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Abstract— Development in new radio technologies and increase
in user demands are driving the deployment of a wide array
of wireless networks, ranging from 802.11 networks in the
local area, to third generation data-only wireless networks in
the wide area. With their complementary characteristics, these

heterogeneous Radio Access Technologies (RATs) are expected

to be integrated together to provide mobile users “Always
Best Connections”. Base Stations (BS) using different RATs
will coexist and have arbitrary overlapping coverage without
interfering with each other, and Mobile Stations (MS) equipped
with multi-interfaces or “Software Defined Radio” technology
can be associated with one or more BSs using different RATSs.
In this work, we study the Common Radio Resource Manage-
ment (CRRM) problem, i.e., how should the network manager of

these integrated heterogeneous wireless networks jointly allocate

resources from various networks such that the scarce radio
resources are used efficiently. We focus on applications with
bandwidth reservation requirement, such as voice or video calls.
We extend earlier works to consider the different increase in load

when a single MS request is assigned to different BSs, due to

independent channel condition and adaptive modulation/coding
efficiency among different MS-BS pairs. We formalize CRRM

problem as an online load balancing problem for temporary

tasks with unrelated processors, and represent the input of
problem using a weighted BS-MS graph, with a weighted BS-
Region graph as its compact form. We study the computational
complexity for the optimal solution. We also characterize the
competitive ratio for general online algorithms by exploiting com-

binatorial properties of the weighted BS-Region graph. Cluster
algorithm, which decomposes the whole area into disjoint clusters
can potentially achieve a lower competitive ratio. However, its
stochastic performance largely depends on the traffic distribution
symmetry.
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Fig. 1. Layers of heterogeneous wireless networks

In this work, we considered the case where different RATs
are being deployed and a single wireless provider owns and
operates these wireless networks. We studybemon Radio
Resource Management (CRRMJjoblem, i.e., how should
the network manager load balance Mobile Station (MS) re-
guests among the various networks such that the scarce radio
resources are used efficiently. Using 3GPP’s definition [2],
CRRM is a platform for coordination between heterogenous
components. Our discussion will be based on a simplified
heterogeneous wireless networks integration framework. As
shown in Figure 2, the main components of a wireless network
architecture are: MS, Radio Access Network (RAN) and Core
Network (CN). Our model makes the following assumptions:

mobile users’ demands for ubiquitous high speed data ac- The RAN as well as CN’s bandwidth resource are over-

cess are driving the deployment of a wide array of wire-
less networks, ranging from satellite networks, to Wireless
Wide Area Networks (WWAN), Wireless Metropolitan Area
Networks (WMAN), Wireless Local Area Networks (WLAN)

and Wireless Personal Area Networks (WPAN), as showne

in Figure 1. Each of these networks has different design

tradeoffs in coverage, data rates, cost and many other network
parameters. It is envisioned that these complementary Radio

Access Technologies (RATs) will co-exist in the future and
be integrated together to offer mobile users “Always Best
Connections” [1].

provisioned. Therefore, the system’s performance bottle-
neck is at the last hop, i.e. between Base Station (BS)
and MS. Radio Resource Management (RRM) strategy
is responsible for efficient use of scarce radio resource.
BSs using different RATs can have arbitrary overlapping
coverage, and they can simultaneously operate without
interference with each other. We assume that there exists
some mechanism to jointly manage their radio resource.
For example, as proposed in [3], each RAT will expose
a RRM interface for joint management, either loosely
or tightly. Common RRM (CRRM) is logically defined



lll, we formalize theCommon Radio Resource Management
(CRRM) Problem as an online load balancing problem for
temporary tasks with unrelated processors and the computa-
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A. Integration framework for Heterogeneous Wireless Net-
works

The idea of combining heterogeneous access technologies
is not a new idea initiated for wireless networks. In wired
networks, multi-homing allows user to access Internet using
as the function to gather information from BSs anaﬂultlple access tech_nolog|es, €.g., dial up, ADSL.’ cgble,

) . .. ethernet, etc. Integration of heterogeneous technologies is also
coordinate resource allocation among BSs to optlm@e ; ) .
] ..found in wireless voice area. The DECT/GSM dual mode
system performance. CRRM can be implemented either .
; L telephones allow the user to use the wide-area GSM cellular
in central or distributed way. : ) .
. . . B network whilst out of the office or away from home, while also
« MSs are equipped with multi-interfaces or SOftwareusin the same handset at home when in range of a cordless
Defined Radio”(SDR) technology, so that they can bg 9 9

i . : télephone BS.
associated with one or many of the adjacent BSs. However, the design of a network architecture to fulfill the

We focus on applications requiring bandwidth reservatiogpjective of seamless and efficient integration of heteroge-
such as voice or video calls, other than elastic traffic as cofsous RATs such as 3G and WLAN is still a challenging task.
sidered in our previous work [4]. For such circuit-switch typgyireless LANs, originally targeted at enterprise and home
applications, their requests will be blocked if available radigetworks, lack many of the capabilities which are essential in
resource is not enough to meet their reservation requiremeiiplic environments, such as unified and universally accepted

With this framework, the key issue we address is hoWaA mechanisms, the integration of mobility mechanisms
available radio resource of overlapping BSs should be shakggh QoS and application-level services, the support for roam-
among multi-mode MSs. The performance measure usedi{§ agreements, security issues. Conversely, although these
blocking rate characteristics are present in the design of 3G networks, their

We made two contributions in this paper. First, We extenghplementation depends on specific wireless access architec-
existing works to consider the different increase in load whenges such as CDMA2000 or UMTS, and their extension to
single MS request is assigned to different BSs, by formalizingher wireless technologies such as 802.11 presents several
CRRM problem as an online load balancing problem fafompatibility issues. In addition to tradition cell-based roam-
temporary tasks with unrelated processors, and represent i (horizontal roaming), fast and transparent roaming across
input of problem using a weighted BS-MS graph to studihe constituent networks (vertical roaming) raises a challenge
the computational complexity for the optimal solution, whiclior mobility management, with the requirement of switching
is shown to be impractical for implementation. Thus, study a different network interface. transmission protocol should
of efficient heuristic algorithm is a must. Our second corglso adapt to multiple interfaces accordingly [7].
tribution is to characterize the competitive ratio for general The integration can be done in both tightly coupled or
online algorithms by exploiting combinatorial properties ofposely coupled ways [8]. Generally speaking, the tighter the
the weighted BS-Region graph, which is a compact form @bupling, the more complex the interworking interface will be.
weighted BS-MS graph. We show that cluster algorithm &shus loosely coupling is suggested by both [8] and 3GPP’s

proposed in [6], which decomposes the whole area into disjoigtigoing work on integrating WLAN [9] [10] because of its
clusters, can potentially achieve a lower competitive ratigexibility.

However, competitive ratio only describes the worst case of

an algorithm’s performance, which may rarely happen undgr Common Radio Resource Management

real situation. Complementarily, we also show that cluster Because of the scarcity of radio resource, Common Ra-

algorithm’s stochastic performance. dio Resource Management (CRRM) will serve as a driving
The rest of the paper is organized as follow. In Section liprce and an important design factor in the integration of

we present related works on radio resource management issueterogeneous wireless networks. In EU’s Sixth Framework

in integrated heterogeneous wireless networks. In SectiBrogramme, the EVEREST project [3] addresses the objective

Fig. 2. Integrated Heterogeneous Wireless Networks



to devise and assess a set of specific strategies and algorithnjS] defines theTransceiver (BS)- Mobile (MS) Control
leading to an optimized utilization of scarcely available radi@hannel Graphto model the off-line version of the channel
resources for the support of mixed services within heterogassignment problem. The control channel corresponds to the
neous networks. Similar to our system model, EVERESTBS-MS covering relationship. Since every MS in a particular
reference architecture is based on several RATs interfacingedl segment , [5] proposes to aggregate MSs having the same
common core network. Multiple cells using different RATset of control channels together to reddtansceiver-Mobile

will be overlapped in the same area. Services are deliver€dntrol Channel Graphto a compactCellular Assignment
via the RAT that is most efficient for that service. Sinc&raph, which represents the problem with a smaller bipartite
multi-interface MS can be connected to different RATs, unleggaph of fixed vertices and edges with changing weight. Their
there is knowledge about each RAT it would be very difficultnain result is th&Channel Assignment Theorarharacterizing

to optimize network performance and to manage resourdbge existence of feasible solutions. Since they assume all
efficiently. As a result, a logical function box named CRRMMS consume identical resource (one channel), network flow
(Common Radio Resource Management) is defined by 3Gp®cedures provide a polynomial algorithm to find a solution
[2] [11] and studied in EVEREST project to jointly optimizeif one exists.

the overall system performance. CRRM is characterized by

two functionalities: . . . [6] models online version of the channel assignment prob-

e Input: QRRM collect information from different resourc8em as aronline load balancing problem for temporary tasks
pools, i.e. heterogeneous RATs. One resource pool\jh restricted assignmenwhere a task of unknown duration
characterized by having its own RRM functionality.  can pe assigned to a restricted subset of processors based on

« Output: CRRM then direct users to the resource pogk task type. But within this subset, the increase of load is
which is most suitable. What is most suitable may deperdme no matter which processor is chosen. In the general case
e.g. on the user's position, service requirements, and Nk out network structure constraints, the subset of processors
work aspects like load balancing, avoidance of needlegsiask may be assigned can be any element of the power

handovers, etc. set of all processors. The optimal algorithm for this general
Briefly speaking, this paper study the resource allocati@ase isO(2./n + 1)-competitive [12], where: is the number
strategy for CRRM. of processors. As this bound is too loose, [6] exploits the
. ] ] combinatorial properties of regular network topology structure
C. Coordinated Proportional Fairness as represented iBellular Assignment Grapto attain a better

In a previous related work [4], we consider a similagompetitive ratio. Also, they proposeluster algorithmto
integrated heterogeneous wireless framework as this pag@gompose the whole area into disjoint clusters which are
except that the target application in that paper is elastitanaged by different BSs separately. They show that cluster
traffic. For elastic traffic, there is no pre-defined and stri@lgorithm can achieve a competitive ratio strictly better than
bandwidth requirement, and fairness among MSs instead gsg¢edy algorithm, with appropriate decomposition of clusters
block rate is a commonly used performance criterion. [4) some regular topologies.
extends Proportional Fairness Concept used in HDR to mul-

tiple wireless networks with overlapping coverage, striking a However, the two assumptions of homogeneous networks
balance between sy_stem throughp_u_t and user faimess. [4] Sdel do not hold in heterogeneous wireless networks. In
shows that the assignment flexibility of MS to any one qf they are not valid even in some homogeneous wireless
adjacent BSs can_greatly improve the_ system perfo,rmanﬁ%tworks. On one hand, MS-BS pair supports different data
even with an algorithm using only one interface at a time. rate with varying modulation/coding schemes. For example,
802.11b wireless networks support four transmission rate:
1Mbps, 2Mbps, 5.5Mbps and 11Mbps. CDMA2000 1xEV
Radio resource management problem addressing cirqéiéhnobgy (also known as High Data Rate “HDR") system
switched applications in overlapping homogeneous networsgyides a peak data rate of 2.4Mbps and an average data
has been studied by several works [5] [6]. The assumptipgte of 600Kbps using one 1.25MHz CDMA carrier in the
of homogeneity simplifies their problem formalization in tW@onward direction. The rate being used depends on the channel
aspects: condition. If we assume MSs have fixed bandwidth reservation
« New MS will increase BS's load by a fixed value, whichrequest, then a BS can support more MSs in better channel
does not depend on which BS is chosen. This capacitgndition with the same resource. On the other hand, hetero-
allocation unit is referred as channel, and the radigeneous wireless networks can have arbitrary overlapping cov-
resource management problem is thus named as “Chanerelge with each other. For example, the location distribution
Assignment Problem” in existing works. of WLAN APs with respect to 3G BSs can not be assumed
« Current results are largely based on the nice propertiesfollow any regular pattern. In following sections, we will
of regular topologies, such as hexagonal grid topology &xtend results in [5] and [6] to formalize a general framework
which each BS has six adjacent BSs. by relaxing these two assumptions.

D. Channel Assignment in Overlapping Networks



TABLE |
Ill. PROBLEM FORMALIZATION

COMPETITIVE RATIO OF ONLINE LOAD BALANCING PROBLEM
If we map MS requests to tasks and BSs to processors,

CRRM Problem can be formaliz_ed asamline load balancing Cases Competitive Ratio
problem for temporary tasks with unrelated process/dr] dentical Processors 200)
[13].

In the definition of online load balancing problem for | Related Processors o)
temporary tasks, tasks (MSs) arrive at random time and | Restricted Assignment o(n'/?)
their service duration is unknown. Each arriving taskas Unrelated Processors Unkown

an associated load vectas(j) = (p1(5),p2(4),---,pn(4))

where p;(j) defines the increase in the load of processor

if we were to assign task to it. Load vector can be used

to categorize load balancing problem into several classes:

identical processors case, related processors case, restrigifer they are in the form of time slots, frequencies, power,

assignment case and unrelated processors case. or others. The definition of one capacity unit can be different

across BSs. By appropriate scaling, we can compare different
BSs’ capacity directly, even when they are using heteroge-
neous RATs. Different scaling factor is chosen separately for
different BS, such that the goal of load balancing algorithm is

to balance load uniformly across all BSs.

« In the identical processors casall the coordinates of a
load vector are the same.

« In the related processors case;(j) = w(j)/v;, where
the “weight” w(j) depends only on the task and the
“speed”v; depends only on the processor

o In the restricted assignment caseach taskj has a  |n online load balancing problem formalization, processors
weight w(j) and can be assigned only within a subsejre assumed to have infinitive capacity. Online algorithms’
of processors; in terms of the load vector the coordinatggmpetitive ratio is defined by comparing its maximum proces-
are eitherw(j) or oo. [5] [6] formalize the channel sor|oad with optimal off-line algorithm’s. An online algorithm
assignment problem as this case. A’s competitive ratio is at most if under any tasks input

o The unrelated prOCGSSOI’S case the most general Case.the maximum processor load ever used by a|goriﬂqn'is
Here,p;(j) are arbitrary non-negative real number,cor no larger thanr x L + b, where b is a constant and.
if task j is not allowed to be assigned to processor is the maximum processor load ever used by optimal off-
Similar to restricted assignment case, a tasktype is |ine algorithm during processing the same input. In contrast,
uniquely defined by the subset of processors to whighRRM problem assumes processors have finite capacity and
this type of tasks can be assigned. Note that coordinaifg performance criterion is blocking rate other than maximum
of the load vector for this processor set can be unrelatgffocessor load. The relationship between the two different
Clearly, related processors and the restricted assignmggtformance criteria can be interpreted as follows: if an
are both special cases of the unrelated processors cag§orithm A is r-competitive in the definition of classical
The identical processors case is a special case of §Wine load balancing problem and the maximum processor
related processors case where all the speedsre the |oad is L under optimal off-line algorithm, this implies that
same. It is also a special case of restricted assignmeqé optimal algorithm can achieve zero block rate with each
where every task can be assigned to every processor, p@cessor having capacity. Thus algorithmA can achieve
all the coordinates of tasksare w(j). zero block rate with capacity no more thar L+b. Because of

Without the two assumptions presented in the previotisis equivalence, we will directly use the definition of classical

section, CRRM problem in heterogeneous wireless networtisline load balancing problem when discussing algorithms’
falls naturally into the unrelated processors case. In wirelegsmpetitive ratio in CRRM problem. A closer investigation of
networks, BS and MS can transmit to each other with differettte relationship between these two criteria will be conducted
data rate by utilizing different modulation and coding schemes. our future works.
The specific scheme in use depends on the channel conditiorf.he ontimal onli lqorithms’ . iof .
and RAT, which are unrelated for different BS-MS pair. Even ptimal ontin€ a gorithms competmve ratu_) orvarious
for the same MS its data rates to different BSs, or for the safia > of classical °”'"."e load balancing problem 1S summarized

. . : in"Table | [13]. Reassignment of accepted MSs is not allowed
BS its data rates to different MSs, are not directly related. . . ; . .

. . L . in the considered family of online algorithms.
Online load balancing problem formalization requires the

load vector be specified at arrival and keeps unchanged afteWhile formalization in [5] and [6] as the restricted assign-
that. But in wireless networks, MS mobility and channel fadingient case has &(n'/?)-competitive optimal online algo-
will change the load vector from time to time. In this paperithm, such a result even does not exist for our formalization
we assume load vector is fixed after MS arrival for simplicityas the unrelated processors. Thus, similar to [6], we need to
The impact of mobility and fading will be considered in futureexploit the combinatorial properties of the wireless network
works. topology to get a competitive ratio bound for the studied online

Capacity is an abstract measure for BS’s radio resouredgorithms.



IV. COMPUTATIONAL COMPLEXITY FOR OPTIMAL work. The following sections will first study the computation
SOLUTION complexity of optimal algorithms if reassignment is allowed,
A. Weighted BS-MS Graph i.e., an accepted MS request can be reassigned to another BS.

CRRM problem can be represented using a weighted BS- LP-Optimal Algorithm
MS graphG, (B U M,; E;) as shown in Figure 3. If simultaneous assignment is allowed, i.e. MS can com-
municate with multiple BSs in the same time and achieve
aggregate bandwidth, the optimal algorithm is to block a new

T request arrived at time only if no feasible solution exists for
the following linear programming problem:
{Edge £y, LT Ypien(j)dij X Rij =W; VM; € M;
— | DataRate Ry | 1_— Ym e, (B)Aij < Cij Vi € B 1)
BS Bjs L i - Aij >0 Vie B,je M,
associated( Weight W; Capacity C; MS Mjs L . .
MSs set associated We call this linear programming based algorithm LP-

M () BSs set

B0 Optimal algorithm. Though linear programming problem can

be solved in polynomial time, LP-Optimal algorithm is still not
efficient enough for real time CRRM decision, especially in a
large wireless network with tens of thousands of MSs. In ad-
dition, the solution of a LP can have simultaneous assignment
of one MS to several BSs, because the solution matrigf
Fig. 3. Weighted BS-MS Graph this linear programming problem may have multiple non-zero
elements in a single row. Further more, several (potentially

G, is an extension of the control channel graph in [B]= all) elements ofA may change for a single new coming MS.
{B;} is the finite set of BSs covering the geographic area Though not practical for implementation, LP-Optimal al-
under our study, which is assumed to be invariant with timgorithm will be used as the performance baseline for our
M, = {M;} is the finite set of active MSs distributed in thefollowing discussions.
area at timer. G- is a connected bipartite graph with vertice . .

V = BU M, and edgest; = {E;; | B; coversM; at time T (T;AP-Optm_ml _Algonthm ) _ )
7}. Function B(M,) gives the set of BSs covering M&/;, !t is of spema_l interest to consider the family of algorithms
and functionM (B;) gives the set of MSs covered by B%. Using only one interface per MS because:

BS B; has a capacityC;, which is an abstract measure ¢ From the application viewpoint, simultaneous use of mul-
for B;’'s total amount of resources with appropriate defined tiple interfaces for circuit-switch type of application will
measure unit, so that BSs’ capacities can be compared directly cause synchronization difficulty and other complexity.
even when they are using different RATS. « From the network perspective, simultaneously using mul-

Weighted BS-MS grapld. extends Control channel graph tiple interfaces will increase coordination overhead.
in [5] by defining the parameters associated with MSs ande From networking device’s point, SDR allows only one
edges. Every MSV/; has a bandwidth requirement weight interface to work at one time. Even when multiple inter-
W, and every edge?;; is associated with an available data  faces are equipped, it will be desirable to use only the
rate R;; betweenB; and M;. In [6], they consider the case ~ most appropriate one of them and turn off all others to
where MS M; can have different weightV;, but they still save energy.
assume uniform data rate between different BS-MS pairs.  When simultaneous assignment is not supported, new con-

The information used to generate and update can be straint should be added to the linear programming problem,
collected using CRRM'’s input function. At time when a requiring that only one element,;; in each row ofA is
new MS request arrives and becomes an element/jn the allowed to be non-zero. With this non-linear constraint, this
CRRM output function should come out with an assignmeptoblem can be mapped to tl@AP (General Assignment
solution A = {4;;}, where 4,; is the resource allocated byProblem) [14] [15].

BS B; to MS M;. GAP considers a paii3,7), whereB is a set of bins and

In this paper, we focus on the family of algorithms whichs a set of items. Each bij e B has a capacity(j), and for
will not intentionally drop a new request if they can findeach item € Z and binj € B, we are given a size(s, j) and
a feasible assignment configuration in their solution spaeeprofit p(i,j). The objective of GAP is to find a sét C 7
without dropping already accepted MSs. It is possible faf maximum profit such that/ has a feasible packing i.
CRRM schemes to block a new request even when they carin CRRM problem, BS corresponds to bin, and MS requests
find enough resource for it, or drop an accepted requestdorrespond to items. The solution of GAP corresponds to
take a new one. We will investigate these situations in futuee star matching in weighted BS-MS gragh,, which is a

MS M




subset of edgek* C E where the induced subgraph is a _ _
. . Region type set BS-Region BS set B
forest with every component a star whose center is a BS. T Relationship

Size s(i,j) depends on the data rate between BS and
MS M;, and is unrelated among differef#, j) pair. Profit Region type T \ BS B4
p(i,7) = 1 for minimization of block rate. If we consider other : PR N, '

optimization criteria,p(i, j) can be assigned with different : 1£99e B :

+: Data Rate R;;

values accordingly. GAP has been proved to be NP Complete gs g5 Region type Tj -

BS B; .

Region

if size s(i,7) is unrelated with each, even when profits are assotiated | apival Process 1 ; Capacity ;|| o0 1
. Region ype Ijs
uniform. [14] Types set associated

If simultaneous assignment is not allowed, the optimal e
CRRM algorithm is to block a new request only if GAP’s
solution set/ # Z. We name this algorithm as GAP-Optimal
algorithm. GAP-Optimal algorithm’s solution space is a strict
subset of LP-Optimal algorithm’s. Though GAP-Optimal al-
gorithm uses only one interface per MS, it may still require
reassignment of MSs when a new one arrives. Formalization Fig. 5. BS-Region Graph
in [5] is a special case of GAP model. By assuming uniform
size s(i,j), [5]'s model employs a polynomial network flow ) ,
algorithm for optimal solution. coverage bord(_erllnes of f_our BSs, but there are only nine
No matter simultaneous assignment is allowed or not, bddions: The sizen of region type setl’ = {T1,..., T}
LP-Optimal and GAP-Optimal algorithms are impractical fol> UPPer bounded by, < 2™, wherem is the size of BSs

real implementation, thus it is a must to study the performanggt B = {B1,--., B }. As shown in Figure 5, weighted
of efficient heuristic online algorithms. BS-Region graph is a connected bipartite graph with vertices
V = BUT and edgestE = {E;; | B, coversT;}. BS

V. ONLINE ALGORITHMS COMPETITIVE RATIO B; has a capacityC;, and RegionR; is associated with a
A. Weighted BS-Region Graph stochastic MS arrival/departure proce’ss Every edge con-
. necting a BS-Region pair is associated with some efficiency
A typical BS-MS Graph may have a large number of vet- . . i
. . ? . . information R;; which shows the available data rates between
tices corresponding to the active MSs in a metropolitan ar

Bs B, and MSs of typeTl;. MSs of the same region type

and this graph keeps changing over time with MSs_|_n|t|at|njg not guaranteed to have same data ratesRgocan be
and terminating their requests. To study the competitive ratig

JINterpreted as a random variable. We denote its maximal value
we need a more compact form to represent the underling’ " =~ . .
. and minimal value bynaz(R;;) andmin(R;;) respectively,
network structures. By aggregating MSs covered by the same . . L
set of BSs together, we can reduce the weighted BS-MS granks " Rij), maz(Hi;)] is the variation range oft;;. In
g ’ 9 grap dition, we denote the set of regions covered by BS

:/(;rzc\évselgg':ed BS-Region graph, which has small and flxeas By's associated regions sat(Bi) — {T, | Ei, € E},

and the set of BSs identifying region ty[¥§ is denoted as
T;'s associated BSs séB(T;) = {B; | E;; € E}. The

set of BSs except B®; itself whose associated regions set
have non empty intersection with the associated regions set
T(B;) of BS B, is defined as BS3;’s neighbor BSs set, i.e.,
N(B;) ={B; | 3Ty, Eix € E andEj;, € E andj # i}. For
conciseness, we present BS as: and regiornl; andj if the
context is clear.

Region type T,

B. Competitive Ratio for General Online Algorithm

For any online algorithm, we can characterize the upper
bound for its competitive ratio by exploiting combinatorial
properties of the given weighted BS-Region gra&ph

Theorem 1: The competitive ratio of any online algorithm

(a) Coverage (b) BS-MSType Bipartite i ) X K
area graph in a weighted BS-Region grapf is upper bounded by:
Fig. 4. Regions maz(R;1)
r = maziep{Xjeni) (maxkeT(i)ﬂT(.j){m}) +1}
A region type is uniquely defined by the subset of BSs (2)

covering it. For example, in Figure 4, we can distinguish Proof: Assume that the maximal load of BS @ under
eleven different cell segments (Al to All) partitioned by theptimal algorithm isL, then capacityl. is enough to guarantee



zero block rate for optimal algorithm. We refdr as the Step 2: After reducing the variation range Bf;, for edges
optimal capacity. For any B®;, its load is upper boundedin G, cluster algorithm will get a star matchinig* C F with
by MS requests generated in its associated regiong'&gt the induced subgrap{E*) is a forest with every component a
which can only be allocated t6B;} U N (i), So the amount star whose center is a BS, afidc V ((£*)), i.e., every region
of these requests’ load is upper bounded by the amoustassociated with one and only one BS. By deleting edges
of capacity of BSs in{B;} U N(i). Because of different from E, BS B;'s neighbor set isN* (i) = {B; | 3T, Eix €
transmission efficiency among different BS-MS pairs, sani€* andE;, € E andj # i}. N*(i) C N (i) becausez* C E.
amount of capacity in different BSs can support differentike step 1, step 2 can potentially decrease the valuevaith
load. mazyer)nr){ :i?:(%k)} is the upper bound for the no risk of increase-.
relative efficiency between Bé 's capacity and BB;’s. The For example as shown in Figure 6 (a), B overs areas,2
maximum capacity needed for a single BS to guarantee zeéd3, BS B covers area8,4 and5, while BSC covers areas
loss rate thus is a the weighted sum of the optimal capacity and 1. Both dashed and solid lines shown in Figure 6 (b)
of {B;} U N(i). This weighted sum id. x r, wherer is as belong toF, and every BS has two neighbors, e.g. BShares
given in Theorem 1. areal with BS C' and are& with BS B, so N = 2. To focus
This bound is tight in the sense that there exists such onliae the impact of step 2, we assume the maximal ratio between
algorithms that have this competitive ratioWe can relax this any BSsM = 1 for simplicity. According to corollary 1, there
bound to get a simpler form. existsr-competitive online algorithms where= N + 1 = 3.
Corollary 2: The competitive ratio of any online algorithmAs M = 1, this bound is tight. On the other hand, a possible
in a weighted BS-Region grapfl is upper bounded bW x cluster algorithm is to assign ardaand 2 to BS A, area3
M + 1, where N is the maximal number of neighbor BSs ofand 4 to BS B, area5 and 6 to BS C. This decomposition
any BS inG, and M is the maximal ratio between the datas shown in Figure 6 (b) by removing all dashed lines to get
rate of any neighbor BSs. the star matchingZ* consists of only solid lines. According
For example in Figure 4N = 3 as BS3 overlaps with all to N*(4)'s definition, BSA only has neighbor B$”, BS B
other three BSs, if we assuni¢ = 11 as in the case of 802.11only has neighbor B, and BSC only has neighbor BS
network, then we can calculate the upper bound for any onlifiy so N = 1. This cluster algorithm is at most 2-competitive
algorithm in this topology, which isvV x M + 1 = 34. according to corollary 1.
The result ofr = N 4+ 1 in [6] is a special case of above
theorem, where coefficients of one region’s load vector for all
its associated BSs are identical, id. =1.r= N+ 1is a
tight bound forM = 1.

C. Cluster Algorithm

The cluster algorithm as defined by [6] for homogeneous
wireless networks is to decompose the whole area into disjoint
clusters which are managed by BSs separately. This algorithm
can be extended to work in heterogeneous wireless networks
Cluster decomposition can be viewed in the weighted BS-
Region graphG as two steps which help to minimize the
competitive ratio. While step 2 is similar to [6], step 1 is new )
in our model, and only meaningful when multiple data rate is i i
considered. Step 1 explains why greedily assigning MS to BS
with higher data rate performs well in practice.

Step 1: For BSsB; and B;, which belong to regioers
associated BS sét(k), cluster algorithm can reduc%‘%
by adjustingR;; and R;;, with further assignment constralnts Combining these two steps together, a cluster algorithm will
For example, for the overlapping regidh, of a HDR BS derive from the original weighted BS-Region gragha sub-

B; and an 802.11 ARB;, we assume?;; = 1Mbps while graph(E*) with N*(i) C N (i) and[min(R};), maz(R;;)] C

Rj, can be1Mbps, 2Mbps, 5.5Mbps and 11Mbps With  [min(R;;), maz(R;;)]. By applying Theorem 1 to this sub-
maz(R;,) = 11.Mbps. Thusmig”‘) = 11 without further graph(E*), we can show that cluster algorithm’s competitive
assignment constraints. If the cluster algorithm always assigasio is at most-*-competitive, where

MS in this region withR;;, > 1Mbps to B;, then these MSs

Fig. 6. Cluster algorithm’s competitive ratio

are viewed to appear in region which is only covereddyin- maz(R3,,)
stead of in regiof}. By( imposing this assignment constraints]” = maziep{Xjen- (i )(mawkeT(i)ﬂT(j){imin(Ri ) B +1}
max R]k ik

R%, = 1Mbps and . nRs) = = 1. Decreasing efficiency ratio ’ 3)
between overlapplng BSS can potentially reduce the value ofr* will be less than or at most equal to the competitive ratio
r in theorem 1. will not increase in this step. r which we derived for the original grapfi.



The cluster algorithm presented is based on [6]. There amxluce our problem to the channel assignment problem as
many other interesting heuristics that do not reply on clustatefined in [5]. The following discussion can be extended to
ing. In the next section we describe thaiform algorithm, our general CRRM formalization with similar result.
an algorithm that does not use clustering. Based on above assumptions, the number of MS requests in

) ) areai can be modelled as alf /M /oo queue. The probability
D. Uniform algorithm that areai hask; requests is:

In uniform algorithm, an MSj’s load is shared simul- Y
taneously among its associated BSs B&fj) by allocating plke) = [/ e™ Mkt k=0,1,2,... (&)
same amount of resource from each associated BS. We choos&s we assume that arrival processes in different areas are
uniform algorithm mainly because: (a) it demonstrates a gogtlependent to each other, the probability that the traffic
worst case competitive ratio (equal to cluster algorithm) iglistributions in all6 areas isK = (k1, ko2, k3, k4, ks, kg)
our chosen topology as we will show below; (b) it is easjs:
for analysis, because the resource allocation decision does not
depend on the current load of BSs, but only based on the
task type of MS. To summarize, uniform algorithm and cluster p(K) = Hp(ki)
algorithm have the same worst cast bound and use the same
information when making decision. Cluster algorithm takes the For a given statef(, the maximum processor load in this
approach of restraining assignment, while uniform algorith§fate under cluster algorithm is:
exploits multiplexing by doing simultaneous assignment. The
uniform_ .algorit.hm. is interesting because. it has the same Letuster(K) = maz{ky + ko, ks + ka, ks + ks}  (6)
competitive ratio, its average performance is better as we will
show in the next section. The maximum processor load in this state under uniform

There are many other resource allocation heuristic algalgorithm is:
rithms with interesting properties, such @seedy minimum

®)

load algorlt_hm which always assigns MS to the BS Wlth Luniform (K) = maz{ky /2 + ks + ks /2,
currently minimum load. Greedy minimum load algorithm
performs extremely good and robust in our simulation, though k3 /2+ ka + ks /2, ks /2 + ko + k1/2} @)

it has a higher worst cast competitive ratio. Because resourcerhe maximum processor load in this state under LP-optimal

allocation decision of greedy minimum load algorithm dezigorithm can be derived using the Channel Assignment The-
pends on the current load of BSs, it requires the developmepém [5]:

of new numerical analysis techniques. We will investigate

these heuristic algorithms in our future works.
Loptimal (K) = max{ka, k4, ke, (ka2 + k3 + k4)/2,
VI. STOCHASTIC PERFORMANCEEVALUATION (ka + ks + ko) /2, (ke + k1 + k2) /2,

. Competitive ratio only.describes the worst case of an alg_o— (k1 + kg + ks + ky + ks + k) /3} (8)
rithm'’s performance, which may rarely happen under real sit- . .
uation. Complementarily, we study the stochastic performanceVe compare the stochastic performance of cluster algorithm
algorithm’s stochastic performance depends largely on ti@n of

symmetry of traffic (MS requests) distribution across clusters. L (K)
If the decomposition of cluster helps improve the traffic Tetuster (K) = —clusteri ) 9)
distribution symmetry, cluster algorithm demonstrates a good Loptimar (K)
performance compared to non-cluster algorithm. Otherwise,and
cluster algorithm will have poor stochastic performance. I (K)
7'uniform(K) = M (10)

A. Assumptions and Analysis Approach Loptimal (K)

For simplicity, we consider the network topology and cluster where statds is distributed as shown in Equation (5), which
decomposition as shown in Figure 6. We assume that tisedecided by the arrival rate vector and departure rate
arrival process of MS requests in each afea {1,...,6} u. Thus, by fixingA and u, the distribution ofr.,ster (K)
follows a Poisson distribution with arrival rat&;, and is andr,.,;f.-(K) can be numerically calculated. As element
independent of each other. We denote the arrival rate vectdr K increases, the probability that system is operating
as A = (A1, A2, A3, Ag,y A5, Ag). All requests’ lifetime follows in state K decreases exponentially. Als®.,ste-(K) and
the same exponential distribution with departure ratéNe 7,,;form (/) are upper-bounded by a constant. This allows
assume all BSs have infinitive capacity, and MS requestus to approximate the infinite number of states by the finite
unitary-weighted, which can be served using one unit of catates sef. = {K|K; < Kipy,Vi}. K, is chosen such that
pacity by any BS in its associated BSs set. These assumptidng ., p(K) > 0.99.



B. Worst Case Competitive Ratio

We have shown in section V that the competitive ratio of
cluster algorithnr ;, szer < 2.

In fact, this is the lower bound in topology Figure 6 for any
online algorithm without MSs reassignment.

Lemma 3: For any online algorithm without MSs reassign- ° 11 12 13 14 15 15 17 15 19 2
ment in tOpOIOgy Figure 6, |tS Competitive rah;oz 9. (b) Network setting 2: arrival rateve‘ctor(1,9,9(1,5,5)

Proof: Consider the following input instantV amount of
requests are generatedAatn B, BNC, C'N A separately. As
the total amount of request BV, for any online algorithm,
there must be one BS with load no less tlignWithout loss
of generality, we assume BS& has load no less than N. Then s 1 s 15 1 15 1o 2
the input instant remove requests generated3at C, and (¢) Nework seting 3: arival rate vector (17,1,1,9,1,1)
then generateV new requests at region covered only by BS
A. With the capacity of reassignment, the optimal algorithm
can always keep its maximal processor load no larger fiian
while the online algorithm has to assign thé new requests
to BS A, which results in totally no less thaV load in BS
A.Sor >2

() Network setting 1: arrival rate vector (5,5,5,5,5,5)
1 T JERSERRE T
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From lemma 3 and-;ysier (K) < 2, We getreusier = 2. Fig. 7. Stochastic performance of online algorithms
We can proof that uniform algorithm also achieves this lower
bound.
Lemma 4: Uniform algorithm’s competitive ratie = 2. shows the cumulative probability function of..s¢., (%) and

Proof: From lemma 3;uniform > 2. We assume that the,. .. (k) under arrival rate vecton = (5,5,5,5,5,5),
maximum processor load under optimal algorithmZisthus \yhich is a symmetrical traffic distribution setting for both

optimal can support zero loss rate if each BS hasapacity. cjyster algorithm and non-cluster algorithm, which both have
Without loss of generality, we assume that BShas the arrival vector for BSs ag10, 10, 10). Non-cluster algorithm

maximum load under uniform algorithm. Load arriving fromhag 3 slightly better stochastic performance than cluster algo-
area4 and ared together should not be more thah, because rithm because it employs a higher degree of multiplexing.

the traffic from areal and arec can only be assigned to BS Figure 7 (b) illustrates the case where cluster algorithm
B and BSC whose total capacity i8L. helps to achieve a better traffic distribution symmetry. In the

Ly+ Ls <2L (11) network setting ofA = (1,9,9,1,5,5), cluster algorithm still

o B has arrival vector for BSs ad0, 10, 10), while for uniform
Similarly, we have: algorithm the average arrival rates for the three BSs are
Le+ Lg < 2L (12) (14, 8, 8) respectively. Cluster algorithm has a better stochastic

performance than non-cluster algorithm under this network
The load assigned by uniform algorithm to BSis setting.
On the other hand, Figure 7 (c) shows the network setting
Ls/2+ Ls + Le/2 = where cluster algorithm deteriorates due to traffic distribution
[(La+ Ls) + (Ls + L¢)] /2 < 2L (13) asymmetry. By setting. = (17,1,1,9,1,1), the three BSs’
Thus the competitive ratio of uniform algorithm is uppe?verage_ arrival rate und_er cluster _algonthm die, 10’2).
bounded byruniform < 2. SOTuniform = 2. respectively, while for uniform algorithm the average arrival
rates for BSs arg10, 10,10). Non-cluster algorithm has a
C. Results superior stochastic performance than cluster algorithm under
this network setting.

We fixed o = 1. Given a rate vector\ =
(A1, A2, A3, Aas As, Ag), the request arrival rate to BSs A, B, This shows that cluster algorithm'’s stochastic performance
C are depends largely on the symmetry of traffic (MS requests)
(A1 + A2y Az + A, As + Xg) (14) distribution across clusters.
_ Figure 8 shows the distribution of.yster aNd Tyniform
under cluster algorithm, and: when); for every ared follows uniform distribution in1, 20],

d all \; are independent with each other. We get the result
M /24 Ao+ A3/2, Aa /24 Aa+A5/2, A5 /2+ Ag+ A1 /2) (15) and allA; a : ner.
(Aa/ 2+ 2s/2, %/ 1+25/2, 2/ s+A1/2) (19) by integration over all the possible points in the range. As

under uniform algorithm. shown in the figure, uniform algorithm has a better stochastic
To study the impact of traffic distribution symmetryperformance than cluster algorithm in this range of network
we consider three different network settings. Figure 7 (agttings. Itis harder to drive uniform algorithm to perform poor
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VIl. CONCLUSION

In this paper, we formalize the Common Radio Resource
Management (CRRM) problem as an online load balancing
problem for temporary tasks with unrelated processors, and
study the computational complexity for the optimal solution.
We also characterize the competitive ratio for general on-
line algorithms by exploiting combinatorial properties of the
weighted BS-Region graph. We describe how cluster algorithm
can be used to achieve a lower worst case competitive ratio.
We also show that cluster algorithm’s stochastic performance
depends largely on the traffic distribution symmetry.
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