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Abstract

This paper considers theoordinated radio resource allocation problefor users which are simultaneously
covered by multiple overlapping heterogeneous wireles&ar&s. As the resource allocation decision depends on
the channel measurement and feedback from users, inefficemd instability arise if a selfish user can manipulate
its measured channel state to increase its gain from netv@uk contribution in this paper is the introduction of
incentive compatibility as an addition criterion in the idgsof a resource allocation scheme.

We formulate thamulti-cell resource allocation gam® capture the strategic interactions among users. A resour
allocation scheme is incentive compatible if each useriidant strategy under the resulted game is to honestly
report its channel state. We consider both multi-assariagetting, where a MS is allowed to simultaneously asseciat
with multiple BSs, and single-association setting, wher#l% is only associated with one BS. We show that for
multi-association setting, a natural generalization afpprtional fair allocation is incentive compatible. In t@st,
the optimal solution using the same fairness criterion ursitegle-association is not incentive compatible. In order
to exploit the benefit of single-association, we propose ltation scheme based on selfish load balancing. We
show that such a scheme always converges to a Nash equilibeind achieves performance close to the optimal

single-association allocation.

I. INTRODUCTION

Overlapping coverage of wireless base stations (B&) common phenomenon in mobile communication
systems. For a particular radio access network, neighpar@tis or sectors overlap with each other. In addition,
deployment and inter-operation of a wide array of wirelesseas networks, ranging from 3G network to Wi-Fi

hotspots, open the opportunity of overlapping coverage fBSs using heterogeneous radio access technologies. In

lwe use BS as a general term to refer to both 3G base station &l afcess point (AP).



such an environment, a multi-mode mobile station (MS) caxilflg associate with one or simultaneously multiple
BSs.

In an overlapping multi-cell heterogeneous wireless netadhe coordinated resource allocation decision can be
decomposed to two layers: tlirter-cell association control layethat decides which BS(s) a MS should associate
with, and theintra-cell allocation layerthat determines how radio resource of a single BS should &edlamong
its associated MSs. The traditional criteria to judge a ues® allocation scheme include efficiency, fairness and
load balancing.

Proportional fair allocation [1] is widely accepted as apmpriate allocation scheme for elastic traffic in wireless
networks [2] [3], as it strikes a good balance between effiyeand fairness. The tradeoff is particularly important
when MSs use different data rate to communicate with the €8according to their various channel conditions.
The concept has been generalized to multi-cell environii@f$] [6], thus fairness is considered in a global sense,
with load-balancing among cells naturally incorporatet ithe definition.

However, implementing multi-cell proportional fair allation requires the channel state information of adjacent
MS-BS pairs to be known. In practice, the channel state toramission from BS to MS is measured by individual
MS, which then periodically feeds the channel state backéorésource allocator. As a result, it is possible for an
intelligent and selfish MS to manipulate the reported chhetates to increase its own resource allocation, while
causing problem of inefficiency and instability for the gyat Our contribution in this paper is the introduction of
incentive compatibilityas an additional criterion in multi-cell resource allooati

We formulate themulti-cell resource allocation gami® capture the selfish behavior of users. The game defined
by a given resource allocation scheme is said tangentive compatibleif the dominant strategy for each player
is to honestly measure and report its actual channel state.

We consider both multi-association setting, where a MS lisned to simultaneously associate with multiple
BSs, and single-association setting, where a MS is onlycésteal with one BS. Our result shows that for multi-
association setting, a natural generalization of propodi fair allocation (Coordinated Proportional Fairness o
CPF), which can be efficiently solved as a convex programrpinofplem, is incentive compatible. In contrast, the
optimal solution using the same fairness criterion undeglsiassociation is not incentive compatible. In order to
exploit the benefit of single-association, we propose ascation scheme based on selfish load balancing (SLB).
We show that SLB always converges to a Nash equilibrium. iatadn results show that SLB converges quickly
and performs close to Int-CPF.

The paper is organized as follows. Related work is reviewe&ection Il, with system model and problem
formulation presented in Section Ill. In Section IV, we mBsthe Coordinated Proportional Fairness (CPF)
allocation scheme for multi-association setting, and yaelts incentive compatibility. The integral variant of EP
(Int-CPF) and the selfish load balancing (SLB) scheme foglsiassociation setting are presented and analyzed in

Section V. In Section VI, we evaluate the performance ofoischemes proposed. We conclude in Section VII.



II. RELATED WORK
A. Resource Allocation in Wireless Networks

The criterion of fairness has long played a central role isigieng of resource allocation schemes. The most
common understanding of fairness in computer networksabatsly themax-min fairnessas defined in [7]: rates
are made as equal as possible subject only to the constirmmtsed by link capacities. Howevenax-min fairness
is not an efficient resource allocation solution for elagtdfic in multi-rate wireless communication system, besgau
when some MSs use a lower bit rate than the others, the peafaenf all MSs sharing the same BS is considerably
degraded to the same level as the worst one, as shown in [8].

Compared tomax-min fairnessproportional fairnessas proposed by Kelly in [1] strikes a better balance
between efficiency and fairnedRroportional fairnesscan be defined as the maximization of an objective function
representing the overall utility of the flows in progresseTitility function chosen is logarithmic function of the
allocated bandwidth, where the value of a flow for M8 M increases with its allocated bandwidity,, in
proportional tologR,,. Formally, an allocation schem&* is proportional fair if and only if among all feasible

schemess:

S* = argmazg Z logR') (1)
meM

Proportional fairnessfavors resource-efficient requests more tmazx-min fairnessby allowing large sharing
to increase further with small sharing decreased, if chasfgihe assigned bandwidth vectors result in the sum
of the proportional changes to be non-negative. Thus, pshahprove system efficiency, while still preventing
resource-efficient connections from starving resouredfitient connections totally. In addition, it is shown by [9
to satisfy the axioms defining a Nash bargaining solutiorj.[10

In a single-cell environment for both cellular networks Etjd Wi-Fi networks [3], the proportional fairness is
implemented by allocating the radio resource of a BS (asgtigaily) equally among associated MSs, regardless
of their different efficiency in using the resource, i.e.githvarious link data rates. If timely channel feedback
is available, channel-aware opportunistic schedulingrittyms [2] are often employed to exploit the “multi-user
diversity”. In this paper, we consider time-averaged cledustate as input, and assume the underlying scheduling
algorithm of each BS (which can be channel-aware) suppbetsasource allocation decision.

In a multi-cell wireless environment, techniques have bpeposed to intelligently associate MSs with over-
lapping BSs to achieve globally optimal proportional faisa [4] [5] [6]. In this paper, we focus on the load-
balancing aspect of performance improvement, and assueneetfource capacities of neighboring BSs are fixed
and independent. The other forms of inter-cell optimizatisuch as dynamic channel assignment and interference

avoidance, can be applied orthogonally.



B. Algorithmic Mechanism Design

Game theory aims to model situations in which multiple gartints select strategies that have mutual conse-
guences. Following the definitions used by Nisan et al. if,[Algame consists of a set of players,1,2, ..., n.
Each playeri has his own set of possible strategies, $qy To play the game, each playérselects a strategy
s; € S;. We uses = (s1,...s,,) to denote the vector of strategies selected by the playersSaa x;S; to denote
the set of all possible ways in which players can pick stiateglhe vector of strategiese S selected by the
players determines the outcome for each player. If by usingique strategy, a user always gets better outcome
than using other strategies, independent of the stratptaged by the other players, we say that the strategy is the
user'sdominant strategylf users select strategies such that, no player can uraltechange its strategy to gain
more payoff, we say that the game reachddaazh equilibrium

Algorithmic mechanism desidf1] is a subarea of game theory which deals with the desigyaofes. It studies
optimization problems where the underlying dataaigpriori unknownto the algorithm designer, and must be
implicitly or explicitly elicited from selfish participast(e.g., via a bid). The high-level goal is to design a protoco
or “mechanism”, that interacts with participants so tbelfish behavior yields a desirable outcarAection design
is the most popular motivation in this area, though therenzaiay others. When truth-telling is the dominant strategy

of all participants, we say the mechanismrisentive compatible

Ill. SYSTEM MODEL AND PROBLEM FORMULATION
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Fig. 1: A convergent mobile communication system

Our discussion is based on a convergent system of heterogeméreless networks as shown in Figure 1. The
main components of the considered architecture are: nmdtie terminals, all-IP core network, and the integrated
radio access networks (RANS) sitting between them, as ibestbelow.

1) Ongoing silicon development enables chip makers to mategmultiple radio access technologies in a single
chipset. For example, Qualcomm’s Snapdragon chipset foi-mgitebooks includes Wi-Fi alongside 3G, Bluetooth,
broadcast TV and GPS (Global Positioning System) capisil[tL2].



2) Meanwhile, wireless core networks are quickly evolvingiards IP-based mechanisms [13]. IP layer enables
provision of a richer set of services independent of the sxoetworks.

3) As a bridge between the two components above, a flexiblgtacture capable of managing a large variety
of coexisting radio access networks are being standardizgd15] [16]. The proposed Common Radio Resource
Management (CRRM) functions consider the pool of resouirtedl radio access technologies (RATS) as a whole,
aiming at better performance than stand-alone networks.

As shown in the figure, the radio resource manager can bepieted as a logical entity which gathers input
from different RATSs, and coordinates resource allocatienisions among them. In practice, the channel state is
measured by individual MS, which periodically feeds it backhe resource allocator for informed decision. Thus,
an intelligent and selfish MS can manipulate its reportechobhstates, if it can gain more from network by doing
S0.

Based on this observation,multi-cell resource allocation procedurean be interpreted as a game as follows.
Consider a network with a sét of BSs and a sed/ of MSs. Let a linkl = (m, b) be a pair of MS and BS that is
able to communicate with each other. We call such a paiadgjacent MS-BS pairEach MSm € M is a player
of the game. The strategy of a M8 can be described as a channel state veBigr= (R,.»,b € B), whereR,,;
gives the data rate supported betweerand BSb. The resource allocation outcome is calculated accordirthe
scheme employed by the resource manager, and the decigafoised by individual BS. Note that, if the reported
link data rateR,,, between MSm and BSb is not equal to the actual link data rai& ,, the effective data rate
will be less thanR; ,. On one hand, iiR,,, < R} ,, data is transferred by BS using,,,. On the other hand, if

'mb?
R, > R}, data is transferred by BS at a rate higher than that can hedetoded by MS, the resulted effective
data rate becomes lower than that can be achieved by the mosipsiate rateR’ . As over-report can be easily
detected [17], we focus on the case wheraunder-reports its channel state, if,, < R’ ,.

Formally, amulti-cell resource allocation game is defined agM, R*,R, S, z), where

e M is the set of MS players.

e R* = (R!,,m € M) consists of the actual link data rate vecf®f, for each MSm € M.

e R =x,R,,,m € M, whereR,, = {R,|R» < R},} specifies the strategy space of M@ m can choose

any link data rate vectoR,,, € R,, when playing the game.

« S is an allocation scheme which determines the allocatiotovdzased on the specified channel state input

ReR.

e z = (x,,m € M) gives the allocated data rate vector.

Applying the mechanism design framework [11], theriori unknown underlying data in our game is the channel
state experienced by individual MS. The algorithm desigiee resource allocator here) elicits the information
through the periodic feedbacks of MSs. The high-level geabi design a mechanism (the allocation scheme in
our game), that interacts with participants so that selfishakliior yields a desirable outcome (an efficient and fair
resource allocation in our game). Recall that, a mechangisaid to beincentive compatibleif the dominant

strategy of each participant under the designed mechamigm truthfully reveal its state. In our gamecentive



compatibility means the dominant strategy of each MS is to measure and iepohannel state truthfully.
In contrast, if a game is not incentive compatible, MSs caim gg cheating about its state, thus making the
system operate under inefficient state. Even worse, MSs raag karying their behavior as response for others’

strategies, which can lead to instability problem.

IV. MULTI-ASSOCIATION SETTING

This section presents a natural generalization of progmeti fair allocation in an overlapping multi-cell envi-
ronment, and analyzes its incentive compatibility. We asseach MS can simultaneously associate with multiple

BSs to achieve aggregate throughput. We will consider thglesiassociation setting in Section V.

A. Formulation

Given a linkl, we useb(l) to denote the corresponding BS, amd!) to denote the corresponding MS. We write
L for the set of all links. Ifb = b(l), we setAy; to be the required radio resource in BSo support per unit
flow through link!. If the channel condition between(l) andb(l) is poor, it can only support a low data rate,
thus more radio resource is required to transfer a unit of, flelich implies a higher resource consumption rate,
i.e., Ay is larger. On the other hand, if a MS-BS link is under good dehmrrondition, less resource is required
to transfer the same amount of data, thdg, is smaller. As wireless channel state keeps changing wiib,tthe
value of A; used in our problem formulation is a time averaged link stetéch is relatively stable for a decision
period. Forb £ b(l), we setA;, = 0, because sending flow over lirkdoes not consume any resource of BS
This defines a matrid = (4y,b € B,l € L).

For a given MSm, its several links through different BSs may substitutedoe another. Formally, suppose that
a MSm has a subset of. We write H,,; = 1 if m = m(l), so that linki serves the MSn, and setH,,; = 0
otherwise. This defines a 0-1 matX = (H,,;,m € M,l € L).

A flow patterny = (y;,1 € L) supports the rates = (z,,,m € M) if Hy = x, so that the flows over all links
serving the MSm sum to the rate:,,. We letC} be the finite radio resource capacity of BSfor b € B. A flow
patterny is feasible ify > 0 and Ay < C, so that the resource consumed by wireless links througlh B&m to
not more than its capacity. Note that we assume wirelessrtresions are “orthogonal” (e.g., through time or code
multiplexing), thus resource consumed by different linksh@ same BS can be linearly summed up, and resource
usage in different BSs is independent of each other.

To illustrate the notations, we look at Figure 2. Each of M$ and MSm, is equipped with both a cellular
interface and a Wi-Fi interface. Both MSs locate in the aeping coverage area of a Wi-Fi AR and a cellular
BS b,. However, their channel conditions to the AP and BS are wiffe MSm; can communicate with Wi-Fi
AP at 2Mbps and with cellular BS at 1Mbps, while M, can communicate with Wi-Fi AP at 1Mbps and with
cellular BS at 2Mbps. There arelinks corresponding to th¢ adjacent MS-BS paird; = (m1, b1), la = (mq, b2),

I3 = (ma,b1), andly = (ma,b2). The input to CPF allocation problem is: MS skf = {mj, ma}, BS set
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Fig. 2: CPF allocation example
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B = {by,b2}, link setL = {iy,15,13,14}, the matrixA = , and matrixd =
1 0 0 0 1 1

[eo R NI
N[

T
We assume unit capacity of both andb,, thusC = [ 1 1 } .
Formally, theCoordinated Proportional Fairness (CPF) allocation is the optimal solution for the following
problem:
mazimize Z wlog(Tm)

meM
s.t. Hy=xzAy<C

over z,y >0 (2)

wherew,,, > 0 is the weight assigned to different users representing thiéérent priority. We consider only MSs
with non-empty set of adjacent BSs, and BSs with non-emptpf&adjacent MSs. Further, as,,log(0) = —co
for all m, the optimal objective value for CPF allocation is achiewdten Ay = C andx > 0. We can rewrite the

constraints as follows without affecting the solution.
Hy=z,Ay=C,z >0,y >0 3)

The objective function is differentiable and strictly cane and the feasible region is compact. Thus, a maximizing
value of (z,y) always exists and can be found by Lagrangian methods. Tkeaeuinique optimum for the rate
vector z, since the objective function is a strictly concave functf =, but there may be many corresponding
values of the flow rate satisfying the constraints [18].

Let's look at the CPF allocation in the example of Figure 2 GPF solution isz = [2,2]%, y = [2,0,0,2]%. The
solution is Pareto-optimal. MS, is served over linky; = (m1,b1), and MSms, is served over linky = (ma, ba).
Both m; andms are assigned to the interface with more favorable channel.

By considering fairness in a global sense (among all MSg) réldio resource allocation solution automatically
results in inter-cell load balance. Look at the example gluFé 2, if the channel condition between M% and BS
bo deteriorates, and supports only a data rate.®f/bps, BS by becomes more congested than BSin the sense

that BSbh, requires extra capacity in order to support the originalction. The input for CPF problem becomes:
Lo 1

2
01 0 5

A= , with / unchanged. The CPF solution becomes: [1.8,0.9]7, y = [1.8,0,0.1,0.8]%,



which automatically shifts some load of, from b, to b;. Note that, the resource-efficient M8, has a higher

throughput than the resource-inefficient M%.

B. Incentive compatibility

Recall that a multi-cell resource allocation gameénisentive compatible if the dominant strategy of each MS is
to measure and report its channel state truthfully. Thedrgmroves the positive result that in thaulti-cell resource
allocation gamewith CPF as the allocation schense the dominant strategy for each MS is to report its channel
state truthfully.

Theorem 1: A multi-cell resource allocation game with CPF allocatiaeme is incentive compatible.

Proof: We prove this property by contradiction. Assume there isexr us* which can increase its aggregate
bandwidth allocation by not using truthful strategy. We aenthe allocation decision for the original setting,
wherem* does not cheat, a®’ = (2/,3’), and the allocation decision for the new setting, where cheats, as
D" = (2",y").

Given a MSm, we denote the subset of its adjacent BSs that allocatdlgtnmore radio resource to it iD”
than inD’ asB*(m), i.e.,Vb € BT (m), yé—:f’: > y}g—:’j

Given a BSb, we denote the subset of its adjacent MSs that get strictlgidaadio resource allocation from it
in D" than inD’ as M~ (b), i.e.,Ym € M~ (b) Yimn) %Lml:.

) 7
anb

Denote the initial BS set aBy = B*(m*). Based on our assumption, we hawg. > z/ .. Thus, there must
be some BSs which allocate more resourcentoin D" than inD’. More specifically,By # ().

Denote the initial MS set a8/, = Uyep, M~ (b). As a BSb € By allocates more resource t0* in D, and
in both solutionsD’ and D" it allocates all of its resources, it must reduce allocatmrsome other MS inD”.
Thus, My # 0.

Consider the Lagrangian form of the CPF problem:

Lz, y; A p)
= Z wmlog(zy) — AN (x — Hy) + 7 (C — Ay)
meM
= Z (Wmlog(Tm) — AmTm) +
meM
Z Y1 Mm@y — By Abay) + Z 1 Ch (4)
leL beB
whereA = (A,,,m € M), un = (up,b € B) are vectors of Lagrange multipliers.
T = (wmloglen) ©)
oL

— = Ao — A 6
By (1) — M)Al (6)



Hence, at a maximum df, the following conditions hold:

= A )
Ty
Ay = M@ Apay if yr >0
< w@yAvay iy =0 (8)

The Lagrange multipliers and . have simple interpretations. We may viewy as the implied cost of using unit
radio resource of B9, or alternatively the shadow price of adding additionalisagsource at BS. \,, can be
viewed as the weighted charge of unit flow for M3

As z . > x, ., because of Equation &). < X\ .. Thus, for anyb € By, because of Equation &; < uj.
Based on Equation 8 again, for anye€ My, A, < A, thusz! > a .

We repeatedly carry out the following set expansion step:
But1 = Umenm,BT(m)UB, 9)
Mn+1 = UbGBn+1 M~ (b) (10)

As B is a finite set, the process always terminates at seme n* where B,,~1 = B,~. For each expansion
step, the argument about the change of Lagrange multigiia the initial step can still be applied, thug, >
xl,,Ym € My-.

ConsiderB,,- and M,,-. For any MSm € M,-, its allocated data rate strictly increases. For any Mg M, -,
its radio resource allocation from any BS: B,,- is not reduced according to the definitions above. Thus, BSs i
B, jointly allocate higher data rate iD” to all MSm € M,,~ without affecting their allocation to any MS outside
M,,~. Combining the resource allocation decision/®f for BSs in B,,- and the allocation decision decision bf
for BSs not inB,,-, we have a feasible allocation solutianfor the original setting wheren* is honest. For MS
m*, .~ IS the aggregate rate of* using actual link data rate, thus, we hawg. > z//. > 2/ .. Form € M,
andm # m*, their reported data link rates are same for the two settittgs z,,, = =/, > «/.. Similarly, for
m ¢ M,+, Z > z'. As the vectorz is strictly larger thanr’, this contradicts with the fact that is Pareto optimal

under the original setting where* is honest. [ ]

V. SINGLE-ASSOCIATION SETTING

The optimal solution foCPF allocation often requires MSs to be simultaneously assigoenultiple BSs, which
may not be desirable in practice, due to the following reason

1) It requires a node to have multiple radios. On one hand,favae defined radio which can dynamically
switch among different radio access technologies may nifitsuas it cannot simultaneously present in multiple
overlapping cells. On the other hand, turning on multipidioa can significantly increase the power consumption.

2) When a single parameter changes in the network, the &bocdecision may be adjusted globally. This may

result in both system instability and excessive signalingrbead.
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3) Transport protocol at client may have difficulty to effitlily aggregate the bandwidth from multiple interfaces,
especially when the allocated bandwidth of each interfaorées with time [19].
In this section, we study coordinated resource allocatiora isingle-association settingvhere each MS is

associated to a single BS.

A. Formulation and Complexity

The formulation forCPF allocation can be modified to reflect the additional constra single-association
setting.
Formally, thelntegral Coordinated Proportional Fairness (Int-CPF) allocation is the optimal solution for the
following problem:
mazximize Z wplog(zm,)

meM
s.t. Hy=z Ay <C

Ym e M,y € LYl # Ly, Huuyr =0
over x>0,y>0 (11)

Similar formulation has been proposed in [4] and [6] as wélve decouple the solution fdnt-CPF allocation
scheme into thenter-cell association control layeand theintra-cell scheduling layerwe observe the optimal
strategy for each BS in the second layer is independent adigheciation control decision in the first layer and the
second layer strategy of each other. This is because one BiS\ed by a single BS, thus, every single BS should
maximize the weighted logarithmic sum of data rate over M&sgmed to it, and it can achieve this by employing
individual proportional fair scheduling. As the secondekscheduling is clear, the remaining problem is to decide
for each MS which BS it should associate to.

We show that, foint-CPF allocationscheme, there does not exist an algorithm that can find thmalgolution
in polynomial time unless? = NP, i.e., the problem is NP-hard. Similar to [20] and [4], ouduetion is via
3-dimensional matchingroblem which is known to be NP-complete. T8&limensional matchingroblem is stated
as follows.

Definition 1: Let X = {z1,...,zn}, Y ={y1,.. ., ynt, Z = {z1,..., 2.} be three disjoint sets with identical
sizen, andT is a subset ofX x Y x Z. That is,T consists of triplegz, y, z) such thatr € X, y € Y, andz € Z.

A T' C T is a 3-dimensional matching || = n and Uy, 1 t; = BU C U D. The problem is to find whether
such aT” exists.

Theorem 2: Int-CPF allocation problem is NP-hard.

Proof: Consider 8-dimensional matchingroblem wherd” consists of triples (& > n, otherwise the problem
becomes trivial). We construct a correspondingCPF allocationproblem as follows. For each tripg € T, we
create a corresponding B$ with capacityl. We create two types of MSs: normal MS and privileged MS. For

each elemenin € X UY U Z, we create a corresponding normal M@ There are totally3n normal MSs. A
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normal MSm is covered by a BS; if and only if m € ¢;. In addition, we creat& — n privileged MSs, which are
covered by all BSs. We assume the link data rates of all adjdd&-BS pairs are equal to a constdaitA normal
MS has weightl, while a privileged MS has weight, > 2. The weight of privileged MS is selected such that, if
possible, packing th8n normal MSs inton BSs, while assigning each of thie— n privileged MSs into each of
the rest ofk — n BSs, gives the highest value 6%... = Y-, c 1 Wmlog(am) = 3nlog(£) 4 (k — n)wylog(R).
Thus, it is easy to verify that if there is a 3-dimensional chatg solutionT”, the Int-CPF allocation problem
achieves the optimal solutiofi,,.... Conversely, if thent-CPF allocationproblem achieves the optimal solution
Unmaz, there is a3-dimensional matchingolution for the original problem. [ |
Note that, ifw,, = 1,Vm € M, and assuming that we know the congestion ve¢iy, b € B) for the optimal
solution of Int-CPF, wheréV, denotes the number of MSs assigned toiB%/e can reduce the problem of finding
optimal solution forint-CPF allocationto finding the maximum weight perfect k-matching in a bigartiraph as
follows. Consider the complete bipartite grapt{M, B, E') where M denotes the MSs an88 denotes the BSs.

The requirements (k-values) of € M is 1. For a BSh € B, k(b) = N,, the b'" coordinate of the congestion

vector. The weight on each edge:, b) is set tow(m,b) = log(R]g;b), whereR,,,;, is the link data rate between
MS m and BSb. The optimalint-CPF allocationcorresponds to the maximum weight perfect k-matching, ab ea
MS is associated with one BS, each BS gets the number of MSseaffied by the optimal congestion vector, and
the logarithmic sum of allocated data rates for all MSs is im&ed. Note that the number of possible congestion
vectors is polynomial inB|. In our evaluation, we use this approach to calculate thetisol of Int-CPF allocation

for a constant number of BSs.

B. Incentive Compatibility

In contrast to the multi-cell allocation game wi@PF allocationscheme, the multi-cell allocation game with
Int-CPF allocationscheme is not incentive compatible.

Theorem 3: A multi-cell resource allocation game with Int-CPF alldoatscheme is not incentive compatible.

Proof: The theorem can be simply proved by providing counter exampl

In the example of Figure 3 (a), there is a M%, covered by both the Wi-Fi AB; and cellular BSb,, with
rate of 1Mbps and2 + eMbps (e > 0) respectively. In addition, there is a M3s which is covered only by
with rate 1Mbps. The Int-CPF allocationis to assign MSn; to by, and MSms, to by, thus bothm; andms get
a throughput ofl M bps each. However, if MSn; cheats by hiding its association with, the Int-CPF allocation
is to assign both MSn; and MSms, to by, and allocate half the resource to each of them. In this casegets
a higher throughput of + £ Mbps, while my’s throughput is reduced téMbps. This example shows that a MS
with multiple adjacent BSs can manipulate its adjacent BSsseas to be allocated to the BS that it prefers.

On the other hand, the example of Figure 3 (b) shows that, a MSatso manipulate its reported data rate to
increase its benefit by changing other MS'’s associationhéngiven setting, both M%:; and MSm, are covered
by both the Wi-Fi APb; and cellular BSb,. Their link data rates to the AP and BS are shown in the figure. |
is easy to verify that, thént-CPF allocationis to assign MSn; to b; andms to b2, such that the throughput of
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(b) MS m, may cheat to gain
Fig. 3: Cheating under Int-CPF allocation

my IS 1.5Mbps and the throughput ofns is 1Mbps. If MS my cheats by hiding its adjacency with BS, i.e.,
set the data rate of linkms, b2) to 0, the Int-CPF allocationwill swap the assignment, wit. associated té,
while m; to by. Thus, the throughput ofi, increases td.4Mbps. Note thatm; can react similarly by hiding its
adjacency, which leads to vicious competition and resaltisath inefficiency and instability. [ ]
The example of Figure 3 (b) also shows that optinmaégral coordinated max-min fairnesas proposed by

Bejerano et. al. in [21], is also not incentive compatible.

C. Selfish Load Balancing: A Congestion Game Formulation

As Int-CPF allocationdecision is computationally expensive, and does not define@ntive-compatible game,
a natural alternative is to let selfish users decide for tieéres which BS to associate with, while the coordinator
just ensures that each MS is associated with a single BS atirary
When each MS can make individual association decision tirenstead of themulti-cell resource allocation
gameas defined above, we havesmgle-association game
A single-association game is defined ag M/, S, x), where:
o M is the set of MS players.
« S = x5, denotes the set of all possible ways in which players can giigtegies. For each player € M,
Sm denotes his own set of possible strategies, which correfsptinthe subset of BSs which it can associate
with. In particular, one strategy,, € S,, corresponds to the association of M with BS b,,. A strategy

profile s € S consists of the vector of each player’s selected strategys i= (b, m € M).
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« Under the assumption that each BS implements indiviguaportional fairness and that all users have the
same weight, the throughput, received by a MSn under a strategy profile = (b,,, m € M) can be simply

expressed as:
Fimbbm

TN, (s)

whereR,,;,, is the link data rate between M3 and its selected BS,,, and N, (s) is the congestion level

(12)

T (8)

(number of associated users including M§ of BS b,, under strategy profile.

For each player in thaingle-association gaméts reward (in terms of allocated bandwidth) of employing a
certain strategy is affected only by the number of other gayvho employ the same strategy (choosing the same
BS to associate with), rather than who they are. Thus, thisegfalls into the class ofongestion gamewhich is
first introduced by Rosenthal in [22].

Rosenthal showed that if the reward function is the same lfgslayers choosing the same strategy, then these
games possess a rich structure, in particular they always aadNash equilibrium in pure strategies. The term of
“pure strategy” means each playdgterministicallyplays a single chosen strategy, instead of randomly piclaam
multiple strategies. This result follows from the existeraf a potential function which is a real-valued function
defined over the set of strategy profiles having the propédy the gain of a player shifting to a new strategy is
equal to the corresponding change of the potential function

The existence of an exact potential function implies fim¢e improvement property (FIP)Any sequence of
strategy-tuples in which each strategy-tuple differs fithi preceding one in only one coordinate (such a sequence
is called apath), and the unique deviator in each step strictly increasesptyoff he receives (amprovement
path), is finite. The first strategy-tuple of a path is called thigial point; the last one is called thierminal point
Obviously, anymaximal improvement patlan improvement path that cannot be extended, is termirgtedNash
equilibrium.

Milchtaich [23] extended the definition @bngestion gamt allow player-specific reward functions, i.e. different
players have different rewards by choosing the same straltég) showed that even these games have a pure Nash
equilibrium.

In our setting, different MSs have different wireless linkta rate with the same BS, thus the reward function
is player-specific. However, the simple structure of they@taspecific reward function as defined in Equation 12
allows us to prove a stronger result than Milchtaich. Morecsiically, Theorem 4 shows that tilsengle-association
gamepossesseEIP. To prove Theorem 4, we define for every strategy profile (b,,, m € M) the following

potential function:

b(s) = Z log(Rmp.,) — Z log(Np(s)") (13)

meM beB

whereR,,;, is the link data rate between MS and its selected BS,,, and N;(s) gives the number of MSs
allocated to a BS under the strategy profile.

Theorem 4: Single-association game possesses the finite improvemepény.
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Proof: Consider a selfish step— s’ where a playein € M switches from BS) to BSV'. &(s') — &(s) =
(log(Rump) — log(Ny(s) 4 1)) — (log(Rmb) — log(Ne(s))) = log(xm(s")) — log(zm (s)).

Based on the result, theelfish load balancing (SLBycheme as described below always converges to a Nash
equilibrium within finite steps. Under th8LB scheme, the resource manager starts from a feasible @locat
decision, and a user is allowed to switch to a BS that can iwgits throughput. In each iteration, only one
user can switch. The iteration ends untiNash equilibriumis reached, i.e., no user can unilaterally change its
association to achieve a higher throughput.

Note that, there can be multiple Nash equilibria in #iregle-association gam@ndSLBcan converge to any of
them. For example, in Figure 3 (b), there are two Nash eqialitin the first equilibrium, MSn; is associated to
BS b1, while MS m, is associated to B%,. In the second equilibrium, the associations are swappeliitiual MS
can have significantly different bandwidth allocation undiéferent Nash equilibria. Note that whigLBconverges,
it is not incentive compatible. For example, M&, in Figure 3 (b) can hide its association with B§ so as to
make the system converge to the second equilibrium inste#ltedirst one.

Despite the fact that it is not incentive compatib®,B is still a valuable solution, as no MS can gain by
unilaterally change its association. In addition, our eaéibn in Section VI shows tha&LB converges quickly
and performs close tt-CPF. It remains an interesting research problem to design thaenompatible resource
allocation schemes for single-association setting, shahMS cannot gain by cheating, while system can operate

in a fair and efficient state.

VI. EVALUATION

We compare the performance of the following six schemes.altocation schemes which can split a user’s flow

among multiple interfaces, we consider:

« Coordinated Proportional Fairness (CPRcheme, as formulated in Section IV-A.

« Uncoordinated Proportional Fairness (UPF3cheme, where a MS associates to all neighboring BSs by
simultaneously turning on multiple radio interfaces. Ti@presents a non-cooperative scenario where all users
are selfish and the system is uncoordinated.

For single-association setting, which enforces each MS$oa@ate with only a single BS, we consider:

« Int-CPF scheme as formulated in Section V-A. Despite its NP-hargings can use a maximum weight perfect
k-matching formulation to calculate its decision in polymal time when the number of BSs is a small constant
as described in Section V-A.

« Strongest-Signal-First (SSFEcheme, which always associates a MS to the BS with the sisbrrgceived
signal strength, regardless of network lo&BEFscheme is the default association method for multiple radio
access technologies, including Wi-Fi networks.

o Least-Population-First (LPF)cheme, which always associates a MS to the BS with the laasber of
associated MSs, regardless of the channel conditi® scheme is widely adopted in single-rate cellular

networks.
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« Selfish Load Balancing (SLBcheme, as described in Section V-C. We use the allocatioiside of SSF

scheme as the initial point f@&LB process.

For fair comparison, we assume each BS implements indiv@loaortional fair scheduling for all schemes above,
except for the case @PF scheme, which decides for each BS its allocation vectos tfoes not necessarily follow
the individual proportional fair scheduling. We assumel8s honestly report their channel state and association
information.

Our simulation is based on &0m x 600m torus topology whered BSs are placed on a 3 by 3 grid, with the
distance between two adjacent BSs se2®0 meters. All BSs have identical transmission power and dpeya
non-interfering channels. The maximum transmission rasfgea BS is set tol50 meters. The seB(m) of BSs
covering a MSm are determined from M&'s location by examining whether its distance to a BS is with0
meters. We have conducted evaluations for two user disiitos!

« Uniform setting MSs are distributed uniformly at random;

« Hot spot setting Out of all MSs,50% are randomly generated in a circle-shape hot spot with tdisaof

150 meters around the center of a selected BS

The arrival of MSs follows a Poisson process, and the sojtora of a MS in the system follows an exponential

E[M]]
|B]

number of active MSs in the system divided by the number of, B8t default value set t&. We use the log-

distribution, both of which are independent of MSs’ all@zhthroughput. Loag =

is defined as the average

normal shadowing propagation model to calculate the redesignal strength at MS from its adjacent BSs. Given
the distancel < 150m between a MSn and a BS), the received signal powe?;5(d) from b at m is calculated
as Pyp(d) = Pyp(dy) — 10610910% + X,, wheredy, = 10m is the reference distancg, = 3 is the path loss
exponent, and{, is a Normal random variable in dB having a standard deviaifon = 12dB and zero mean. We
set the Signal Noise Ratio (dB) within reference distanc&®tg(do) — Pis(No) = 35dB, and use an empirical
threshold-based mapping to determine the link data raterdicgly. The parameters are set to model the typical
loss in an urban environment [24]. Each experiment belowarsied out 500 times with different seeds, and the

average is presented.

A. Performance comparison under honest report

Figure 4 (a) (b) plot the per-user throughput sorted in necrglasing order under the uniform setting, and Figure
4 (c) (d) plot the result under the hot spot setting. Tablenhsarizes the arithmetic and geometric mean of per-user
throughput under different schemes for the two settingpaetsely.

As expectedCoordinated Proportional Fairness (CPFRcheme produces the optimal geometric mean of per-
user throughput. In contraryJncoordinated Proportional Fairness (UPFerforms much worse, providing arith-
metic/geometric mean not only lower th&@PF scheme, but also inferior to all other schemes except_fiF
scheme in some cases. This observation holds for both amiémd hot spot settings. The significant performance
gap between them strongly advocates the adoption of a cuedi resource allocation approach for integrated

heterogeneous wireless networks.
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Fig. 4: Per-user throughput sorted in non-decreasing order

Uniform Hot spot
Arith. Mean | Geo. Mean| Arith. Mean | Geo. Mean
CPF 1.26 0.89 121 0.81
UPF 0.89 0.67 0.87 0.59
Int-CPF 1.26 0.89 1.21 0.81
SLB 1.26 0.89 1.22 0.80
SSF 1.29 0.86 1.27 0.73
LPF 1.02 0.63 0.93 0.55

TABLE I:

Arithmetic and geometric mean of per-user through@Mbps)
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Among all allocation schemes for single-association sgttint-CPF scheme has the optimal geometric mean

of per-user throughput, given that users do not cheat. ifoprance is close to CPF scheme under both uniform

setting and hot spot setting. For both settings, the coatdiwise performance gap between the two schemes is

never greater thaB.5%, and is less than% for more than70% of MSs.

Our result also shows thagelfish Load Balancing (SLBtheme often has very close performancénteCPF,

thus toCPF as well. For around5% of user distribution in uniform settindgSLB scheme andint-CPF make the

identical association decision. F89% of user distributions, the performance gap between the therses is less
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than 1%. Similar phenomenon is observed under hot spot setting #s lwdact, such an approximation among
SLB Int-CPF and CPF holds for a wide range of settings, as demonstrated in Figusbich will be explained in
detail later.

Based on this, we make the following observatiBy: using an (appropriate) single radio per user, the system
can largely achieve the optimal performance when simuttasly using multiple radios per user.

Among all six schemesStrongest-Signal-First(SSKcheme achieves the highest arithmetic mean of per-user
throughput. This is as expected, beca®®F scheme greedily assigns each MS to the BS providing the best
channel condition. Howeve§SFs geometric mean of throughput is lower th@kF, Int-CPF, andSLB schemes,
because a MS often associates to an overloaded BS which ¢araltotate a small portion of its overall radio
resource to serve the MS, thus provide poor throughput tieghithe high link data rate between them. This
situation is particularly common in hot spot setting. Aswhan Figure 4 (d), for hot spot setting, there ar&%
of the MSs undeSSFscheme have throughput lower th&s0 Kilobit per second (Kbps), compared 5% under
CPF scheme. For th&5% of MSs with lowest bandwidth allocation, their throughpuider SSFscheme is less
than70% of their throughput unde€CF scheme. ThusSSFcan be unfair to a significant portion of users.

Least-Population-First(LPFscheme often performs worst in terms of both arithmetic aadngetric mean of
per-user throughput, implying that traditional load balag technique is not applicable to multi-rate wirelessadat
networks.

Since geometric mean of per-flow throughput embodies batotrerall system resource efficiency and fairness

among users, in the following experiments we use geometeamas the performance metric.
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Fig. 5: Geometric mean of throughput under varying settings

Figure 5 (a) demonstrates different schemes’ performanderwarying load in uniform setting. The performance
of Int-CPF andSLBscheme is close to each other in all range of load. Furtherp#iformance gap between them
and theCPF scheme reduces with increased traffic intensity. This isbse bothnt-CPF andSLBschemes allocate
resource on a per MS basis. Hence, the larger the traffic khadfiner the relative granularity of them. In fact,

the only case that we observe obvious difference betv&ei scheme and the two single-association schemes is
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when the average number of MS per BS is very small (€.8).

Figure 5 (b) demonstrates the impact of asymmetric traftrihution. The figure shows that the performance of
both Int-CPF scheme an&LB scheme is close t€PF scheme even under highly asymmetric traffic distribution.
Such robustness is largely because both schemes take autordadactors including both network load and link data
rate. In comparison, performance®8Fdeteriorates faster than all other schemes with increasifiic asymmetry,

while LPF scheme performs better th&aiPF scheme under high traffic asymmetry.

B. Strategic interaction under SLB and Int-CPF

O R, NWMMOOOO N

Average steps to converge

1 2 3 4 5 6 7
System load

Fig. 6: Convergence speed of SLB over varying load

Figure 6 shows the average number of steps required in théewholti-cell system forSLBto converge to a
Nash equilibrium, starting from th&8SFallocation. As can be seen from the figu&,B converges quickly, and
the number of steps required grows linearly with the systead |

While SLBtakes strategic interactions among MSs into consideralid+CPF simply ignores them. Our evalu-
ation also shows that, up tth% of decision made bynt-CPF is not a Nash equilibrium in the single-association
game. More specifically, there is at least one user who calatarally changes its association to gain higher
throughput from the network undémt-CPF allocation. As illustrated in Figure 3 (a), the user can thahiding
all of its adjacent BSs except for its desired BS, so as taaffeInt-CPF resource allocation decision and increase
its own bandwidth.

We observe that, in more th&0% of settings, there are multiple Nash equilibria in the inellsingle-association
game meaning that there is MS that can cheat about its chanrtel tstalrive the system to the Nash equilibrium

that it prefers.

VIl. CONCLUSION

This paper considers theoordinated radio resource allocation problefor users which are simultaneously
covered by multiple overlapping heterogeneous wirelesworés. We introduce incentive compatibility as a new
criterion for making allocation decision by formulatingetmesource allocation process asnalti-cell resource
allocation game We prove that the game with CPF allocation is incentive catibfe. However, for the single-

association setting, the integral version of CPF allocafiot-CPF) is both computationally expensive and prone
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to user-manipulation. Alternatively, we propose the selftsad balancing scheme, which can quickly converge to

a Nash equilibrium, and often achieves performance neaPte &location as shown by our simulation.
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