Cache-based Compaction:

A New Technigue

for Optimizing Web

Transfer

Mun Choon Chan

Thomas Y.C. Woo

Networking Software Research Department
Bell Laboratories
{munchoon,wop@research.bell-labs.com

Abstract—In this paper, we propose and study a new technique,

which we call cache-based compactidor reducing the latency of
Web browsing over aslowlink. Our compaction technique trades
computation for bandwidth. The key observation is that an object
can be coded in a highly compact form for transfer ifsimilar objects
that have been transferred earlier can be used agferences

The contributions of this paper are: (1) an efficientselectional-
gorithm for selecting similar objects as references, and (2) aen-
coding/decodinglgorithm that reduces the size of a Web object by
exploiting its similarities with the reference objects. We verify the
efficacy of our proposal through detailed experimental evaluations.
Our compaction technique significantly generalizes previous work
on optimizing Web transfer using compression or differencing, and

provides a systematic foundation that ties together caching, com-

pression and prefetching.

|. INTRODUCTION

Despite the phenomenal growth of the Internet, the

up. In particular, the majority dist hopsare still using

traditional modem, with bandwidth up to only 56kbps:

al
vance in the speed of access to the Internet has not ca

the transport delay, or specifically the last hop delay.

The key innovation behind our cache-based com-
paction technique is as follows. Instead of “coding” the
requested object on its own, a more compact encoding
is performed by leveraging other objects that are already
available in the client’s possession. In patrticular, if a
client already possess “similar” objects in its cache, then
those objects (calleteferenceobjects) is used as an ex-
tended “dictionary” based on which the newly requested
object may be coded. The more “similar” the reference
objects are to the requested object and the more such
“similar” reference objects are available in the client's
possession, the smaller is the resulting transfer.

Our approach is a compression technique in that it uses

standard compression techniques suchag a set
‘similar” objects, not just the requested object itself, is
used as the compression dictionary.

@_dictionary-based compression technique. However, un-

Separately, the use of wireless channel as the last hofPur approach can also be viewed as a differential trans-
is gaining popularity. Again, the raw bandwidth availfer technique in that it compares objects, and transfers
able on most wireless channels is low (e.g., 19_2kbma|nly the differences. However, unlike existing differ-
for CDPD). The bandwidth can be further reduced be;,ntial transfer techniques, comparison is not restricted to
multiple-access contention and protocol overhead. HSt objects from earlier versions. Our approach can po-
example, the effective application layer throughput dgntially leverage multiple objects (with completely dif-
CDPD is about 8kbps without contention. In a nutshelferent URLs) in the client's cache.

Web browsing behind slow (wireline or wireless) access To be accurate, our cache-based compaction idea repre-

links will persist for years to come.

sents a general approach rather than a specific algorithm.

From an end user’s perspective, her primary measuea high-level, it consists of two key components: (1)
of browsing performance is response time or latencyselectionalgorithm for choosing reference objects, and
Strictly speaking, latency is an end-to-end quantity, whid2) anencoding/decodinglgorithm that encode and de-
consists of two main components, namelygcessing de- code a new object using a collection of reference objects.
lay andtransport delay The former refers to the processA specific compaction technique is obtained by provid-
ing time incurred in the origin server and all the intermehg concrete implementations of the selection and encod-
diate proxy cache servers (see Figure 1), while the latieg/decoding algorithms.
refers to the time spent in traversing all the interconnect-In this paper, we examine an instantiation of the cache-

ing links.

based compaction idea. It uses: (1) an efficient selection

In this paper, we consider the case where the transpbeuristic based on the structure of URL as the selection al-
delay is dominated by the delay incurred in the last hogorithm, and (2) @zip-like dictionary-based compression
Our objective is to reduce the overall latency by reducirgcheme as the encoding/decoding algorithm. We demon-

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Client Side Server Side

existing

=R per B .
..... = s H'

b
rov ~ A
proxy cache hierarchy

|
Fig. 1. System Model D ‘7 ‘7 D
dat:

— > dda
-=====» control

origin
server level-n proxy

cache server

strate that this instantiation provides significant improve-
ment over existing techniques. We validate our ideas us-

ing both random sampling on different Web sites, as well The benefits of delta coding is also studied in [12].

as actual user traces.)) The authors found that differencing worked for 10% of all
The ba!ance of the_ paper is organized as follpws. _In _thgtatus 200" response at the proxy level. ThebExpress
next section, we review related Work addre_ssmg S'm!lgg/stem described in [9] included a number of techniques,
problems. In Section Ill, we provide a detailed descrifpe rejevant ones being file caching and forms differenc-
tion of the various algorithms in our compaction tecqhg_ Object comparison was based on the object's URL as

nique. In Section IV, we evaluate our proposal by Prége) a5 a digital signature of the object. Differencing was
senting extensive experimental results. Apart from its US8jied mainly to output of CGI scripts

for optimizing Web transfer, the cache-based compactio In Prefetching, an object that might be needed in the

LQeatcantsISCJthbe t\r/]|ewed ast a S);Istemtanc f0l|mtdi':1tlgn ttﬂ?lture is fetched in advance. The utility of prefetching is
s together the three most-used, yet completely deCaly jiqq i [13] using a statistical algorithm described in

pled, techmques_ — caching, compression, and prefet]. The bounds of latency reduction from caching and
!ng—f_orlmprovmg Web browsing. Finally, we conclud prefetching, based on search for objects with the same
in Section V. URL, is studied in [11]. The authors found that caching
and prefetching could reduce latency by at best 26% and
57% respectively.
The major techniques used for optimizing Web transfer
are compression, caching, differencing and prefetching.Ill. OUR CACHE-BASED COMPACTION TECHNIQUE
Compressioncan be divided into lossy and lossless.

Lossy compression is usually applied to graphical and gsed technique. Then in Sections 1lI-B and III-C, we

dio Ob.JECtS’ af‘d lossless compression 15 applied o t t(esent the specific algorithms we have used in this study.
and binary objects. The benefits of using lossless data

compression algorithms such as gzip (which is based Qn

LZ77 [15]) and vdelta [10] to compress non-video and”

non-audio objects is studied in [12]. We first provide a generic description of our technique.
The use of data-specific technique for reducing objeket C be a client andS a servet. Let C contains a set

size is described in [6]. Reduction was achieved by lose¥ objects denoted bg'.cache, and thatC' would like to

compression, for example by reducing resolution and/obtain a new objecd from S. Let S contains a set of

color of a graphics object. Thélowgli architecture [1] objects denoted b§.cache, whereo € S.cache.?

uses compression and prefetching for reducing Web acdnstead of sending to C, S computes a new ob-

cess latency. The idea of content-type specific comprgset o’ usingo and oy, ... ,o0, Where{oy,... ,0,} C

sion is similar to [6]. C.cachenS.cache, and sends’ to C'. We calloy, . .. , o0,
Cachingis frequently used to improve the performancthereferenceobjects. On receiving’, C recovers from

of distributed systems. Caching algorithms search fof andoy, ... , 0,. The computation 0¥’ by S is the en-

identical object. This topic has been studied extensivetpding step, while the reconstruction®by C' is the de-

in the literature, see for example [4], [5], [8] and [14]. coding step. The algorithms used in the encoding and
Differencing compares an earlier version of an objediecoding steps satisfy the following relationship:

to the current version. Usually, onI_y tvv_o objects of the , _ decodéencodéo, o,

same URL or output of CGI script with different parame-

ters are conS|der_ed. Some of the differencing ?—Igor'thmc and S can be any of the entities in the process chain shown in

used are UNIXdiff andvdelta[10]. In [2], the iSsue Figure 1.C andS need not even be adjacent if some form of “tunneling”

of what objects should be used in differencing was mel§-available. The most interesting case would be wiien the browser

. . L . . andS the first level proxy cache server.

tlone_d as an open qu_eSt'Q”- This is a question which WeThe requirement that € S.cache is a simplification.S can fetcho

provide an answer to in this paper. on demand if necessary.

Fig. 2. System Overview

Il. RELATED WORK

In the following, we first give an overview of our pro-

Overview

- 70n)7017"' 70n)

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

function encode @, 01,02, ...

,on, threshold) {

i=1;

ol

= empty string;

while (o[é..] is non-empty X

op =o[..i —1];

function decode @', 01,02, ..
o = empty string;
while (o’ is non-empty X
remove first toker from o’;
if (tis a character token)

:On){

(1) CS={(,j) | tis aprefix ofo[i..] and append to o;
£oceurs inoj,0 < j < n}; else{
if (CS=0) * t must be a triplet token */
L = oli]; lett = (k,pos,l);
else append tw the substring iy, starting at

@

pick (L, k) € CS suchthat(¢,j) € CS : |L| > |¢];

if (|L| <threshold)

append ta’ the character tokef;
else

append ta’ the triplet token

positionpos of lengtht;

return o;

}

(&, starting position of_ in o, |L|);
i =14+ |L|;

Fig. 4. Decoding Algorithm
B. Encoding and Decoding Algorithms

return o’;

}

The encoding and decoding algorithms are based on the
universal compression algorithm described in [15].
The encoding algorithm is shown in Figure 3. An ob-

Whenn = 0, it reduces to essentially a compressial§Ct o is essentially viewed as a byte array, witfi| de-
technique. Whem = 1 ando; is an earlier version of, Nhoting thei-th byte ofo (we start counting from 1)]..q]
it reduces to previously studied delta encoding technigu#enoting the part ob from the beginning up to and in-
In other words, our compaction technique subsumes m&4tding thei-th byte, andi..] denoting the part o6 be-

existing proposals and is most interesting when- 1 ginning ati-th byte ofo to the end.
ando, . .. , 0, are not simply variations of. The parametethreshold should be set to at least

In this paper, we use a dictionary-based Compressim? encoded size.of a triplet (whose size is at Ie_:ast 1) to
scheme as our encoding and decoding algorithms. SpeEfSUre that the size of the compressed result is smaller

ically, we uses, , ... ,o, as “extended” dictionaries for than the original. _
compression of. The object®:, .. . , 0, are determined 1 he Steps (1) and (2) represent the searching of the

via a selectionalgorithm which tries to identify objects |0Ng€st common substring between the part edirrently
that are “similar” too. The measure of similarity is the 2€ing processed and the partdhat has been processed

number and length of common substrings. (0o specifically) together with the reference objects; ,

. L, 0np. The more similar the reference objects are,to
Obviously, saving is possible with our compactio : .
X) . the more common substrings there are, and the better is
technique if and only if

the compression. This is the most time consuming part of
the encoding algorithm, and is implemented using hash
tables in our case.
where|o| denotes the size of an objecands is the bit In general, compression gets better with larger
transfer rate on the link betweénh andS. A necessary though the marginal improvement diminishes. The case
condition for this islo’| < |o|, and the absolute reductionwhenn = 0 is basically the.Z77 algorithm. In that case,
in latency is proportional to the size ofand inversely an ordered pair token, instead of a triplet, is sufficient.
proportional tos. Hence, our compaction scheme will Decoding is straightforward and is comparatively much
make most sense when transferring Web responses in faer. Its detail is shown in Figure 4, and should be self-
last hop, where is of reasonable size andis typically explanatory.
small. It should be clear that the above encoding algorithm is
The underlying observation is that dictionary-basddssless. Though it works for any objects, it is most appli-
compression scheme (the most well known being tlwable to text (e.g., plain ascii, HTML) objects. For graphi-
LZ77[15] and LZ78 [16] family) works because of the recal objects that are already in compressed form (e.g., GIF,
currence of common sub-strings within a document. TRPEG), the amount of non-trivial similarity among objects
basic idea in our proposal is to exploit this notiorsahi- is minimal. Lossy compression techniques can drastically
larity among multiple documents for reducing transfer. ifeduce the size of a graphical object while retaining most
a number of similar documents have already been tramg-its “visible” quality. Thus in the sequel, we consider
ferred from the web server to the client, transfer of thifie use of compaction on text objects only.
next similar document can be done in an efficient manner.We defer to Section IV to provide the performance

Fig. 3. Encoding Algorithm

tselectt tencodet tdecodet Jo?[< J%[

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

numbers for the above encoding and decoding proce
dures.

C. Selection Algorithm

In order to obtain good compression result, the selec
tion algorithm needs to be able to pick a set of referenc
objects that are similar to the requested object. While ex
amining the content of the objects is the only sure way
of deciding if they are similar, this process is too com-
putationally expensive, especially when the collection o
objectsis large (e.g., all the objects in a cache). Therefor:
we are left with using heuristics based on other attributes Fig. 5. Path Similarity and Path Difference

of the objects. These definitions are graphically illustrated in Figure 5.

A natural choice for selection parameter is the Namks an example, the URLsitp://www.cnn.com/US/news/abc
or the Uniform Resource Locator (URL) of the objectyn o nww.cnn.comusider have a path similarity of 2
Generally, the URL does not tell much about an objecty 4 5 path difference of 3

content. We argue though that the structure of a URL may\yhen the path similarity is 0, it means that the two

provide good enough hints. _ _ URLs refer to objects from different Web sites. When

By treating URL as path name, a collection of object§ai similarity is at least 1, the path difference indicates
can be viewed as leaves in a forest, with all objects frofje number of “hops” it takes to go from one URL to the
the same site represented in a distinct tree. We 0bsepfRer in the tree hierarchy. In particular, if the path differ-

that a large majority of sites tend to follow a consistent, e is 2, it means that the two URLS belong to the same
design style, which translates into the use of similar Stru&rrectory.

ture and formating instructions. Additionally, the hierar- \yith the above. we are now ready define a similarity
chy is often structured in terms of related topics, and opélationship. Given a URL, thesimilarity orderingrel-
jects pertaining to similar topics tend to share commagye tow. denoted byd,,, is defined as follows:

3 y— .

path-diff(u,u’) ¢

content.
In summary, we conjecture that Web documents that path-sinfu, u,) > path-sintu, us)
are “close” together in the hierarchy formed by their ,, = . iff and

URLs tend to be more similar than those that are “far
apart.” A degenerate case of this is used in the differenc-

ing scheme described in [2], [9], [12], where an older vefrhjs essentially says that a URL is considered more
sion of a document with the same URL is used to compW@nilar to URL » than another URlw, if u andu, share
the delta for transferring a newer version of the documer&tmnger common prefix and it takes fewer hops to go from

To precisely specify our heuristics, we first introducg to «, than fromu to us. In other wordsy andu,; share
some notations. more common path and fewer disjoint hops. It is easy to
see thafd, is a partial ordering.

A precise selection policy requires a total ordering.
Thus, we extend],, to a total orderingd?, as follows.
ﬁfeul is related tou, underd,, then they are related in
the same way unden!,. Otherwiseu; 3¢, u. iff path-
diff (u, u1) is at mostpath-diff(u, us). Clearly, there are
multiple ways to extend a partial ordering to a total or-
dering. This particular definition gives priority to the path
difference, and is the one studied in this paper.

Onced! is defined, the selection algorithm is straight-
forward. It basically will select the top most similar

We define thepath similaritybetween two URLs and URLs from all the URLs available for selection. The
u' as path-sinu, u') be the length of the longest com-pseudo code for the selection algorithm is given in Fig-
mon prefix ofu andwu’ and theirpath differenceaspath- ure 6. We note that’ is the set of URLSs that are avail-
diff (v, u") = Ju| + |u'| - 2 * path-sinfu, u') able for selectiort,andr is the maximum number of most

similar URLs needed. In summary, the selection heuristic

3Since we consider only HTTP URLSs, for ease of our disposition, we
assume the protocol part has been omitted. 4This is typically a subset of the cache.

path-diffu, u;) < path-diffu, uz)

Notations. Letu andu’ be two URLS® They are writ-
ten respectively a&/p, /p2/ ... /pnandh’/q1/q2/ ... [@m.
Each of theh, h', p; andg; is called asegmentThelength
of an URL is defined as the number of segments in t
URL. Thus,|u| = n + 1. We define anumeratorfunc-
tion [-] for URL as follows:u[0] = h, and forl < i < n,
uli] = p;. Additionally, u[i..j] is the pathu[i]/ ... /u[j]
pis aprefixof wif forall 0 < i < |p|, p[i] = u[i]. pis
acommon prefiof v andu' if p is a prefix of bothu and
u'. |

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Section | meand | meano Selected subset 61
function select (u,C,n) { IV-A.1 0 >1 traces from periodic downloadin
/* filter out objects from different sites */ IV-A.2 2 >1 traces from CGI output
(1) ¢ =C-{u € C|path-simu,u’) = 0}; IV-A.3 2 >1 random selection from Web site:
S =0; IV-A.4 > 2 >1 random selection from Web site
while (|S| < min(n, |C])) { IV-A.5 >0 >0 random selection from Web site:
T = subset ofC' — S with minimum path
difference withu; Fig. 7. Summary of Experiments Performed
S =S + subset ofl" with maximum path
, similarity with u; Set 3. Finally, in the last set of experiments (Sec-
return S tion IV-C), we “follow” real user access trace to perform
1 actual downloading of Web objects using compaction. We
compute the actual savings and compare that with the re-
Fig. 6. Selection Algorithm sults of identical downloading undegzip and diff. We

tries to minimize the path difference, while maximizin Iso compute and compare the average latency incurred
compactiongzip and diff under various link band-

the path similarity. The filtering step (step (1)) remov
all the URLs that do not belong to the same site:as

In the following, we refer to our compaction scheme
IV. EXPERIMENTAL RESULTS asnpac{(n), wheren is the number of reference objects

In this section, we present the results of our experimets€d- While we have experimented with many differ-
tal evaluation of our proposed compaction technique. OBt values ofu, all experiments presented below used
experiments are broken down into 3 sets, each of whichis3- This value is selected because the performance of

intended to establish a distinct claim. npac{3) is noticeably better thampac(1), whilenpac(7)
is only slightly better thampac{(3). Furthermore, be-

Set 1.In the first set of experiments (Section IV-A), wecause of the length limitation, we can only present results
examine if the similarity orderin@!, introduced in Sec- from selected sites and Web traces.
tion IlI-C (or equivalently the selection algorithm shown
in Figure 6) does actually pick out “good” reference ob®. Set 1: Usefulness of Similarity Ordering

jects that are useful in the encoding procedure (Figure 3)\we like to study the performance npactwhen refer-

In other words, we would like to verify our conjecture thagnce objects of different path differences and similarities

similarity in URL implies certain degree of similarity inare ysed. Different groups of experiments are performed,

their content. they are broken down by path differences and path simi-
For comparison purposes, we perform the same expesrities (see Figure 7 for a summary). To precisely state

ments with a standard compression scheme, naw&ly, our results, we first introduce some notations.
[12], and a standard differencing scheme, nandif§,-e

| gzip (abbreviated adiff in the sequel) [2], [9], [12}. N.otations. Let Q be a set of objects available for se-
lection, and{uy, ... ,u,} C Q. Let

Set 2.From experiments in Set 1, we demonstrate that path-sinfu, {u1, ... ,u,}) => " | path-simfu, u;)
objects high in the similarity ordering serves better as ref- path-diffu, {u, ... ,u,}) = > i, path-dif{u, u;)
erence ola_jgcts than Fhose low i.n the similar.ity orderi.ng)eﬁne the sef\q(8,0) = {(u, u1, ... ,u,) C Q | path-
The remaining ques_tlon to asl_< is, in a regl-hfe browsing;¢t (u,{ur, ... ,up}) =6 and path-sinfu, {u1, ...
session, how “high” in the similarity ordering can the S, }) =0}
lection algorithm typically find objects at. In order words,
we study the actual distribution of path difference and 20 Web sites were used in the experiméns of these
path similarity in a typical browsing session. sites were ranked in the top 25 most visited sites, and 14

We perform this set of experiments (Section IV-B) usvere ranked in t_he top 500_ site§. The rest of the sites
ing actual client-side access log. Our objective is tiyere chosen to include various categories. The category

demonstrate that typical browsing patterns of actual userg , .
. Swww.abcnews.com (news) www.aol.com (information)
contain sufficient locality such that reference objects wWitw.bofa.com (commercial) www.cisco.com (commer-

high content similarity (as defined by the similarity ordersial) ~ www.cnet.com (techncial) ~ www.columbia.edu (aca-

ing) are frequently available in the client cache, and hen?‘ém'c) www.edmund.com (commercial) sportszone.espn.com
news) www.fcc.org (government) www.ibm.com (commercial)

can be selected. www.javasoft.com (technical) www.lucent.com (commercial)
www.microsoft.com (commercial) www.netscape.com (commer-

5gzipis like compaction withe = 0, but with a number of additional cial) www.nycvisit.com (information) www.techweb.com (techni-

optimizations.diff is like compaction witm = 1. Strictly speaking, the cal) www.tripod.com (information) www.umass.edu (academic)

differencing schemes that have been proposed and studied apply onlywww.usatoday.com (news) www.ustreas.gov (government)

objects with the same URL. We relax this for our comparison. 7Source: MediaMetixyww.mediametix.com)

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

gzip +— gzip ~—
diff + gzip -+~ diff + gzip ~+-
03 - npact(3) 8- | oal npact(3) -8

Compressed File Size Ratio
Compressed File Size Ratio

L L L
30 40 50 60 70 -
0 2 4 6 8 10
HTML File HTML File

Fig. 8. Different Versions ofttp://www.abcnews.com/index.html Fig. 9. Response fromww.altavista.digital.com
0.45 T T T T T T T T T

gzip —

diff —+-

npact(3) o |

breakdown is 3 news sites, 3 information sites, 7 commer- 0al
cial sites, 3 technical sites, 2 academic sites and 2 govern-
ment sites. For the files collected, all binary, graphics and
audio files were removed. Also, only files with size be-
tween 1K and 64K were considered.

The experiments in this set operate as follows: For each
site studied, we first pick a random object from the site.
Then we try to simulate the transfer of the chosen ob- Y
ject using compaction by selectimgother objects (from o 4
same or different sites) to be used as reference objects.
We compute the size of the encoded object, and tally this
by path difference and path similarity values. Fig. 10. Objects from the Same Directory

Compressed File Size / Original File Size

L L L L L L L
4 6 8 10 12 14 16 18 20
Web Sites

A.1 Objects with same URL (mear= 0, means > 1) A.2 Objects from CGI scripts with different parameters
(meand = 2, meary > 1)

For brevity, we present our results only for a rep-
resentative sitewww.abcnews.com. In this experiment, IR ™ X -
we collected objects from the Web sitew.abcnews.com www.altavista.digital.com with different query s_trlngs. Fig-
every hour, over a period of 5 days (from the Ma*lregshows the output for 16 pages, the first 8 pages are

23 1998 to May 28 1998). Different versions of Ob_or_the query stringavaand the next 8 pages for the query
jects with the same URL were grouped together artiiingnetwork _
sorted in chronological order. For each sequence of ob-1N€ results show that bothiff andnpactperform very
jects, we applygzip, diff (between the current and theVell (mean compression ratio of 15%), whigip per-
last version), anchpact (the 3 most recent versions)0rms much poorer (mean compression ration of 30%).
to determine the size of transfer. While comparisorfd? intéresting observation was that there was no signif-
were performed for a number of URLS, only the yRriicant dlﬁgrence in result when responses frqm d_lfferent
http:/Awww.abcnews.com/index.html, which generated a total 4U€"Y strings were _used for referencing. .ThIS |r_np_l|ed that
of 69 different objects, will be described here. Othdnost of the 5|m|Iar|ty_ came from formating. Similar re-.
URLS exhibit similar trends. sults were also obtained from requests to the electronic
Figure 8 shows the ratio of the encoded and originait¢ like www.amazon.com. , _
size for all 69 objects. In general, HTML pages that are being updated contin-
uously (stock quote, sports scoreboard, newspaper head-
|'lines, weather, movie showtimes, etc.) can be transferred
very efficiently undenpact

We submitted a number of queries to the search engine

The results show that for objects with same UR
which tend to have similar conterdjff and npactper-
formed much better thagzip. In addition, Figure 8(b)
Ishows_ tha‘npa(_:tls better in capturlng_5|mllar|ty amongA.s Objects from the same directory (mes 2, mean
ess similar objects. For the set of objects selected evéry
hour, the mean compression ratios are 0.2772yfp, c21)
0.0358 fordiff and 0.02718 fonpact When the set of For each of the 20 Web sites, the objects collected
objects is selected every 4 hour, the mean compressigere filtered such that only objects in directories with
ratios are 0.2768 fogzip, 0.0703 fordiff and 0.0473 for 4 or more objects were extracted. After this fil-
npact tering, the minimum number of objects left per site

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

wp the reference objects share little similarity with the re-
AN quested object.

Over all 20 sites, the mean compression ratios were
0.2726 fompact 0.3013 fordiff and 0.3317 fogzip.

A.5 Objects from different Web sites (meéan> 0, mean
o >0)

In this casenpactdid not perform as well as botjeip
anddiff. The mean compression ratios were 0.3145 for
both gzip and diff, and 0.3455 fonpact This confirms
R T that similarity among randomly selected objects is low.

10
Web Sites

Fig. 11. Objects from the Same Site A.6 Compression Ratio with respectd@ndo

was 61 www.columbia.edu), maximum was 3,964 The previous experiments showed thapact per-
(sportszone.espn.com)and the average was 1,110formed well on the average for specific rangesy @nd

The mean compression ratio for each Web site is plgt-values. Due to space limitations, we cannot include the
ted in Figure 11. measurement plots. Instead, we will highlight observa-

tions drawn from these experiments.

Compressed File Size / Original File Size

mp!
°
S
o

For all 20 Web sitesnpact performs better thagzip
on the average. Of the 20 siteémactperforms more than 1. The use ob ando as selection parameters correctly
50% better for 6 sited,0% to 50% better for 13 sites, andselected objects witsimilar contents for the case of small
10% better or less for only 1 site. The performancdifif ¢ and larges. For example, choosing reference objects
tracked that ofipact though not in all cases. In 3 out offrom the same directory generated encoded objects that
20 sites diff performed worse than eveyzip. The mean were smaller thagzipconsistently (on the average) for all
compression ratios over all 20 site were 0.20121pact sites studied. Therefore, the conjecture that “closeness”
0.2419 fordiff, and 0.3242 fogzip. of URLs implies similarity in content was true for the case

of smallé and larges, but not true for largé and small
A.4 Objects from the same Web site but different direer.
tories (mead > 2, means > 1) 2. The parametetf was better in predicting good perfor-

In our experiments, the minimum, maximum, and a\{spf‘gce for srg_alzﬁ, asin tne case Oﬂ;: (|) (same "IJRL) and
erage number of files per site was 25@anycvisitcom), O - 2 (Same directory). However, for larger valuesnay
5,550 kportszone.espn.com), and 1,594 be a better indicator of good performance than

Figure 11 shows the mean compression ratio for each®f While the compressionis good for smadind larger,

20 sites. As expected, the results show that objects chodei{1ows no clear trend when only one of the dimensions
randomly from the same Web site had a smaller amoutOr @) is varied.

of similarity. Nevertheless, out of the 20 sites, relative 1§ - get 2: Distribution of Similarity Ordering in Actual
gzip, npactperformed 50% better in 2 sites, 10% t0 50% Ty5ces
better in 12 sites, less than 10% better in 6 sites.

In 3 sites thoughnpact performed worse thagzip.
Two of them were academic sites and the third was>® "™ . S~
government site. Both academic sites contained a la gulgnty order_lng are used as references. The objec_tlve
number of objects from different departments and (pro fth|_s section is to show that_ In an ac_tual user brOWS'T‘g
ably) prepared by different people, with little commory€SSIon, our prqposed. selgctlorj glgquthm |s_able to pick
in style and formating. The government site containéﬁo rgference objects with high similarity ordering most of
a large number of plain text file with very minimum for-IN€ time.. .
matting. Since the current implementationmgfactper- To verify our claim, we made use of an actual user

formed worse thawzipf used purely as a compressiontrace' We had two reqwrem(_ants fpr the trace._ First, the
schemenpactthus performed worse in these cases. requested URL must be retained in the trace in order to

Note that when objects are very diferent, the megfBiERL ™ B, IGO0 B S C e et
compression ratios afzipanddiff will be very close be- 9 q

causediff will simply output the requested object plusper-cllent statistics could be collected. The first require-

some overhead. Therefore, the observation that the m%ﬁm ruled out the use of most publicly available HTTP

compression ratios ajzip and diff were approximately gs (e.g., UC Berkeley Home IP Web Tratesd Dig-
the same for these 3 sites provides further evidence tha&http://www.cs.berkeley.edu/~gribble/traces/index.html

Results from Section IV-A show thapactperformed
s‘j;gnificantly better thagzip anddiff if objects with high

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

T
npactigzip >—

%.
Distribution

npact File Size / gzip File Size

L T i ©
Path Similarity @ Path Difference

L L L L L L
0 10 20 30 40 50 60 70
Users

Fig. 12. Distribution of Path Difference and Path Similarity in Boston

University Trace usings = 64 Fig. 13. Performance afpactusing traces fromvww.bell-labs.com

ital's Web Proxy Trac®) because the URLs had beerour selection heuristics can find highly similar URLs. In
anonymized for privacy reason. The second requiremdatt, at least 80% of the accesses would benefit from the
ruled out the NLANR? cache access logs because the lagse ofnpact
entries were highly aggregated. With these limitations,
we can only find an older log from Boston University [3[C- Set 3: Performance afpactbased on Actual Traces
which satisfied our requirements. C.1 Object transfer size reduction

The Boston University trace contains 762 unique users

and after removing URLs with extensions that indicatetclzlJ ;rll e;[rr‘:i)l:l:tacl)fssegv?r]: iXS:ir'mZTtst; Weer?cc))mw?rl:ti tggt ac-
that they may be non-HTML or non-text objects (e.g g mp yp gnp

those with extension gif, jpeg etc.), 197,004 URLS Wer.g'e" selection, encoding _and plecoding) for actua! access
left. The maximum number of URLS per user is 4,41 aces. The Boston University trace we used in Sec-

and the minimum number of accesses per user is 16. jgh IV-B could not be used here because the age (3 years

users have 100 or more URLs accesses. For each usgr of the logs meant that many of the URLs were out-

access log, we used the selection algorithm to seleet- ated, and could no longer be fetched.

erence objects, whose aggregate path differences and patW h at we chose to do instead was to take a specific

similarities are recorded as & &) tuple. To simulate the multi-day server log, divide it into per-user access traces,

effect of caching, we used a moving window sizeugf performnpactfor each such trace, and compute the mean
wherew represer;ts the cache size compression ratio. In the following, we presented our re-

Figure 12 shows the density function of tiied) tuples sults based on the sit@ww.bell-labs.com, where we had ac-
for the case ofv = 64. Of all the requests, 78% found eSS to _the detailed server log.
' ’ Specifically, we obtained the server log wfw.bell-

or more URLs from the same site. Among these requests,
37.7% found 3 or more URLS with = 0 (same name), \abis.com for 7 days from June 20 1998 to June 26 1998.

76.7% hadb < 6, and 90.7% had < 10. Whenuw is in- In this log, we were able to extract 3,296 user access trace

creased to 1024, the improvement only improves slightl l?ased on unique IP addresses) that we *followed" using

The distribution of(d, o) was heavily concentrated in pact gzipanddiff, :
the regions ob < 10 and 80% of the tuples hati < 6 F|gure 13 plots the performz_ince opact relative to _
(i.c., mears = 2)—. Earlier results (Section IV-A) demon-97P Logs were ordered by their number of access. Fig-

. : — ure 13 shows the ratio for the first 70 users with the
strated that the region with mean= 2 corresponds to most number of accesses and Among the remaining 3,226
region of high object similarity. Witlh = 6, the 3 ref- g g°

erence objects must either be all from the same direct users, 2,831 out of 3,297 users had ratios smaller than 1

r ! :
(Section IV-A.3) or have at least one object with the Sar?g?g?;ﬁ?g{ﬁg?zpﬁ;2352 oeu:;)t: first Zt(:) vzfr;had
name (Section IV-A.1). From the results of Section IV-A ‘ 9 gzIp

the first case has a 38% improvement ogeipand 17% for all 3,279 users was 0.6693.

) . : In summary, 86% of all users would benefit from the
improvement ovediff, while the second case can have a

. . ; use ofnpact The larger the number of accesses, the more
90% improvement ovegzipand a 23% improvement over,.
diff likely that npactwould perform better. It can also be ob-

In summary, the distribution oB(c) in this trace con- served from Figure 13(b) that substantial savings were

. L : gpssible even for users with very few accesses.
tains a significant amount of reference locality such th . e 2
The comparison withliff is similar. The performance

Sftp://ftp.digital.com/pub/DEC/traces/webtraces.html of npactrelative todiff for all users was 0.8170 on the
LOhttp:/fircache.nlanr.net average.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

n=0|n=1|n=3| n=7
tseloct(MS) 0.00 | 0.17]| 020] 023
encode (kbyte/s)] 900 722 380 176
decode (kbyte/s)| 2,830 | 6,011 | 6,255 | 6,750

Fig. 14. Select/Encode/Decode Processing Times

m
Pl

T T
No Compression +—
npact —+

=3

gzip -
diff + gzip x|

for compression. Our compaction technique significantly
generalizes previous work on optimizing Web transfer us-
ing compression or differencing.

Through experiments, we observe that our compaction
technique provides significant improvement over previ-
ously proposed techniques for real-life user accesses.

The technique of compaction can be applied to other
domains in addition to Web browsing. For example, we
believe it is also applicable to electronic mail, and can po-
tentially be a part of a generic wireless middleware layer.

Log2(Latency (ms) of Transmitting 1 Kb)

;;;,;;L::: | [l]

2]

3 4 5 6
Log2(Link Bandwidth (Kbps))

Fig. 15. Transfer Time (in ms/kbyte) vs. Effective Link Bandwidth (in
kbyte/s)

C.2 Latency reduction (4]

Latency reduction is achieved in our schemgydfect+ 5]

!
o o
tencode® tdecodet o] s | < Lol

\

In order to quantify tt‘sle reduction in latency, the selegg
tion, encoding and decoding speechgfct gzip anddiff
were measured. Figure 14 shows the average execut[i%n
time of thenpactwith respect tow, averaging over 1,000
files. The measurements were done on a SUN Ultra2. The
compression speed gripis 2,545 kbyte/s angunzipde- 8]
compresses at 12,270 kbyte/s. The encoding speeif of
-eis 961 kbyte/s. [

To ease the comparison in latency, we normalize all the
values to the inverse of rate (measured in ms/kbyte). The
normalized transfer timd,),,, (ms/kb) is defined a%,,,, [10]
= tencode-nort tdecode-nort “’—s| * ﬁ (Selection time is neg-
ligible).

Figure 15 shows the values offimefor various algo-
rithms for effective link bandwidths) from 1 kbpsto 512
kbps. The base case of plain transfer without compressiéfl
is included for comparison. Despite its higher processing
overhead, the normalized latency incurred by usipgct
is the lowest among all 4 curves tilreaches 256kbps. (13]
This can be attributed to the higher compression achieved
by npact Beyond thatgzip performs the best due to its[14]
low overhead. Fos > 8096 kbps, plain transfer incurs
the smallest latency.

[11]

[15]
V. CONCLUSION [16]
We presented a technique which we aakhe-based
compactiorfor reducing the size (optimizing the latency)
of Web transfer. The two key ideas behind our technique
is: (1) an efficient selection heuristic, and (2) the use
of an extended dictionary (specifically the client cache)

REFERENCES

Timo Alanko, Markku Kojo, Mika Liljeberg, and Kimmo
Raatikainen. Mowgli: Improvements for internet applications us-
ing slow wireless links. IrProceedings of PIMR(pages 1038—
1042, Helsinki, Sep 1997. |IEEE.

Gaurav Banga, Fred Douglis, and Micheal Rabinovich. Optimistic
deltas for www latency reductiorJSENIX 1997.

Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Char-
acteristics of www client-based traces. Technical Report BU-CS-
95-010, Department of Computer Science, Boston University, July
1995.

Adam Dingle and Tomas Partl. Web cache coherefdh Inter-
national World Wide Web Conferendday 1997.

Bradley M. Duska, David Marwood, and Micheal J. Feeley. The
measured access characteristics of world-wide-web client proxy
caches. USENIX Symposium on Internet Technologies and Sys-
tems Dec 1997.

Armando Fox and Eric Brewer. Reducing www latency and band-
width requirements by real-time distillation. Fifth International
World Wide Web Conferencilay 1996.

James Griggioen and Randy Appleton. The design, implementa-
tion, and evaluation of a predictive caching file system. Technical
Report CS-264-96, Department of Computer Science, University
of Kentucky, Lexington, KY, June 1996.

James Gwertzman and Margo Seltzer. World-wide web cache con-
sistency.Proceedings of the USENIX Technical Confereri&96.
Barron C. Housel and David B. Lindquist. Webexpress: A sys-
tem for optimizing web browsing in a wireless environmento-
ceedings of the Second Annual International Conference on Mo-
bile Computing and Networkingages 108-116, Nov 1996.

James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta al-
gorithms: an empirical analysisACM Transactions on software
Engineering and Methodlogy'(2):192—214, Apr 1998.

Thomas M. Kroeger, Darrell D.E. Long, and Jeffrey C. Mogul.
Exploring the bounds of web latency reduction from caching and
prefetching. USENIX Symposium on Internet Technologies and
SystemsDEC 1997.

Jeffery C. Mogul, Fred Douglis, Anja Feldmann, and Balachander
Krishnamurthy. Potential benefits of delta encoding and data com-
pression for http. IrProceedings of the ACM SIGCOMMages
181-194, 1997.

Venkata N. Padmanabhan and Jeffery C. Mogul. Using predic-
tive prefetching to improve world wide web latency. Gomputer
Communication RevievACM, July 1996.

Duane Wessels and K. Claffy. ICP and the Squid Web Cache.
IEEE Journal on Selected Areas in Communicati®6(3):345—
357, April 1998.

Jacob Ziv and Abraham Lempel. A universal algorithm for se-
guential data compressiotEEE Transaction of Information The-
ory, IT-23(3):337-343, May 1977.

Jacob Ziv and Abraham Lempel. Compression of individual se-
guences via variable-rate codingEE Transaction of Information
Theory 1T-24(3):530-536, Sep 1978.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

