize the
competitive ratio for general online algorithms by exploiting com-
binatorial properties of the weighted BS-Region graph. Cluster
algorithm, which decomposes the whole area into disjoint clusters
can potentially achieve a lower competitive ratio. However, its
stochastic performance largely depends on the traffic distribution
symmetry.

I. I NTRODUCTION

Development in new radio technologies and increase in
mobile users’ demands for ubiquitous high speed data ac-
cess are driving the deployment of a wide array of wire-
less networks, ranging from satellite networks, to Wireless
Wide Area Networks (WWAN), Wireless Metropolitan Area
Networks (WMAN), Wireless Local Area Networks (WLAN)
and Wireless Personal Area Networks (WPAN), as shown
in Figure 1. Each of these networks has different design
tradeoffs in coverage, data rates, cost and many other network
parameters. It is envisioned that these complementary Radio
Access Technologies (RATs) will co-exist in the future and
be integrated together to offer mobile users “Always Best
Connections” [1].

Fig. 1. Layers of heterogeneous wireless networks

In this work, we considered the case where different RATs
are being deployed and a single wireless provider owns and
operates these wireless networks. We study theCommon Radio
Resource Management (CRRM)problem, i.e., how should
the network manager load balance Mobile Station (MS) re-
quests among the various networks such that the scarce radio
resources are used efficiently. Using 3GPP’s definition [2],
CRRM is a platform for coordination between heterogenous
components. Our discussion will be based on a simplified
heterogeneous wireless networks integration framework. As
shown in Figure 2, the main components of a wireless network
architecture are: MS, Radio Access Network (RAN) and Core
Network (CN). Our model makes the following assumptions:

• The RAN as well as CN’s bandwidth resource are over-
provisioned. Therefore, the system’s performance bottle-
neck is at the last hop, i.e. between Base Station (BS)
and MS. Radio Resource Management (RRM) strategy
is responsible for efficient use of scarce radio resource.

• BSs using different RATs can have arbitrary overlapping
coverage, and they can simultaneously operate without
interference with each other. We assume that there exists
some mechanism to jointly manage their radio resource.
For example, as proposed in [3], each RAT will expose
a RRM interface for joint management, either loosely
or tightly. Common RRM (CRRM) is logically defined



Fig. 2. Integrated Heterogeneous Wireless Networks

as the function to gather information from BSs and
coordinate resource allocation among BSs to optimize
system performance. CRRM can be implemented either
in central or distributed way.

• MSs are equipped with multi-interfaces or “Software
Defined Radio”(SDR) technology, so that they can be
associated with one or many of the adjacent BSs.

We focus on applications requiring bandwidth reservation,
such as voice or video calls, other than elastic traffic as con-
sidered in our previous work [4]. For such circuit-switch type
applications, their requests will be blocked if available radio
resource is not enough to meet their reservation requirement.

With this framework, the key issue we address is how
available radio resource of overlapping BSs should be shared
among multi-mode MSs. The performance measure used is
blocking rate.

We made two contributions in this paper. First, We extend
existing works to consider the different increase in load when a
single MS request is assigned to different BSs, by formalizing
CRRM problem as an online load balancing problem for
temporary tasks with unrelated processors, and represent the
input of problem using a weighted BS-MS graph to study
the computational complexity for the optimal solution, which
is shown to be impractical for implementation. Thus, study
of efficient heuristic algorithm is a must. Our second con-
tribution is to characterize the competitive ratio for general
online algorithms by exploiting combinatorial properties of
the weighted BS-Region graph, which is a compact form of
weighted BS-MS graph. We show that cluster algorithm as
proposed in [6], which decomposes the whole area into disjoint
clusters, can potentially achieve a lower competitive ratio.
However, competitive ratio only describes the worst case of
an algorithm’s performance, which may rarely happen under
real situation. Complementarily, we also show that cluster
algorithm’s stochastic performance.

The rest of the paper is organized as follow. In Section II,
we present related works on radio resource management issues
in integrated heterogeneous wireless networks. In Section

III, we formalize theCommon Radio Resource Management
(CRRM) Problem as an online load balancing problem for
temporary tasks with unrelated processors and the computa-
tional complexity for optimal solution is given in Section IV.
Section V characterizes the competitive ratio for general online
algorithms, and shows that cluster algorithm can potentially
achieve a lower competitive ratio. The stochastic performance
of cluster algorithm is numerically evaluated using a Markov
chain under different network settings in Section VI. Finally,
we conclude in Section VII.

II. RELATED WORKS

A. Integration framework for Heterogeneous Wireless Net-
works

The idea of combining heterogeneous access technologies
is not a new idea initiated for wireless networks. In wired
networks, multi-homing allows user to access Internet using
multiple access technologies, e.g., dial up, ADSL, cable,
ethernet, etc. Integration of heterogeneous technologies is also
found in wireless voice area. The DECT/GSM dual mode
telephones allow the user to use the wide-area GSM cellular
network whilst out of the office or away from home, while also
using the same handset at home when in range of a cordless
telephone BS.

However, the design of a network architecture to fulfill the
objective of seamless and efficient integration of heteroge-
neous RATs such as 3G and WLAN is still a challenging task.
Wireless LANs, originally targeted at enterprise and home
networks, lack many of the capabilities which are essential in
public environments, such as unified and universally accepted
AAA mechanisms, the integration of mobility mechanisms
with QoS and application-level services, the support for roam-
ing agreements, security issues. Conversely, although these
characteristics are present in the design of 3G networks, their
implementation depends on specific wireless access architec-
tures such as CDMA2000 or UMTS, and their extension to
other wireless technologies such as 802.11 presents several
compatibility issues. In addition to tradition cell-based roam-
ing (horizontal roaming), fast and transparent roaming across
the constituent networks (vertical roaming) raises a challenge
for mobility management, with the requirement of switching
to a different network interface. transmission protocol should
also adapt to multiple interfaces accordingly [7].

The integration can be done in both tightly coupled or
loosely coupled ways [8]. Generally speaking, the tighter the
coupling, the more complex the interworking interface will be.
Thus loosely coupling is suggested by both [8] and 3GPP’s
ongoing work on integrating WLAN [9] [10] because of its
flexibility.

B. Common Radio Resource Management

Because of the scarcity of radio resource, Common Ra-
dio Resource Management (CRRM) will serve as a driving
force and an important design factor in the integration of
heterogeneous wireless networks. In EU’s Sixth Framework
Programme, the EVEREST project [3] addresses the objective



to devise and assess a set of specific strategies and algorithms
leading to an optimized utilization of scarcely available radio
resources for the support of mixed services within heteroge-
neous networks. Similar to our system model, EVEREST’s
reference architecture is based on several RATs interfacing a
common core network. Multiple cells using different RATs
will be overlapped in the same area. Services are delivered
via the RAT that is most efficient for that service. Since
multi-interface MS can be connected to different RATs, unless
there is knowledge about each RAT it would be very difficult
to optimize network performance and to manage resources
efficiently. As a result, a logical function box named CRRM
(Common Radio Resource Management) is defined by 3GPP
[2] [11] and studied in EVEREST project to jointly optimize
the overall system performance. CRRM is characterized by
two functionalities:

• Input: CRRM collect information from different resource
pools, i.e. heterogeneous RATs. One resource pool is
characterized by having its own RRM functionality.

• Output: CRRM then direct users to the resource pool
which is most suitable. What is most suitable may depend
e.g. on the user’s position, service requirements, and net-
work aspects like load balancing, avoidance of needless
handovers, etc.

Briefly speaking, this paper study the resource allocation
strategy for CRRM.

C. Coordinated Proportional Fairness

In a previous related work [4], we consider a similar
integrated heterogeneous wireless framework as this paper,
except that the target application in that paper is elastic
traffic. For elastic traffic, there is no pre-defined and strict
bandwidth requirement, and fairness among MSs instead of
block rate is a commonly used performance criterion. [4]
extends Proportional Fairness Concept used in HDR to mul-
tiple wireless networks with overlapping coverage, striking a
balance between system throughput and user fairness. [4] also
shows that the assignment flexibility of MS to any one of
adjacent BSs can greatly improve the system performance,
even with an algorithm using only one interface at a time.

D. Channel Assignment in Overlapping Networks

Radio resource management problem addressing circuit
switched applications in overlapping homogeneous networks
has been studied by several works [5] [6]. The assumption
of homogeneity simplifies their problem formalization in two
aspects:

• New MS will increase BS’s load by a fixed value, which
does not depend on which BS is chosen. This capacity
allocation unit is referred as channel, and the radio
resource management problem is thus named as “Channel
Assignment Problem” in existing works.

• Current results are largely based on the nice properties
of regular topologies, such as hexagonal grid topology in
which each BS has six adjacent BSs.

[5] defines theTransceiver (BS)- Mobile (MS) Control
Channel Graphto model the off-line version of the channel
assignment problem. The control channel corresponds to the
BS-MS covering relationship. Since every MS in a particular
cell segment , [5] proposes to aggregate MSs having the same
set of control channels together to reduceTransceiver-Mobile
Control Channel Graphto a compactCellular Assignment
Graph, which represents the problem with a smaller bipartite
graph of fixed vertices and edges with changing weight. Their
main result is theChannel Assignment Theoremcharacterizing
the existence of feasible solutions. Since they assume all
MS consume identical resource (one channel), network flow
procedures provide a polynomial algorithm to find a solution
if one exists.

[6] models online version of the channel assignment prob-
lem as anonline load balancing problem for temporary tasks
with restricted assignment, where a task of unknown duration
can be assigned to a restricted subset of processors based on
its task type. But within this subset, the increase of load is
same no matter which processor is chosen. In the general case
without network structure constraints, the subset of processors
a task may be assigned can be any element of the power
set of all processors. The optimal algorithm for this general
case isO(2

√
n + 1)-competitive [12], wheren is the number

of processors. As this bound is too loose, [6] exploits the
combinatorial properties of regular network topology structure
as represented inCellular Assignment Graphto attain a better
competitive ratio. Also, they proposecluster algorithm to
decompose the whole area into disjoint clusters which are
managed by different BSs separately. They show that cluster
algorithm can achieve a competitive ratio strictly better than
greedy algorithm, with appropriate decomposition of clusters
in some regular topologies.

However, the two assumptions of homogeneous networks
model do not hold in heterogeneous wireless networks. In
fact, they are not valid even in some homogeneous wireless
networks. On one hand, MS-BS pair supports different data
rate with varying modulation/coding schemes. For example,
802.11b wireless networks support four transmission rate:
1Mbps, 2Mbps, 5.5Mbps and 11Mbps. CDMA2000 1xEV
technology (also known as High Data Rate “HDR”) system
provides a peak data rate of 2.4Mbps and an average data
rate of 600Kbps using one 1.25MHz CDMA carrier in the
forward direction. The rate being used depends on the channel
condition. If we assume MSs have fixed bandwidth reservation
request, then a BS can support more MSs in better channel
condition with the same resource. On the other hand, hetero-
geneous wireless networks can have arbitrary overlapping cov-
erage with each other. For example, the location distribution
of WLAN APs with respect to 3G BSs can not be assumed
to follow any regular pattern. In following sections, we will
extend results in [5] and [6] to formalize a general framework
by relaxing these two assumptions.



III. PROBLEM FORMALIZATION

If we map MS requests to tasks and BSs to processors,
CRRM Problem can be formalized as anonline load balancing
problem for temporary tasks with unrelated processors[12]
[13].

In the definition of online load balancing problem for
temporary tasks, tasks (MSs) arrive at random time and
their service duration is unknown. Each arriving taskj has
an associated load vector,p(j) = (p1(j), p2(j), . . . , pn(j))
where pi(j) defines the increase in the load of processori
if we were to assign taskj to it. Load vector can be used
to categorize load balancing problem into several classes:
identical processors case, related processors case, restricted
assignment case and unrelated processors case.

• In the identical processors case, all the coordinates of a
load vector are the same.

• In the related processors case, pi(j) = w(j)/vi, where
the “weight” w(j) depends only on the taskj and the
“speed”vi depends only on the processori.

• In the restricted assignment case, each taskj has a
weight w(j) and can be assigned only within a subset
of processors; in terms of the load vector the coordinates
are eitherw(j) or ∞. [5] [6] formalize the channel
assignment problem as this case.

• The unrelated processors caseis the most general case.
Here,pi(j) are arbitrary non-negative real number, or∞
if task j is not allowed to be assigned to processori.
Similar to restricted assignment case, a taskj’s type is
uniquely defined by the subset of processors to which
this type of tasks can be assigned. Note that coordinates
of the load vector for this processor set can be unrelated.
Clearly, related processors and the restricted assignment
are both special cases of the unrelated processors case.
The identical processors case is a special case of the
related processors case where all the speedsvi are the
same. It is also a special case of restricted assignment
where every task can be assigned to every processor, i.e.
all the coordinates of tasksj arew(j).

Without the two assumptions presented in the previous
section, CRRM problem in heterogeneous wireless networks
falls naturally into the unrelated processors case. In wireless
networks, BS and MS can transmit to each other with different
data rate by utilizing different modulation and coding schemes.
The specific scheme in use depends on the channel condition
and RAT, which are unrelated for different BS-MS pair. Even
for the same MS its data rates to different BSs, or for the same
BS its data rates to different MSs, are not directly related.

Online load balancing problem formalization requires the
load vector be specified at arrival and keeps unchanged after
that. But in wireless networks, MS mobility and channel fading
will change the load vector from time to time. In this paper,
we assume load vector is fixed after MS arrival for simplicity.
The impact of mobility and fading will be considered in future
works.

Capacity is an abstract measure for BS’s radio resource,

TABLE I

COMPETITIVE RATIO OF ONLINE LOAD BALANCING PROBLEM

Cases Competitive Ratio

Identical Processors 2-o(1)

Related Processors Θ(1)

Restricted Assignment Θ(n1/2)

Unrelated Processors Unkown

either they are in the form of time slots, frequencies, power,
or others. The definition of one capacity unit can be different
across BSs. By appropriate scaling, we can compare different
BSs’ capacity directly, even when they are using heteroge-
neous RATs. Different scaling factor is chosen separately for
different BS, such that the goal of load balancing algorithm is
to balance load uniformly across all BSs.

In online load balancing problem formalization, processors
are assumed to have infinitive capacity. Online algorithms’
competitive ratio is defined by comparing its maximum proces-
sor load with optimal off-line algorithm’s. An online algorithm
A’s competitive ratio is at mostr if under any tasks input
the maximum processor load ever used by algorithmA is
no larger thanr × L + b, where b is a constant andL
is the maximum processor load ever used by optimal off-
line algorithm during processing the same input. In contrast,
CRRM problem assumes processors have finite capacity and
the performance criterion is blocking rate other than maximum
processor load. The relationship between the two different
performance criteria can be interpreted as follows: if an
algorithm A is r-competitive in the definition of classical
online load balancing problem and the maximum processor
load is L under optimal off-line algorithm, this implies that
the optimal algorithm can achieve zero block rate with each
processor having capacityL. Thus algorithmA can achieve
zero block rate with capacity no more thanr×L+b. Because of
this equivalence, we will directly use the definition of classical
online load balancing problem when discussing algorithms’
competitive ratio in CRRM problem. A closer investigation of
the relationship between these two criteria will be conducted
in our future works.

The optimal online algorithms’ competitive ratio for various
cases of classical online load balancing problem is summarized
in Table I [13]. Reassignment of accepted MSs is not allowed
in the considered family of online algorithms.

While formalization in [5] and [6] as the restricted assign-
ment case has aΘ(n1/2)-competitive optimal online algo-
rithm, such a result even does not exist for our formalization
as the unrelated processors. Thus, similar to [6], we need to
exploit the combinatorial properties of the wireless network
topology to get a competitive ratio bound for the studied online
algorithms.



IV. COMPUTATIONAL COMPLEXITY FOR OPTIMAL

SOLUTION

A. Weighted BS-MS Graph

CRRM problem can be represented using a weighted BS-
MS graphGτ (B ∪Mτ ;Eτ ) as shown in Figure 3.

Fig. 3. Weighted BS-MS Graph

Gτ is an extension of the control channel graph in [5].B =
{Bi} is the finite set of BSs covering the geographic area
under our study, which is assumed to be invariant with time.
Mτ = {Mj} is the finite set of active MSs distributed in the
area at timeτ . Gτ is a connected bipartite graph with vertices
V = B ∪Mτ and edgesEτ = {Eij | Bi coversMj at time
τ}. FunctionB(Mj) gives the set of BSs covering MSMj ,
and functionM(Bi) gives the set of MSs covered by BSBi.

BS Bi has a capacityCi, which is an abstract measure
for Bi’s total amount of resources with appropriate defined
measure unit, so that BSs’ capacities can be compared directly
even when they are using different RATs.

Weighted BS-MS graphGτ extends Control channel graph
in [5] by defining the parameters associated with MSs and
edges. Every MSMj has a bandwidth requirement weight
Wj , and every edgeEij is associated with an available data
rate Rij betweenBi and Mj . In [6], they consider the case
where MSMj can have different weightWj , but they still
assume uniform data rate between different BS-MS pairs.

The information used to generate and updateGτ can be
collected using CRRM’s input function. At timeτ when a
new MS request arrives and becomes an element inMτ , the
CRRM output function should come out with an assignment
solution A = {Aij}, whereAij is the resource allocated by
BS Bi to MS Mj .

In this paper, we focus on the family of algorithms which
will not intentionally drop a new request if they can find
a feasible assignment configuration in their solution space
without dropping already accepted MSs. It is possible for
CRRM schemes to block a new request even when they can
find enough resource for it, or drop an accepted request to
take a new one. We will investigate these situations in future

work. The following sections will first study the computation
complexity of optimal algorithms if reassignment is allowed,
i.e., an accepted MS request can be reassigned to another BS.

B. LP-Optimal Algorithm

If simultaneous assignment is allowed, i.e. MS can com-
municate with multiple BSs in the same time and achieve
aggregate bandwidth, the optimal algorithm is to block a new
request arrived at timeτ only if no feasible solution exists for
the following linear programming problem:





ΣBi∈B(j)Aij ×Rij = Wj ∀Mj ∈ Mτ

ΣMj∈Mτ (Bi)Aij ≤ Cij ∀i ∈ B
Aij ≥ 0 ∀i ∈ B, j ∈ Mτ

(1)

We call this linear programming based algorithm LP-
Optimal algorithm. Though linear programming problem can
be solved in polynomial time, LP-Optimal algorithm is still not
efficient enough for real time CRRM decision, especially in a
large wireless network with tens of thousands of MSs. In ad-
dition, the solution of a LP can have simultaneous assignment
of one MS to several BSs, because the solution matrixA of
this linear programming problem may have multiple non-zero
elements in a single row. Further more, several (potentially
all) elements ofA may change for a single new coming MS.

Though not practical for implementation, LP-Optimal al-
gorithm will be used as the performance baseline for our
following discussions.

C. GAP-Optimal Algorithm

It is of special interest to consider the family of algorithms
using only one interface per MS because:

• From the application viewpoint, simultaneous use of mul-
tiple interfaces for circuit-switch type of application will
cause synchronization difficulty and other complexity.

• From the network perspective, simultaneously using mul-
tiple interfaces will increase coordination overhead.

• From networking device’s point, SDR allows only one
interface to work at one time. Even when multiple inter-
faces are equipped, it will be desirable to use only the
most appropriate one of them and turn off all others to
save energy.

When simultaneous assignment is not supported, new con-
straint should be added to the linear programming problem,
requiring that only one elementAij in each row ofA is
allowed to be non-zero. With this non-linear constraint, this
problem can be mapped to theGAP (General Assignment
Problem) [14] [15].

GAP considers a pair(B, I), whereB is a set of bins andI
is a set of items. Each binj ∈ B has a capacityc(j), and for
each itemi ∈ I and binj ∈ B, we are given a sizes(i, j) and
a profit p(i, j). The objective of GAP is to find a setU ⊆ I
of maximum profit such thatU has a feasible packing inB.

In CRRM problem, BS corresponds to bin, and MS requests
correspond to items. The solution of GAP corresponds to
a star matching in weighted BS-MS graphGτ , which is a



subset of edgeE∗ ⊆ E where the induced subgraph is a
forest with every component a star whose center is a BS.
Size s(i, j) depends on the data rate between BSBi and
MS Mj , and is unrelated among different(i, j) pair. Profit
p(i, j) = 1 for minimization of block rate. If we consider other
optimization criteria,p(i, j) can be assigned with different
values accordingly. GAP has been proved to be NP Complete
if size s(i, j) is unrelated with each, even when profits are
uniform. [14].

If simultaneous assignment is not allowed, the optimal
CRRM algorithm is to block a new request only if GAP’s
solution setU 6= I. We name this algorithm as GAP-Optimal
algorithm. GAP-Optimal algorithm’s solution space is a strict
subset of LP-Optimal algorithm’s. Though GAP-Optimal al-
gorithm uses only one interface per MS, it may still require
reassignment of MSs when a new one arrives. Formalization
in [5] is a special case of GAP model. By assuming uniform
size s(i, j), [5]’s model employs a polynomial network flow
algorithm for optimal solution.

No matter simultaneous assignment is allowed or not, both
LP-Optimal and GAP-Optimal algorithms are impractical for
real implementation, thus it is a must to study the performance
of efficient heuristic online algorithms.

V. ONLINE ALGORITHMS’ COMPETITIVE RATIO

A. Weighted BS-Region Graph

A typical BS-MS Graph may have a large number of ver-
tices corresponding to the active MSs in a metropolitan area,
and this graph keeps changing over time with MSs initiating
and terminating their requests. To study the competitive ratio,
we need a more compact form to represent the underline
network structures. By aggregating MSs covered by the same
set of BSs together, we can reduce the weighted BS-MS graph
to a weighted BS-Region graph, which has small and fixed
vertices set.

Fig. 4. Regions

A region type is uniquely defined by the subset of BSs
covering it. For example, in Figure 4, we can distinguish
eleven different cell segments (A1 to A11) partitioned by the

Fig. 5. BS-Region Graph

coverage borderlines of four BSs, but there are only nine
regions. The sizen of region type setT = {T1, . . . , Tn}
is upper bounded byn ≤ 2m, wherem is the size of BSs
set B = {B1, . . . , Bm}. As shown in Figure 5, weighted
BS-Region graph is a connected bipartite graph with vertices
V = B ∪ T and edgesE = {Eij | Bi covers Tj}. BS
Bi has a capacityCi, and RegionRj is associated with a
stochastic MS arrival/departure processλj . Every edge con-
necting a BS-Region pair is associated with some efficiency
informationRij which shows the available data rates between
BS Bi and MSs of typeTi. MSs of the same region type
is not guaranteed to have same data rates, soRij can be
interpreted as a random variable. We denote its maximal value
and minimal value bymax(Rij) andmin(Rij) respectively,
and [min(Rij),max(Rij)] is the variation range ofRij . In
addition, we denote the set of regions covered by BSBi

as Bi’s associated regions setT (Bi) = {Tj | Ei,j ∈ E},
and the set of BSs identifying region typeTj is denoted as
Tj ’s associated BSs setB(Tj) = {Bi | Ei,j ∈ E}. The
set of BSs except BSBj itself whose associated regions set
have non empty intersection with the associated regions set
T (Bi) of BS Bi is defined as BSBi’s neighbor BSs set, i.e.,
N(Bi) = {Bj | ∃Tk, Eik ∈ E andEjk ∈ E and j 6= i}. For
conciseness, we present BSBi asi and regionTj andj if the
context is clear.

B. Competitive Ratio for General Online Algorithm

For any online algorithm, we can characterize the upper
bound for its competitive ratio by exploiting combinatorial
properties of the given weighted BS-Region graphG.

Theorem 1: The competitive ratio of any online algorithm
in a weighted BS-Region graphG is upper bounded by:

r = maxi∈B{Σj∈N(i)(maxk∈T (i)∩T (j){
max(Rjk)
min(Rik)

}) + 1}
(2)

Proof: Assume that the maximal load of BS inG under
optimal algorithm isL, then capacityL is enough to guarantee



zero block rate for optimal algorithm. We referL as the
optimal capacity. For any BSBi, its load is upper bounded
by MS requests generated in its associated regions setT (i),
which can only be allocated to{Bi} ∪ N(i), So the amount
of these requests’ load is upper bounded by the amount
of capacity of BSs in{Bi} ∪ N(i). Because of different
transmission efficiency among different BS-MS pairs, same
amount of capacity in different BSs can support different
load. maxk∈T (i)∩T (j){max(Rjk)

min(Rik) } is the upper bound for the
relative efficiency between BSBj ’s capacity and BSBi’s. The
maximum capacity needed for a single BS to guarantee zero
loss rate thus is a the weighted sum of the optimal capacity
of {Bi} ∪ N(i). This weighted sum isL × r, wherer is as
given in Theorem 1.

This bound is tight in the sense that there exists such online
algorithms that have this competitive ratior. We can relax this
bound to get a simpler form.

Corollary 2: The competitive ratio of any online algorithm
in a weighted BS-Region graphG is upper bounded byN ×
M + 1, whereN is the maximal number of neighbor BSs of
any BS inG, andM is the maximal ratio between the data
rate of any neighbor BSs.

For example in Figure 4,N = 3 as BS3 overlaps with all
other three BSs, if we assumeM = 11 as in the case of 802.11
network, then we can calculate the upper bound for any online
algorithm in this topology, which isN ×M + 1 = 34.

The result ofr = N + 1 in [6] is a special case of above
theorem, where coefficients of one region’s load vector for all
its associated BSs are identical, i.e.M = 1. r = N + 1 is a
tight bound forM = 1.

C. Cluster Algorithm

The cluster algorithm as defined by [6] for homogeneous
wireless networks is to decompose the whole area into disjoint
clusters which are managed by BSs separately. This algorithm
can be extended to work in heterogeneous wireless networks.
Cluster decomposition can be viewed in the weighted BS-
Region graphG as two steps which help to minimize the
competitive ratio. While step 2 is similar to [6], step 1 is new
in our model, and only meaningful when multiple data rate is
considered. Step 1 explains why greedily assigning MS to BS
with higher data rate performs well in practice.

Step 1: For BSsBj and Bi, which belong to regionTk ’s
associated BS setB(k), cluster algorithm can reducemax(Rjk)

min(Rik)
by adjustingRjk andRik with further assignment constraints.
For example, for the overlapping regionTk of a HDR BS
Bi and an 802.11 APBj , we assumeRik = 1Mbps while
Rjk can be1Mbps, 2Mbps, 5.5Mbps and 11Mbps with
max(Rjk) = 11Mbps. Thus max(Rjk)

min(Rik) = 11 without further
assignment constraints. If the cluster algorithm always assigns
MS in this region withRjk > 1Mbps to Bj , then these MSs
are viewed to appear in region which is only covered byBj in-
stead of in regionTk. By imposing this assignment constraints,
R∗jk = 1Mbps and

max(R∗jk)

min(R∗
ik

) = 1. Decreasing efficiency ratio
between overlapping BSs can potentially reduce the value of
r in theorem 1.r will not increase in this step.

Step 2: After reducing the variation range ofRik for edges
in G, cluster algorithm will get a star matchingE∗ ⊆ E with
the induced subgraph〈E∗〉 is a forest with every component a
star whose center is a BS, andT ⊂ V (〈E∗〉), i.e., every region
is associated with one and only one BS. By deleting edges
from E, BS Bi’s neighbor set isN∗(i) = {Bj | ∃Tk, Eik ∈
E∗ andEjk ∈ E andj 6= i}. N∗(i) ⊆ N(i) becauseE∗ ⊆ E.
Like step 1, step 2 can potentially decrease the value ofr with
no risk of increaser.

For example as shown in Figure 6 (a), BSA covers areas1,2
and3, BS B covers areas3,4 and5, while BSC covers areas
5,6 and1. Both dashed and solid lines shown in Figure 6 (b)
belong toE, and every BS has two neighbors, e.g. BSA shares
area1 with BS C and area3 with BS B, soN = 2. To focus
on the impact of step 2, we assume the maximal ratio between
any BSsM = 1 for simplicity. According to corollary 1, there
existsr-competitive online algorithms wherer = N + 1 = 3.
As M = 1, this bound is tight. On the other hand, a possible
cluster algorithm is to assign area1 and 2 to BS A, area3
and 4 to BS B, area5 and 6 to BS C. This decomposition
is shown in Figure 6 (b) by removing all dashed lines to get
the star matchingE∗ consists of only solid lines. According
to N∗(i)’s definition, BSA only has neighbor BSC, BS B
only has neighbor BSA, and BSC only has neighbor BS
B, soN = 1. This cluster algorithm is at most 2-competitive
according to corollary 1.

Fig. 6. Cluster algorithm’s competitive ratio

Combining these two steps together, a cluster algorithm will
derive from the original weighted BS-Region graphG a sub-
graph〈E∗〉 with N∗(i) ⊆ N(i) and[min(R∗ij),max(R∗ij)] ⊆
[min(Rij),max(Rij)]. By applying Theorem 1 to this sub-
graph〈E∗〉, we can show that cluster algorithm’s competitive
ratio is at mostr∗-competitive, where

r∗ = maxi∈B{Σj∈N∗(i)(maxk∈T (i)∩T (j){
max(R∗jk)
min(R∗ik)

}) + 1}
(3)

r∗ will be less than or at most equal to the competitive ratio
r which we derived for the original graphG.



The cluster algorithm presented is based on [6]. There are
many other interesting heuristics that do not reply on cluster-
ing. In the next section we describe theuniform algorithm ,
an algorithm that does not use clustering.

D. Uniform algorithm

In uniform algorithm, an MSj’s load is shared simul-
taneously among its associated BSs setB(j) by allocating
same amount of resource from each associated BS. We choose
uniform algorithm mainly because: (a) it demonstrates a good
worst case competitive ratio (equal to cluster algorithm) in
our chosen topology as we will show below; (b) it is easy
for analysis, because the resource allocation decision does not
depend on the current load of BSs, but only based on the
task type of MS. To summarize, uniform algorithm and cluster
algorithm have the same worst cast bound and use the same
information when making decision. Cluster algorithm takes the
approach of restraining assignment, while uniform algorithm
exploits multiplexing by doing simultaneous assignment. The
uniform algorithm is interesting because it has the same
competitive ratio, its average performance is better as we will
show in the next section.

There are many other resource allocation heuristic algo-
rithms with interesting properties, such asGreedy minimum
load algorithm which always assigns MS to the BS with
currently minimum load. Greedy minimum load algorithm
performs extremely good and robust in our simulation, though
it has a higher worst cast competitive ratio. Because resource
allocation decision of greedy minimum load algorithm de-
pends on the current load of BSs, it requires the development
of new numerical analysis techniques. We will investigate
these heuristic algorithms in our future works.

VI. STOCHASTIC PERFORMANCEEVALUATION

Competitive ratio only describes the worst case of an algo-
rithm’s performance, which may rarely happen under real sit-
uation. Complementarily, we study the stochastic performance
of cluster algorithm. Our main observation is that:cluster
algorithm’s stochastic performance depends largely on the
symmetry of traffic (MS requests) distribution across clusters.
If the decomposition of cluster helps improve the traffic
distribution symmetry, cluster algorithm demonstrates a good
performance compared to non-cluster algorithm. Otherwise,
cluster algorithm will have poor stochastic performance.

A. Assumptions and Analysis Approach

For simplicity, we consider the network topology and cluster
decomposition as shown in Figure 6. We assume that the
arrival process of MS requests in each areai ∈ {1, . . . , 6}
follows a Poisson distribution with arrival rateλi and is
independent of each other. We denote the arrival rate vector
as λ = (λ1, λ2, λ3, λ4, λ5, λ6). All requests’ lifetime follows
the same exponential distribution with departure rateµ. We
assume all BSs have infinitive capacity, and MS request is
unitary-weighted, which can be served using one unit of ca-
pacity by any BS in its associated BSs set. These assumptions

reduce our problem to the channel assignment problem as
defined in [5]. The following discussion can be extended to
our general CRRM formalization with similar result.

Based on above assumptions, the number of MS requests in
areai can be modelled as anM/M/∞ queue. The probability
that areai haski requests is:

p(ki) = [(λi/µ)kie−λi/µ]/ki! k = 0, 1, 2, . . . (4)

As we assume that arrival processes in different areas are
independent to each other, the probability that the traffic
distributions in all6 areas isK = (k1, k2, k3, k4, k5, k6)
is:

p(K) =
6∏

i=1

p(ki) (5)

For a given stateK, the maximum processor load in this
state under cluster algorithm is:

Lcluster(K) = max{k1 + k2, k3 + k4, k5 + k6} (6)

The maximum processor load in this state under uniform
algorithm is:

Luniform(K) = max{k1/2 + k2 + k3/2,

k3/2 + k4 + k5/2, k5/2 + k6 + k1/2} (7)

The maximum processor load in this state under LP-optimal
algorithm can be derived using the Channel Assignment The-
orem [5]:

Loptimal(K) = max{k2, k4, k6, (k2 + k3 + k4)/2,

(k4 + k5 + k6)/2, (k6 + k1 + k2)/2,

(k1 + k2 + k3 + k4 + k5 + k6)/3} (8)

We compare the stochastic performance of cluster algorithm
and uniform algorithm by numerically calculate the distribu-
tion of

rcluster(K) =
Lcluster(K)
Loptimal(K)

(9)

and

runiform(K) =
Luniform(K)
Loptimal(K)

(10)

where stateK is distributed as shown in Equation (5), which
is decided by the arrival rate vectorλ and departure rate
µ. Thus, by fixingλ and µ, the distribution ofrcluster(K)
and runiform(K) can be numerically calculated. As element
of K increases, the probability that system is operating
in state K decreases exponentially. Also,rcluster(K) and
runiform(K) are upper-bounded by a constant. This allows
us to approximate the infinite number of states by the finite
states setL = {K|Ki < Kthr,∀i}. Kthr is chosen such that∑

K∈L p(K) > 0.99.



B. Worst Case Competitive Ratio

We have shown in section V that the competitive ratio of
cluster algorithmrcluster ≤ 2.

In fact, this is the lower bound in topology Figure 6 for any
online algorithm without MSs reassignment.

Lemma 3: For any online algorithm without MSs reassign-
ment in topology Figure 6, its competitive ratior ≥ 2 .

Proof: Consider the following input instant:N amount of
requests are generated atA∩B, B ∩C, C ∩A separately. As
the total amount of request is3N , for any online algorithm,
there must be one BS with load no less thanN . Without loss
of generality, we assume BSA has load no less than N. Then
the input instant remove requests generated atB ∩ C, and
then generateN new requests at region covered only by BS
A. With the capacity of reassignment, the optimal algorithm
can always keep its maximal processor load no larger thanN ,
while the online algorithm has to assign theN new requests
to BS A, which results in totally no less than2N load in BS
A. So r ≥ 2

From lemma 3 andrcluster(K) ≤ 2, we getrcluster = 2.
We can proof that uniform algorithm also achieves this lower
bound.

Lemma 4: Uniform algorithm’s competitive ratior = 2.
Proof: From lemma 3,runiform ≥ 2. We assume that the

maximum processor load under optimal algorithm isL, thus
optimal can support zero loss rate if each BS hasL capacity.
Without loss of generality, we assume that BSB has the
maximum load under uniform algorithm. Load arriving from
area4 and area5 together should not be more than2L, because
the traffic from area4 and area5 can only be assigned to BS
B and BSC whose total capacity is2L.

L4 + L5 ≤ 2L (11)

Similarly, we have:

L5 + L6 ≤ 2L (12)

The load assigned by uniform algorithm to BSB is

L4/2 + L5 + L6/2 =
[(L4 + L5) + (L5 + L6)]/2 ≤ 2L (13)

Thus the competitive ratio of uniform algorithm is upper
bounded byruniform ≤ 2. So runiform = 2.

C. Results

We fixed µ = 1. Given a rate vector λ =
(λ1, λ2, λ3, λ4, λ5, λ6), the request arrival rate to BSs A, B,
C are

(λ1 + λ2, λ3 + λ4, λ5 + λ6) (14)

under cluster algorithm, and:

(λ1/2+λ2+λ3/2, λ3/2+λ4+λ5/2, λ5/2+λ6+λ1/2) (15)

under uniform algorithm.
To study the impact of traffic distribution symmetry,

we consider three different network settings. Figure 7 (a)
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(b) Network setting 2: arrival rate vector (1,9,9,1,5,5)
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(c) Network setting 3: arrival rate vector (17,1,1,9,1,1)
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Fig. 7. Stochastic performance of online algorithms

shows the cumulative probability function ofrcluster(K) and
runiform(K) under arrival rate vectorλ = (5, 5, 5, 5, 5, 5),
which is a symmetrical traffic distribution setting for both
cluster algorithm and non-cluster algorithm, which both have
arrival vector for BSs as(10, 10, 10). Non-cluster algorithm
has a slightly better stochastic performance than cluster algo-
rithm because it employs a higher degree of multiplexing.

Figure 7 (b) illustrates the case where cluster algorithm
helps to achieve a better traffic distribution symmetry. In the
network setting ofλ = (1, 9, 9, 1, 5, 5), cluster algorithm still
has arrival vector for BSs as(10, 10, 10), while for uniform
algorithm the average arrival rates for the three BSs are
(14, 8, 8) respectively. Cluster algorithm has a better stochastic
performance than non-cluster algorithm under this network
setting.

On the other hand, Figure 7 (c) shows the network setting
where cluster algorithm deteriorates due to traffic distribution
asymmetry. By settingλ = (17, 1, 1, 9, 1, 1), the three BSs’
average arrival rate under cluster algorithm are(18, 10, 2)
respectively, while for uniform algorithm the average arrival
rates for BSs are(10, 10, 10). Non-cluster algorithm has a
superior stochastic performance than cluster algorithm under
this network setting.

This shows that cluster algorithm’s stochastic performance
depends largely on the symmetry of traffic (MS requests)
distribution across clusters.

Figure 8 shows the distribution ofrcluster and runiform

whenλi for every areai follows uniform distribution in[1, 20],
and allλi are independent with each other. We get the result
by integration over all the possible points in the range. As
shown in the figure, uniform algorithm has a better stochastic
performance than cluster algorithm in this range of network
settings. It is harder to drive uniform algorithm to perform poor



than cluster algorithm, because uniform algorithm employs
higher degree of multiplexing.
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Fig. 8. Stochastic performance of online algorithms II

VII. C ONCLUSION

In this paper, we formalize the Common Radio Resource
Management (CRRM) problem as an online load balancing
problem for temporary tasks with unrelated processors, and
study the computational complexity for the optimal solution.
We also characterize the competitive ratio for general on-
line algorithms by exploiting combinatorial properties of the
weighted BS-Region graph. We describe how cluster algorithm
can be used to achieve a lower worst case competitive ratio.
We also show that cluster algorithm’s stochastic performance
depends largely on the traffic distribution symmetry.
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