
Location-Aided Topology Discovery for Wireless
Sensor Networks

Mingze Zhang, Mun Choon Chan and A. L. Ananda
School of Computing, National University of Singapore
Email: {zhangmi3,chanmc,ananda}@comp.nus.edu.sg

Abstract— Topology discovery in sensor network is useful in
any practical deployment of the network. Topology information
helps the administrators monitor, debug and perform proactive
control and management. Obtaining topology for dense wireless
sensor network is expensive due to limited bandwidth and
contention for the wireless channel. In this paper, we consider
the problem of efficiently obtaining network topology where the
locations and associated node identifiers are known by the central
controller (sink). Although the locations of the nodes are known,
the connectivity between any two nodes cannot be determined
by distance information alone due to irregular radio coverage
and obstacles. We propose a location-aided topology discovery
algorithm (LAD) that requires O(log(|M |)) data units per node
in common cases, and O(|M |) data units per node in the worst
case, where M is the set of directly communicable neighbors
of a particular node. Simulation results show that the overhead
reduction ranges from 70% to over 95%.

I. INTRODUCTION

Network topology refers to the underlying physical or
logical connectivity among the network devices. It is one of the
fundamental attributes of network management in traditional
IP networks, as it is a prerequisite to many critical network
management tasks, including reactive and proactive resource
management, server siting, event correlation, and root-cause
analysis [1].

The role of network topology continues to be important in
wireless sensor networks (WSNs). Firstly, topology informa-
tion is crucial for the network administrators to monitor and
debug [2] various sensor protocols, in particular, the protocols
that are topology-dependent, such as topology control, cov-
erage control, and routing. In these protocols, knowing the
connectivity information (neighbor table) of each node inside
some region is the most direct way in pinpointing root-cause
problems of that region. Secondly, the connectivity statistics
can also aid in sensor network protocol design as well as
parameter tuning [3], such as computing mean topological
density, studying the impact of link asymmetry, evaluating
geographical routing algorithms, and accessing behaviors of
algorithms that depend on spatial correlation.

However, collecting the network topology in large and
dense [4] sensor networks can be costly for small and tiny
sensor nodes, which limits the potential usefulness of topology
information. Previous topology collection protocols try to
reduce such cost either by reducing the number of nodes

This work is supported by National University of Singapore under research
grant R-252-000-265-112.

who will send their neighborhood information to the central
controller, or by limiting the number of neighbors sent at
each node [5], [6], [7]. Both methods result in significant loss
of neighborhood information and make it less useful in the
applications mentioned above.

In this paper, we focus on the problem of efficiently retriev-
ing network topology information at the central controller. We
call the process of retrieving network topology or network
connectivity Topology Discovery. We propose a Location-
Aided Topology Discovery (LAD) protocol which allows the
central controller to discover the complete network topology
efficiently.

In LAD, nodes send abstracted neighborhood information
to the server in multiple rounds. By making use of these par-
tial neighborhood information, the central controller requires
O(log(|M |)) data units1 per node in common cases or at most
O(|M |) data units from each node to construct the entire
topology. Specifically, the overhead is (1 + c) data unit per
node in the best case, and (log 1

1−α

|M |
t + |M | + 1 + c) data

unit per node in the worst case, where |M | is the number of
directly communicable neighbors of a particular node, α, t are
constants, and c is a small constant which represent some fixed
overhead. Simulation results show that the overhead reduction
ranges from 70% to over 95% in average.

The rest of the paper is organized as follows. In Section II,
related work is presented. Section III presents the techniques
in reducing communication cost as well as the design and
analysis of LAD. Section IV shows the simulation and testbed
evaluation results. Conclusion is drawn in Section V.

II. RELATED WORK

In [2], N. Ramanathan et al. propose a sensor network
debugging system called Sympathy which requires connec-
tivity information from the sensor nodes for root-cause cause
analysis. The authors simply assume that each sensor node
periodically sends its neighbor table to central controller. Since
the testbed on which they experiment is small, this may not
be a serious issue.

In [5], the authors propose TopDisc algorithm for sensor
networks with its applications to network management. The
algorithm finds a set of distinguished nodes (minimum domi-
nating set), using their neighborhood information to construct

1We use log to represent the logarithm of base 2 in the paper.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE

the approximate topology of the network. Only those dis-
tinguished nodes will reply back to the topology discovery
probes, thereby reducing the communication overhead of the
process. [6], [7] propose a multi-resolution topology retrieval
protocol which makes a tradeoff between topology details and
resources expended. The algorithm makes use of Minimal
Virtual Dominating Set (MVDS) to define the distinguished
nodes that will response the topology probes. By adjusting the
virtual radius of MVDS, the multi-resolution can be achieved.

In [8], the authors propose a mesh based topology retrieval
algorithm with slow moving nodes in wireless ad hoc net-
works. Each node has multiple parents to which the local
communicable neighbor information will be sent, and thus the
algorithm is more error resilient.

Unlike previous topology discovery protocols, we focus on
how the neighborhood information can be efficiently repre-
sented. Our proposed LAD makes use of location information
of the sensor nodes (which is not presented in traditional
Internet world) and effectively reduces the cost to transmit
the neighborhood information to the central controller.

III. LOCATION-AIDED TOPOLOGY DISCOVERY (LAD)

A. Problem Formulation

In this work, we assume that each sensor node can be
uniquely identified and has a unique identifier. Each sensor
node knows its neighbor set M with size |M |. The problem
can be formulated as, how can central controller know the
complete neighbor sets of all the nodes in the region of
interests using least amount of overhead (in terms of data
transmitted)? This is generally a hard problem in distributed
sensor networks. We reduce the problem further to how the
neighbor set of each node can be optimally represented without
or with little information loss. Note that we assume that links
can be symmetric or asymmetric.

B. Location Information and Topology Discovery

Without any prior information at central controller, the
problem is equivalent to optimally compress the neighbor set
M at each sensor node. The minimum information required to
identify |M | objects from a set of |T | object is theoretically
bounded by log

(|T |
|M |

)
, where T is the set of all sensor nodes

in the network. Since log
(|T |
|M |

) ≥ |M |(log |T |− log |M |), this
can still be very large when |M | is large and |T | � |M |.

However, one can observe that location information can
play an important role in reducing the size of neighborhood
information. The two nodes that are closer to each other are
more likely to be neighbors. As a simple example, with unit
disk communication model, a node only needs to send to the
central controller the ID of the neighbor node who is farthest
away from itself. Since all nodes closer than the indicated node
can be heard, the central controller can easily deduce all the
neighbors by searching through the distances among the sensor
nodes. The example is shown in Figure 1(a). When node A
sends the ID of node B to the central controller, the central
controller just needs to find all the nodes that are within the

A

B

rc

(a)

A

B

rc

C

D

(b)

Fig. 1. Location Information and Topology Discovery: (a) Under unit disk
model, given location information on each node and the farthest neighbor
node B, it is easy to compute the whole neighbor list of node A (b) Given
B, the neighbor list of A cannot be obtained because there might be nodes
(C and D) that cannot communicate to A, within range |AB|

range |AB|, and assume that they are directly communicable
to node A.

In this work, we assume that the location of each sensor
node is known via localization algorithms, and each node
knows the location information of all its connected (one-hop)
neighbors. We also assume that the location information of
each node is known to the central controller. This assumption
is not unrealistic because most sensor networks do require
some form of localization. We do not require accurate location
information. LAD is robust to localization error and will work
correctly as long as the nodes and central controller have the
same location information.

The simple example shown in Figure 1(a) is purely based on
unit disk model, and it does not work in realistic environments.
In a real sensor network, not all the nodes that are located
within the maximum range of node A can communicate
directly to node A. This can be due to reasons such as obsta-
cles, environment and fading effects, and possible localization
errors. This is shown in Figure 1(b). Hence, given a node’s
farthest neighbor node, all of its neighbors must locate within
the maximum distance, while the reverse is not true. We try
to solve this problem in the next section.

C. Hashing of Node ID

With the help of location information, for each node, the
central controller is able to identify a set of nodes N with size
|N | who are possible neighbor candidates. N is a superset
of M . Although |N | may be much smaller than the total
number of nodes |T | in the network, the central controller still
cannot completely identify M using the location constraints.
Due to the fact that the sensor node itself is not aware of
its neighbor candidate set N in advance and thus it cannot
efficiently compress its neighbor set M based on superset N .

Hashing is one of the standard ways in solving such prob-
lems. Using hashing, elements in the set M can be represented
by a much smaller size data. Each node sends the hashed value
to central controller and as long as the collision probability is
small, the central controller is likely to be able to test which
node in N shall be in M . The initial data required at the
central controller from each sensor node are thus: ID of the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

node with largest distance to itself and h(M), where h() is
the hashing function.

The number of searches required at the central controller is
given by,

|N |∑
m=0

(|N |
m

)
= 2|N |, (1)

which is exponential to |N |.
Assume that the hashing function h is able to uniformly

distribute the hash values onto the hash space 2b, where b is
the number of bits of the hashed value, the collision probability
is given by,

1 −
(

1 −
(

1
2

)b
)2|N|

≈ 1 − e−2(|N|−b)
. (2)

It can be seen that b has to grow linearly with |N | to keep the
collision probability constant. b is counted into communication
cost since the hashed value has to be sent to the central
controller. In practice, due to the fact that each node cannot
know |N | in advance, it is hard for it to keep b at the optimal
value and keep a constant collision probability.

Another design choice is by letting each node send one
additional information |M |. The number of searches required
at central controller will then be

(|N |
|M |

)
which is smaller than

2|N |. The increase of communication overhead will be small
because in practice |M | is not a very big value.

The probability of collision is given by,

1 −
(

1 −
(

1
2

)b
)(|N|

|M|)
≤ 1 −

(
1 −

(
1
2

)b
)(|N|

� |N|
2 �)

(3)

The size of the hash value b required to keep the collision
probability to be smaller than γ is given by,

b ≥ log

 1

1 − (1 − γ)
1

(|N|
|M|)

 (4)

D. Set Partitioning: Tradeoff Between Communication and
Computation Cost

The values of |N | and |M | determine the computational
cost at the central controller, as well as the hashing space
required to remain a small collision probability. When |N | or
|M | increases, 2|N | or

(|N |
|M |

)
may increase quickly to a value

that is not feasible for the controller to perform an exhaustive
search.

This can be solved by a set partitioning technique. A
large set can be divided into smaller subsets and solved
individually. In our application scenario, each node can sort
its directly communicable neighbors in some order and divide
the neighbor set M into K subsets M1 to MK . The IDs of
the separation nodes, the number of nodes in each set |Mk|
and the hash value h(Mk) will be sent to the central controller
(depends on the design choice). The central controller can sort
the set N in the same order, divide N into K subsets N1 to

A

B

C

D

E
F

G
H

I

E D I H G C F B

E I H G F B

Central Controller

Node A

Fig. 2. Both controller side and local side sort the nodes according to
ascending order in distance to A, A locally divides the set M into 2
subsets, for each subset, the problem now actually becomes simpler for
central controller (computation cost is 2

(4
1

)
= 8 now, which is smaller than(8

2

)
= 28)

NK according to the IDs of separation points, and search the
M1 to MK individually. The example is shown in Figure 2.

The total amount of searches required at central controller
is now given by,

S =
K∑

k=1

(|Nk|
|Mk|

)
(5)

where |Nk| ≥ |Mk| for all k ∈ [1,K], and
∑K

k=1 |Nk| = |N |,∑K
k=1 |Mk| = |M |.
The optimal total communication cost will be,

C =
K∑

k=1

(log |N | + log |Mk| + bk), (6)

where log |N | represents the size of node ID, log |Mk| rep-
resent the size of data to hold the number of nodes in Mk,
and bk is the size of h(Mk). If |Mk| is not sent to the central
controller, S =

∑K
k=1 2|Nk|, and log |Mk| will not be counted

in Equation 6.
The problem can then be formulated as to find a suitable

division scheme such that C is minimized, given that S ≤
Smax, where Smax is the maximum number of searches can be
performed at central controller for each node. However, since
the local nodes do not know the set N , this is generally a hard
problem.

In LAD, we propose a simple algorithm that works well
in practice. We observe from our testbed measurements that,
nodes that are farther away from each other have less prob-
ability to be neighbors. In fact if the distance between two
nodes are within some threshold, the probability that they are
neighbors is very high. This is not a surprising result and it
has been shown by many other measurements like in [9]. The
results show that most of the nodes that are close to a node A
tend to be neighbors of A, i.e., the value of |M | is very close
to |N |. However, as the distance to A increases, more nodes
may start losing connections to A.

Based on this observation, we propose a simple scheme
to divide the set M described as follows. Assume that the
neighbors are sorted in ascending order of distance, each node

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

divides the first α potion of M into M1, where α is a value
between 0 and 1. The node then divides α potion of the
remaining set into M2, and so on. The process stops until the
node finds out the number of neighbors remaining is smaller
than some threshold. The idea here is to make the largest
progress in M1 because most of the nodes in N1 may be
in M1 and the number of searches required can be small.
Thus we make |M1| largest among all the subsets to save the
communication cost. As the distance increases, we let each
node divide less neighbors to save the computation cost at
central controller. Moreover, LAD only requires each node to
send the neighbor ID that is farthest away from itself, total
number of neighbors, and the hash values for each subset (it
does not require IDs the subset separation node and the number
of neighbors in each subset).

The selection of α should be based on the distribution of
disconnection patterns. The choice and effect of α will be
studied by simulations.

E. LAD Algorithm Description and Analysis

In this section, we describe our LAD algorithm in details.
The LAD algorithm proceeds in two phases. In phase 1,
each node divides the subset and hashes them individually.
The node will then send the data to central controller. Upon
receiving the data packets from sensor nodes, the central
controller can apply searches on the neighbor set for each
node. In phase 2, using the information obtained in phase 1, the
central controller sends query to specified nodes to refine the
topology information (for those nodes that have some subsets
which cannot be determined by central controller due to either
searching time is too long or there is a collision). Note that
in general, the central controller does not have to obtain the
entire topology but can stop any time when it is sufficiently
accurate according to application needs.

1) Phase 1: In phase 1, each node tries to calculate the
hash value and send it to the central controller. The algorithm
in phase 1 is shown in Figure 3.

The information sent to central controller is the neighbor ID
that is farthest away from itself, total number of neighbors, and
the hash values for each subset. When the central controller
receives these messages from a node x, it first calculates the
set N , then it sorts N in distance order to node x. The search
for match of the first hash value is performed starting from
the first α|M | nodes in N . The controller sets an upper bound
for the amount of searches to be performed and will proceed
to phase 2 if no match is found. Note that the controller does
not need to search all possibilities for collision. Given the very
small collision probability, it is very likely the first match is
the solution. If a match is found, matching will be performed
for the next hash value, and so on. For every match made, the
amount of uncertain or search space goes down substantially.

Based on the computation capability and trade-off desirable,
we define the parameter α and t1, where α is the progress
factor and t1 is number of remaining elements at which phase
1 can stop. Using the location information, node x sorts the

Location-Aided Topology Discovery Algorithm

Sensor Node x:
Sort the neighbor list Mx in the order of increasing distance to x
let mx = |Mx|, r = mx

let start = 0, end = 0
Append packet with the farthest neighbor node ID, m
while r > t

let start = end + 1, end = start + αr
let hash = h(Mx[start : end])
Append packet with hash
let r = r − αr

end while
let start = end + 1, end = mx

let hash = h(Mx[start : end])
Append packet with hash
send(packet)

Central Controller (Upon Receiving from Node x):
Calculate the set of possible neighbors of node x, save in Nx

Sort Nx in the order of increasing distance to x
Search Nx sequentially for a match of each hash in packet
if running time is too long or there are possible more than one solutions
then stop and wait for phase 2
else Update neighbor list of node x
end if

Fig. 3. Description of Location-Aided Topology Discovery Protocol: Phase
1

nodes in M in ascending distance from x. The number of hash
values computed is given by the following Theorem.

Theorem 1: The number of hash values computed in phase
1 of LAD is given by,

k =
⌈
log 1

1−α

|M |
t1

⌉
+ 1 (7)

Proof: Assume the number of hash values is K, the set
M of size |M | is divided into K subsets with (K−1) dividing
point. It is easy to see that,

t1
(1 − α)K−1

= |M |

Thus, K =
⌈
log 1

1−α

|M |
t1

⌉
+ 1.

2) Phase 2: If the topology cannot be computed completely
in phase 1 for a node x, phase 2 is required. In phase 2, the
central controller first identifies the point where the searching
requires too much time, say ni. It then sends request message
for the hash value from ni to ni+t2 . Of course the node x may
not have the values ni and ni+t2 , but they can be defined as
distance to x. Because M and N are both sorted in distance
order, the node x then identifies mj to mj+t′2 that are in the
distance ranges, and sends back the new hashed value to the
central controller again.

The central controller chooses the value of t2 such that the
computation cost is reasonable even in worst case

(t2

� t2
2 �

)
.

Once the response from the node x comes back, it updates
the neighbor list. The new known neighbors of x is likely
to reduce the search complexity of the remaining hash values

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

from phase 1. If the controller still cannot find all the members
of M , phase 2 continues.

In the worst case, 2|N |
t2

data units are supposed to be needed
to completely find the topology (considering information ex-
changed between central controller and x). However, if 2|N |

t2
is

larger than |M |, then the controller can simply ask the node to
transmit all its |M | neighbor. Hence, the worst case of Phase
2 is |M | in terms of communication cost.

3) Algorithm Analysis: Number of data units sent in phase
1 is

⌈
log 1

1−α

|M |
t1

⌉
+ 1 which is O(log |M |). If α = 1, the

number of data units required is only 1 (hash only 1 time). In
phase 2, the worst case is |M | data units. Hence, the worst
case for the combination of phase 1 and 2 is O(|M |) and the
best case is O(1). In simulation, we show that the protocol
performs much better than worst case in practice.

IV. EVALUATION

A. Simulation Setup

The simulation is based on the following setup of the
network. The world size is 16 by 16 with node density varying
from 5 to 50 (uniform distribution), communication radius is
1. Thus, on average each node has 15 to 150 neighbors. In the
simulation, each node has an unique 4-byte ID, the hashing
result is in 232 space and also occupies 4 bytes. The server
will search all combinations for a match of the hash value,
and if the search space is too large (in the simulation larger
than 106), the server will give up searching and enter phase 2
for that node.

Disconnection probability among nodes are defined by
function fx(s), where s is the distance to node x and fx(s)
is the probability that a node at distance s away from x
is disconnected from node x. The average disconnection
probability is then

∫ 1

0
2sfx(s) ds. We test the LAD protocol

with both small disconnection probability as well as large
disconnection probability. We define two different fx(s) in
the simulation. For relatively small disconnection probability,

fx(s) =

{
(s − ds)2 if s ≥ ds,

0 if s < ds.
(8)

Where ds is an adjustable parameter. This is similar to a
quasi-unit disk model. The average disconnection probability
is given by p =

∫ 1

ds
2s(s − ds)2 ds.

For large disconnection probability,

fx(s) = sβ (9)

β determines where most of the disconnections are and if β
is larger, there will be more disconnections at larger s.

B. Simulation Results for Small Disconnection Probability

The performance of LAD with small link disconnection
probabilities are studied. The disconnection probability is
given by Equation 8.

The simulation results of LAD with ds is 0.5 and 0.6 are
plotted in Figure 4.

(a)

5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Node Density λ

P
er

ce
nt

ag
e

of
 H

as
hi

ng
 D

ec
od

ed
 b

y
C

en
tr

al
 C

on
tr

ol
le

r Successful Decoding of Hashing v.s. Node Density

d
s
=0.5,α=0.4

d
s
=0.5,α=0.5

d
s
=0.5,α=0.6

d
s
=0.6,α=0.4

d
s
=0.6,α=0.5

d
s
=0.6,α=0.6

(b)

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Node Density λ

E
ne

rg
y

U
se

d
N

or
m

al
iz

ed
 to

E
ne

rg
y

U
se

d
by

 S
en

di
ng

 A
ll

Li
nk

s

Energy v.s. Node Density

d
s
=0.5,α=0.4

d
s
=0.5,α=0.5

d
s
=0.5,α=0.6

d
s
=0.6,α=0.4

d
s
=0.6,α=0.5

d
s
=0.6,α=0.6

Fig. 4. Performance of LAD with Small Probability of Link Disconnection)
(a) Average percentage of nodes whose neighborhood information is success-
fully decoded by central controller in Phase 1 (b) Average normalized total
energy cost in Phase 1 and Phase 2

Figure 4(a) gives the information about the percentage of
nodes whose neighbor set are successfully known by the
central controller after the phase 1 of LAD protocol. It is
not surprising to see that when α is smaller, the successful
decoding probability becomes larger. When node density is
small (e.g., λ ≤ 20), almost all the nodes are able to send their
neighborhood information to the central controller in phase 1.

Figure 4(b) shows the total energy cost of LAD algorithm
(including both phase 1 and phase 2) for the controller to
know the complete network topology, normalized to the total
energy cost of letting each node send its raw neighborhood
information (a set of neighbor IDs). The energy cost is the
sum of both phase 1 and phase 2.

Initially when density is small and, large α will give a
smaller energy cost because the number of hash values will
converge more quickly than small α. As density increases,
large α will cause more nodes to enter phase 2 (their neighbor
sets cannot be determined by server in phase 1), which causes
the increase of total energy. Thus, although a larger α may
reduce the number of hash values in phase 1, with high node
density, it may end up with more nodes enter phase 2 and uses
more energy in phase 2 (the ds = 0.5 plots in Figure 4(b)).
The maximum energy reduction in the plot is 95%.

One can also observe that the performance of LAD is better

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

(a)

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Density λ

P
er

ce
nt

ag
e

of
 H

as
hi

ng
 D

ec
od

ed
 b

y
C

en
tr

al
 C

on
tr

ol
le

r Successful Decoding of Hashing v.s. Node Density

β=1,α=0.2
β=1,α=0.4
β=1,α=0.6
β=2,α=0.2
β=2,α=0.4
β=2,α=0.6

(b)

5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Node Density λ

E
ne

rg
y

U
se

d
N

or
m

al
iz

ed
 to

 E
ne

rg
y

U
se

d
by

 S
en

di
ng

 A
ll

Li
nk

s

Energy v.s. Node Density

β=1,α=0.2
β=1,α=0.4
β=1,α=0.6
β=2,α=0.2
β=2,α=0.4
β=2,α=0.6

Fig. 5. Performance of LAD with Large Probability of Link Disconnection (a)
Average percentage of nodes whose neighborhood information is successfully
decoded by central controller in Phase 1 (b) Average normalized total energy
cost in Phase 1 and Phase 2

when the connectivities among sensor nodes are good. The
performance for the case ds = 0.6 is always better than the
case ds = 0.5.

C. Simulation Results for Large Disconnection Probability

The large distribution probability is defined by Equation 9.
With β = 1 or 2 (disconnection probability 67% or 50%), the
simulation results are shown in Figure 5.

Compare different values of β, higher β (lower discon-
nection among neighbors) will also result in slightly better
performance in number of decodable nodes as well as the
energy cost. On the other hand, similar to the cases in previous
section, when node density increases, the probability of suc-
cessful decoding drops, but in a much faster rate (many drops
to 0 eventually). This is mainly because larger disconnection
probability causes higher computational cost to decode the
hash values sent by the nodes. The central controller finally
has to give up the exhaustive search and announce failure of
decoding the neighbor information of a particular node.

The energy reduction in the presence of large disconnection
probabilities is smaller than the energy reduction in small
disconnection probability. The best energy reduction is about
85% as shown in Figure 5(b). At the worst case (with both high
node density and disconnection probability), the minimum

energy cost is still around 30% of sending raw neighbor
information, which represents 70% of energy cost reduction.

D. Testbed Evaluation

We implement the algorithm on our sensor network testbed
with 34 motes (Mica2 and Mica2dot) installed in our building.
We assign locations to each of the node manually. The node ID
size is 2 bytes and hash value is also 2 bytes. We use α = 0.5
in the experiment. The average amount of data transmitted at
each node using LAD is only about 5% of sending all the
node IDs and has almost the same cost comparing to sending
bitmaps of node IDs (represents each node as a bit in a bit
string of size |T |). However, bitmap technique can only be
applied in small networks. We show the effectiveness of our
protocol in both small and large networks.

V. CONCLUSION

In all, in this paper we propose a location-aided topology
discovery protocol called LAD. Under the help of location
information, LAD allows the central server to discover the
complete network topology with much less data size than
letting each node send its own raw neighbor information.
Specifically, the overhead is (1 + c) data unit per node in
the best case, and (log 1

1−α

|M |
t + |M | + 1 + c) data unit

per node in the worst case. Simulation results show that the
overhead reduction ranges from 70% to over 95% to retrieve
the complete network information.

REFERENCES

[1] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A. Sil-
berschatz, “Topology discovery in heterogeneous IP networks: The Net-
Inventory system,” IEEE/ACM transations on networking, vol. 12, no. 3,
2004.

[2] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proceedings of the 3rd
ACM Conference on Embedded Networked Sensor Systems (SenSys’05),
San Diego, California, USA, 2005.

[3] A. Cerpa, N. Busek, and D. Estrin., “SCALE: A tool for simple connec-
tivity assessment in lossy environments, Technical Report CENS-21.”

[4] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges:
Mobile networking for ‘smart dust’,” in Proceedings of the 5th ACM
Conference on Mobile Computing and Networking (MobiCom’99), 1999.

[5] B. Deb, S. Bhatnagar, and B. Nath, “A topology discovery algorithm
for sensor networks with applications to network management,” in Pro-
ceedings of the IEEE CAS Workshop on Wireless Communications and
Networking, Pasadena, USA, 2002.

[6] ——, “Multiple-resolution state retrieval in sensor networks,” in Pro-
ceedings of First IEEE Workshop on Sensor Network Protocols And
Applications (SNPA), Anchorage, 2003.

[7] ——, “STREAM: Sensor topology retrieval at multiple resolutions,” Jour-
nal of Telecommunications, Special Issue on Wireless Sensor Networks,
2004.

[8] R. Chandra, C. Fetzer, and K. Högstedt, “A mesh-based robust topology
discovery algorithm for hybrid wireless networks, Technical Report.”

[9] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin, “Statistical
model of lossy links in wireless sensor networks,” in Proceedings of
the 4th International Conference on Information Processing in Sensor
Networks (IPSN’05), California, USA, 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

	Select a link below
	Return to Main Menu

