
1

Incentive-compatible Resource Allocation in

Overlapping Heterogeneous Wireless Networks
Bin Bin Chen

Department of Computer Science, National University of Singapore

Email: chenbinb@comp.nus.edu.sg

Mun Choon Chan

Department of Computer Science, National University of Singapore

Email: chanmc@comp.nus.edu.sg

Abstract

This paper considers thecoordinated radio resource allocation problemfor users which are simultaneously

covered by multiple overlapping heterogeneous wireless networks. As the resource allocation decision depends on

the channel measurement and feedback from users, inefficiency and instability arise if a selfish user can manipulate

its measured channel state to increase its gain from network. Our contribution in this paper is the introduction of

incentive compatibility as an addition criterion in the design of a resource allocation scheme.

We formulate themulti-cell resource allocation gameto capture the strategic interactions among users. A resource

allocation scheme is incentive compatible if each user’s dominant strategy under the resulted game is to honestly

report its channel state. We consider both multi-association setting, where a MS is allowed to simultaneously associate

with multiple BSs, and single-association setting, where aMS is only associated with one BS. We show that for

multi-association setting, a natural generalization of proportional fair allocation is incentive compatible. In contrast,

the optimal solution using the same fairness criterion under single-association is not incentive compatible. In order

to exploit the benefit of single-association, we propose an allocation scheme based on selfish load balancing. We

show that such a scheme always converges to a Nash equilibrium, and achieves performance close to the optimal

single-association allocation.

I. I NTRODUCTION

Overlapping coverage of wireless base stations (BSs)1 is a common phenomenon in mobile communication

systems. For a particular radio access network, neighboring cells or sectors overlap with each other. In addition,

deployment and inter-operation of a wide array of wireless access networks, ranging from 3G network to Wi-Fi

hotspots, open the opportunity of overlapping coverage from BSs using heterogeneous radio access technologies. In

1We use BS as a general term to refer to both 3G base station and Wi-Fi access point (AP).
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such an environment, a multi-mode mobile station (MS) can flexibly associate with one or simultaneously multiple

BSs.

In an overlapping multi-cell heterogeneous wireless networks, the coordinated resource allocation decision can be

decomposed to two layers: theinter-cell association control layerthat decides which BS(s) a MS should associate

with, and theintra-cell allocation layerthat determines how radio resource of a single BS should be shared among

its associated MSs. The traditional criteria to judge a resource allocation scheme include efficiency, fairness and

load balancing.

Proportional fair allocation [1] is widely accepted as an appropriate allocation scheme for elastic traffic in wireless

networks [2] [3], as it strikes a good balance between efficiency and fairness. The tradeoff is particularly important

when MSs use different data rate to communicate with the sameBS according to their various channel conditions.

The concept has been generalized to multi-cell environment[4] [5] [6], thus fairness is considered in a global sense,

with load-balancing among cells naturally incorporated into the definition.

However, implementing multi-cell proportional fair allocation requires the channel state information of adjacent

MS-BS pairs to be known. In practice, the channel state for transmission from BS to MS is measured by individual

MS, which then periodically feeds the channel state back to the resource allocator. As a result, it is possible for an

intelligent and selfish MS to manipulate the reported channel states to increase its own resource allocation, while

causing problem of inefficiency and instability for the system. Our contribution in this paper is the introduction of

incentive compatibilityas an additional criterion in multi-cell resource allocation.

We formulate themulti-cell resource allocation gameto capture the selfish behavior of users. The game defined

by a given resource allocation scheme is said to beincentive compatible, if the dominant strategy for each player

is to honestly measure and report its actual channel state.

We consider both multi-association setting, where a MS is allowed to simultaneously associate with multiple

BSs, and single-association setting, where a MS is only associated with one BS. Our result shows that for multi-

association setting, a natural generalization of proportional fair allocation (Coordinated Proportional Fairness or

CPF), which can be efficiently solved as a convex programmingproblem, is incentive compatible. In contrast, the

optimal solution using the same fairness criterion under single-association is not incentive compatible. In order to

exploit the benefit of single-association, we propose an allocation scheme based on selfish load balancing (SLB).

We show that SLB always converges to a Nash equilibrium. Evaluation results show that SLB converges quickly

and performs close to Int-CPF.

The paper is organized as follows. Related work is reviewed in Section II, with system model and problem

formulation presented in Section III. In Section IV, we present the Coordinated Proportional Fairness (CPF)

allocation scheme for multi-association setting, and analyze its incentive compatibility. The integral variant of CPF

(Int-CPF) and the selfish load balancing (SLB) scheme for single-association setting are presented and analyzed in

Section V. In Section VI, we evaluate the performance of various schemes proposed. We conclude in Section VII.
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II. RELATED WORK

A. Resource Allocation in Wireless Networks

The criterion of fairness has long played a central role in designing of resource allocation schemes. The most

common understanding of fairness in computer networks is probably themax-min fairness, as defined in [7]: rates

are made as equal as possible subject only to the constraintsimposed by link capacities. However,max-min fairness

is not an efficient resource allocation solution for elastictraffic in multi-rate wireless communication system, because

when some MSs use a lower bit rate than the others, the performance of all MSs sharing the same BS is considerably

degraded to the same level as the worst one, as shown in [8].

Compared tomax-min fairness, proportional fairnessas proposed by Kelly in [1] strikes a better balance

between efficiency and fairness.Proportional fairnesscan be defined as the maximization of an objective function

representing the overall utility of the flows in progress. The utility function chosen is logarithmic function of the

allocated bandwidth, where the value of a flow for MSm ∈ M increases with its allocated bandwidthRm in

proportional tologRm. Formally, an allocation schemeS∗ is proportional fair if and only if among all feasible

schemesS:

S∗ = argmaxS

∑

m∈M

logR(S)
m (1)

Proportional fairnessfavors resource-efficient requests more thanmax-min fairness, by allowing large sharing

to increase further with small sharing decreased, if changeof the assigned bandwidth vectors result in the sum

of the proportional changes to be non-negative. Thus, it helps improve system efficiency, while still preventing

resource-efficient connections from starving resource-inefficient connections totally. In addition, it is shown by [9]

to satisfy the axioms defining a Nash bargaining solution [10].

In a single-cell environment for both cellular networks [2]and Wi-Fi networks [3], the proportional fairness is

implemented by allocating the radio resource of a BS (asymptotically) equally among associated MSs, regardless

of their different efficiency in using the resource, i.e., their various link data rates. If timely channel feedback

is available, channel-aware opportunistic scheduling algorithms [2] are often employed to exploit the “multi-user

diversity”. In this paper, we consider time-averaged channel state as input, and assume the underlying scheduling

algorithm of each BS (which can be channel-aware) supports the resource allocation decision.

In a multi-cell wireless environment, techniques have beenproposed to intelligently associate MSs with over-

lapping BSs to achieve globally optimal proportional fairness [4] [5] [6]. In this paper, we focus on the load-

balancing aspect of performance improvement, and assume the resource capacities of neighboring BSs are fixed

and independent. The other forms of inter-cell optimization, such as dynamic channel assignment and interference

avoidance, can be applied orthogonally.
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B. Algorithmic Mechanism Design

Game theory aims to model situations in which multiple participants select strategies that have mutual conse-

quences. Following the definitions used by Nisan et al. in [11], a game consists of a set ofn players,1, 2, ..., n.

Each playeri has his own set of possible strategies, saySi. To play the game, each playeri selects a strategy

si ∈ Si. We uses = (s1, ...sn) to denote the vector of strategies selected by the players and S = ×iSi to denote

the set of all possible ways in which players can pick strategies. The vector of strategiess ∈ S selected by the

players determines the outcome for each player. If by using aunique strategy, a user always gets better outcome

than using other strategies, independent of the strategiesplayed by the other players, we say that the strategy is the

user’sdominant strategy. If users select strategies such that, no player can unilaterally change its strategy to gain

more payoff, we say that the game reaches aNash equilibrium.

Algorithmic mechanism design[11] is a subarea of game theory which deals with the design ofgames. It studies

optimization problems where the underlying data isa priori unknown to the algorithm designer, and must be

implicitly or explicitly elicited from selfish participants (e.g., via a bid). The high-level goal is to design a protocol,

or “mechanism”, that interacts with participants so thatselfish behavior yields a desirable outcome. Auction design

is the most popular motivation in this area, though there aremany others. When truth-telling is the dominant strategy

of all participants, we say the mechanism isincentive compatible.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Multi-mode 
terminals

All-IP Core 
network

Integrated Radio 
Access Networks

Wireless 
links

Wired 
Data Path

CRRM
Control PathRadio Resource 

Manager

Fig. 1: A convergent mobile communication system

Our discussion is based on a convergent system of heterogeneous wireless networks as shown in Figure 1. The

main components of the considered architecture are: multi-mode terminals, all-IP core network, and the integrated

radio access networks (RANs) sitting between them, as described below.

1) Ongoing silicon development enables chip makers to integrate multiple radio access technologies in a single

chipset. For example, Qualcomm’s Snapdragon chipset for mini-notebooks includes Wi-Fi alongside 3G, Bluetooth,

broadcast TV and GPS (Global Positioning System) capabilities [12].
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2) Meanwhile, wireless core networks are quickly evolving towards IP-based mechanisms [13]. IP layer enables

provision of a richer set of services independent of the access networks.

3) As a bridge between the two components above, a flexible architecture capable of managing a large variety

of coexisting radio access networks are being standardized[14] [15] [16]. The proposed Common Radio Resource

Management (CRRM) functions consider the pool of resourcesin all radio access technologies (RATs) as a whole,

aiming at better performance than stand-alone networks.

As shown in the figure, the radio resource manager can be interpreted as a logical entity which gathers input

from different RATs, and coordinates resource allocation decisions among them. In practice, the channel state is

measured by individual MS, which periodically feeds it backto the resource allocator for informed decision. Thus,

an intelligent and selfish MS can manipulate its reported channel states, if it can gain more from network by doing

so.

Based on this observation, amulti-cell resource allocation procedurecan be interpreted as a game as follows.

Consider a network with a setB of BSs and a setM of MSs. Let a linkl = (m, b) be a pair of MS and BS that is

able to communicate with each other. We call such a pair anadjacent MS-BS pair. Each MSm ∈ M is a player

of the game. The strategy of a MSm can be described as a channel state vectorRm = (Rmb, b ∈ B), whereRmb

gives the data rate supported betweenm and BSb. The resource allocation outcome is calculated according to the

scheme employed by the resource manager, and the decision isenforced by individual BS. Note that, if the reported

link data rateRmb between MSm and BSb is not equal to the actual link data rateR∗
mb, the effective data rate

will be less thanR∗
mb. On one hand, ifRmb < R∗

mb, data is transferred by BS usingRmb. On the other hand, if

Rmb > R∗
mb, data is transferred by BS at a rate higher than that can be fully decoded by MS, the resulted effective

data rate becomes lower than that can be achieved by the most appropriate rateR∗
mb. As over-report can be easily

detected [17], we focus on the case wherem under-reports its channel state, i.e.Rmb ≤ R∗
mb.

Formally, amulti-cell resource allocation game is defined as(M, R∗, R, S, x), where

• M is the set of MS players.

• R∗ = (R∗
m, m ∈ M) consists of the actual link data rate vectorR∗

m for each MSm ∈ M .

• R = ×mRm, m ∈ M , whereRm = {Rm|Rm ≤ R∗
m} specifies the strategy space of MSm. m can choose

any link data rate vectorRm ∈ Rm when playing the game.

• S is an allocation scheme which determines the allocation vector based on the specified channel state input

R ∈ R.

• x = (xm, m ∈ M) gives the allocated data rate vector.

Applying the mechanism design framework [11], thea priori unknown underlying data in our game is the channel

state experienced by individual MS. The algorithm designer(the resource allocator here) elicits the information

through the periodic feedbacks of MSs. The high-level goal is to design a mechanism (the allocation scheme in

our game), that interacts with participants so that selfish behavior yields a desirable outcome (an efficient and fair

resource allocation in our game). Recall that, a mechanism is said to beincentive compatible, if the dominant

strategy of each participant under the designed mechanism is to truthfully reveal its state. In our game,incentive
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compatibility means the dominant strategy of each MS is to measure and report its channel state truthfully.

In contrast, if a game is not incentive compatible, MSs can gain by cheating about its state, thus making the

system operate under inefficient state. Even worse, MSs may keep varying their behavior as response for others’

strategies, which can lead to instability problem.

IV. M ULTI -ASSOCIATION SETTING

This section presents a natural generalization of proportional fair allocation in an overlapping multi-cell envi-

ronment, and analyzes its incentive compatibility. We assume each MS can simultaneously associate with multiple

BSs to achieve aggregate throughput. We will consider the single-association setting in Section V.

A. Formulation

Given a link l, we useb(l) to denote the corresponding BS, andm(l) to denote the corresponding MS. We write

L for the set of all links. Ifb = b(l), we setAbl to be the required radio resource in BSb to support per unit

flow through link l. If the channel condition betweenm(l) and b(l) is poor, it can only support a low data rate,

thus more radio resource is required to transfer a unit of flow, which implies a higher resource consumption rate,

i.e., Abl is larger. On the other hand, if a MS-BS link is under good channel condition, less resource is required

to transfer the same amount of data, thus,Abl is smaller. As wireless channel state keeps changing with time, the

value ofAbl used in our problem formulation is a time averaged link statewhich is relatively stable for a decision

period. Forb 6= b(l), we setAbl = 0, because sending flow over linkl does not consume any resource of BSb.

This defines a matrixA = (Abl, b ∈ B, l ∈ L).

For a given MSm, its several links through different BSs may substitute forone another. Formally, suppose that

a MS m has a subset ofL. We write Hml = 1 if m = m(l), so that linkl serves the MSm, and setHml = 0

otherwise. This defines a 0-1 matrixH = (Hml, m ∈ M, l ∈ L).

A flow patterny = (yl, l ∈ L) supports the ratesx = (xm, m ∈ M) if Hy = x, so that the flows over all links

serving the MSm sum to the ratexm. We letCb be the finite radio resource capacity of BSb, for b ∈ B. A flow

patterny is feasible ify ≥ 0 andAy ≤ C, so that the resource consumed by wireless links through BSb sum to

not more than its capacity. Note that we assume wireless transmissions are “orthogonal” (e.g., through time or code

multiplexing), thus resource consumed by different links at the same BS can be linearly summed up, and resource

usage in different BSs is independent of each other.

To illustrate the notations, we look at Figure 2. Each of MSm1 and MSm2 is equipped with both a cellular

interface and a Wi-Fi interface. Both MSs locate in the overlapping coverage area of a Wi-Fi APb1 and a cellular

BS b2. However, their channel conditions to the AP and BS are different. MSm1 can communicate with Wi-Fi

AP at 2Mbps and with cellular BS at 1Mbps, while MSm2 can communicate with Wi-Fi AP at 1Mbps and with

cellular BS at 2Mbps. There are4 links corresponding to the4 adjacent MS-BS pairs:l1 = (m1, b1), l2 = (m1, b2),

l3 = (m2, b1), and l4 = (m2, b2). The input to CPF allocation problem is: MS setM = {m1, m2}, BS set
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l1:2Mbps

Wi-Fi AP b1
Cellular 
BS b2

MS m2MS m1

l3:1Mbps l2:1Mbps
l4:2Mbps

Fig. 2: CPF allocation example

B = {b1, b2}, link set L = {l1, l2, l3, l4}, the matrixA =





1
2 0 1 0

0 1 0 1
2



, and matrixH =





1 1 0 0

0 0 1 1



.

We assume unit capacity of bothb1 andb2, thusC =
[

1 1
]T

.

Formally, theCoordinated Proportional Fairness (CPF) allocation is the optimal solution for the following

problem:

maximize
∑

m∈M

wmlog(xm)

s.t. Hy = x, Ay ≤ C

over x, y ≥ 0 (2)

wherewm > 0 is the weight assigned to different users representing their different priority. We consider only MSs

with non-empty set of adjacent BSs, and BSs with non-empty set of adjacent MSs. Further, aswmlog(0) = −∞

for all m, the optimal objective value for CPF allocation is achievedwhenAy = C andx > 0. We can rewrite the

constraints as follows without affecting the solution.

Hy = x, Ay = C, x > 0, y ≥ 0 (3)

The objective function is differentiable and strictly concave and the feasible region is compact. Thus, a maximizing

value of (x, y) always exists and can be found by Lagrangian methods. There is a unique optimum for the rate

vector x, since the objective function is a strictly concave function of x, but there may be many corresponding

values of the flow ratey satisfying the constraints [18].

Let’s look at the CPF allocation in the example of Figure 2. Its CPF solution is:x = [2, 2]T , y = [2, 0, 0, 2]T . The

solution is Pareto-optimal. MSm1 is served over linkl1 = (m1, b1), and MSm2 is served over linkl4 = (m2, b2).

Both m1 andm2 are assigned to the interface with more favorable channel.

By considering fairness in a global sense (among all MSs), the radio resource allocation solution automatically

results in inter-cell load balance. Look at the example of Figure 2, if the channel condition between MSm2 and BS

b2 deteriorates, and supports only a data rate of0.8Mbps, BS b2 becomes more congested than BSb1, in the sense

that BSb2 requires extra capacity in order to support the original allocation. The input for CPF problem becomes:

A =





1
2 0 1 0

0 1 0 1
0.8



, with H unchanged. The CPF solution becomes:x = [1.8, 0.9]T , y = [1.8, 0, 0.1, 0.8]T ,
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which automatically shifts some load ofm2 from b2 to b1. Note that, the resource-efficient MSm1 has a higher

throughput than the resource-inefficient MSm2.

B. Incentive compatibility

Recall that a multi-cell resource allocation game isincentive compatible if the dominant strategy of each MS is

to measure and report its channel state truthfully. Theorem1 proves the positive result that in themulti-cell resource

allocation gamewith CPF as the allocation schemeS, the dominant strategy for each MS is to report its channel

state truthfully.

Theorem 1: A multi-cell resource allocation game with CPF allocation scheme is incentive compatible.

Proof: We prove this property by contradiction. Assume there is a user m∗ which can increase its aggregate

bandwidth allocation by not using truthful strategy. We denote the allocation decision for the original setting,

wherem∗ does not cheat, asD′ = (x′, y′), and the allocation decision for the new setting, wherem∗ cheats, as

D′′ = (x′′, y′′).

Given a MSm, we denote the subset of its adjacent BSs that allocate strictly more radio resource to it inD′′

than inD′ asB+(m), i.e., ∀b ∈ B+(m),
y′′

(mb)

R′′

mb

>
y′

(mb)

R′

mb

.

Given a BSb, we denote the subset of its adjacent MSs that get strictly lower radio resource allocation from it

in D′′ than inD′ asM−(b), i.e., ∀m ∈ M−(b),
y′′

(mb)

R′′

mb

<
y′

(mb)

R′

mb

.

Denote the initial BS set asB0 = B+(m∗). Based on our assumption, we havex′′
m∗ > x′

m∗ . Thus, there must

be some BSs which allocate more resource tom∗ in D′′ than inD′. More specifically,B0 6= ∅.

Denote the initial MS set asM0 = ∪b∈B0M
−(b). As a BSb ∈ B0 allocates more resource tom∗ in D′′, and

in both solutionsD′ and D′′ it allocates all of its resources, it must reduce allocationto some other MS inD′′.

Thus,M0 6= ∅.

Consider the Lagrangian form of the CPF problem:

L(x, y; λ, µ)

=
∑

m∈M

wmlog(xm) − λT (x − Hy) + µT (C − Ay)

=
∑

m∈M

(wmlog(xm) − λmxm) +

∑

l∈L

yl(λm(l) − µb(l)Ab(l)l) +
∑

b∈B

µbCb (4)

whereλ = (λm, m ∈ M), µ = (µb, b ∈ B) are vectors of Lagrange multipliers.

∂L

∂xm

= (wmlog(xm))′ − λm (5)

∂L

∂yl

= λm(l) − µb(l)Ab(l)l (6)
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Hence, at a maximum ofL, the following conditions hold:

wm

xm

= λm (7)

λm(l) = µb(l)Ab(l)l if yl > 0

≤ µb(l)Ab(l)l if yl = 0 (8)

The Lagrange multipliersλ andµ have simple interpretations. We may viewµb as the implied cost of using unit

radio resource of BSb, or alternatively the shadow price of adding additional radio resource at BSb. λm can be

viewed as the weighted charge of unit flow for MSm.

As x′′
m∗ > x′

m∗ , because of Equation 7,λ′′
m∗ < λ′

m∗ . Thus, for anyb ∈ B0, because of Equation 8,µ′′
b < µ′

b.

Based on Equation 8 again, for anym ∈ M0, λ′′
m < λ′

m, thusx′′
m > x′

m.

We repeatedly carry out the following set expansion step:

Bn+1 = ∪m∈Mn
B+(m) ∪ Bn (9)

Mn+1 = ∪b∈Bn+1M
−(b) (10)

As B is a finite set, the process always terminates at somen = n∗ whereBn∗+1 = Bn∗ . For each expansion

step, the argument about the change of Lagrange multipliersas in the initial step can still be applied, thus:x′′
m >

x′
m, ∀m ∈ Mn∗ .

ConsiderBn∗ andMn∗ . For any MSm ∈ Mn∗ , its allocated data rate strictly increases. For any MSm /∈ Mn∗ ,

its radio resource allocation from any BSb ∈ Bn∗ is not reduced according to the definitions above. Thus, BSs in

Bn∗ jointly allocate higher data rate inD′′ to all MS m ∈ Mn∗ without affecting their allocation to any MS outside

Mn∗ . Combining the resource allocation decision ofD′′ for BSs inBn∗ and the allocation decision decision ofD′

for BSs not inBn∗ , we have a feasible allocation solutioñx for the original setting wherem∗ is honest. For MS

m∗, x̃m∗ is the aggregate rate ofm∗ using actual link data rate, thus, we havex̃m∗ ≥ x′′
m∗ > x′

m∗ . For m ∈ Mn∗

and m 6= m∗, their reported data link rates are same for the two settings, thus x̃m = x′′
m > x′

m. Similarly, for

m /∈ Mn∗ , x̃ ≥ x′. As the vector̃x is strictly larger thanx′, this contradicts with the fact thatx′ is Pareto optimal

under the original setting wherem∗ is honest.

V. SINGLE-ASSOCIATION SETTING

The optimal solution forCPF allocation often requires MSs to be simultaneously assigned to multiple BSs, which

may not be desirable in practice, due to the following reasons:

1) It requires a node to have multiple radios. On one hand, a software defined radio which can dynamically

switch among different radio access technologies may not suffice, as it cannot simultaneously present in multiple

overlapping cells. On the other hand, turning on multiple radios can significantly increase the power consumption.

2) When a single parameter changes in the network, the allocation decision may be adjusted globally. This may

result in both system instability and excessive signaling overhead.
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3) Transport protocol at client may have difficulty to efficiently aggregate the bandwidth from multiple interfaces,

especially when the allocated bandwidth of each interface varies with time [19].

In this section, we study coordinated resource allocation in a single-association setting, where each MS is

associated to a single BS.

A. Formulation and Complexity

The formulation forCPF allocation can be modified to reflect the additional constraint in single-association

setting.

Formally, theIntegral Coordinated Proportional Fairness (Int-CPF) allocation is the optimal solution for the

following problem:

maximize
∑

m∈M

wmlog(xm)

s.t. Hy = x, Ay ≤ C

∀m ∈ M, ∃lm ∈ L, ∀l 6= lm, Hmlyl = 0

over x > 0, y ≥ 0 (11)

Similar formulation has been proposed in [4] and [6] as well.If we decouple the solution forInt-CPF allocation

scheme into theinter-cell association control layerand theintra-cell scheduling layer, we observe the optimal

strategy for each BS in the second layer is independent of theassociation control decision in the first layer and the

second layer strategy of each other. This is because one MS isserved by a single BS, thus, every single BS should

maximize the weighted logarithmic sum of data rate over MSs assigned to it, and it can achieve this by employing

individual proportional fair scheduling. As the second level scheduling is clear, the remaining problem is to decide

for each MS which BS it should associate to.

We show that, forInt-CPF allocationscheme, there does not exist an algorithm that can find the optimal solution

in polynomial time unlessP = NP , i.e., the problem is NP-hard. Similar to [20] and [4], our reduction is via

3-dimensional matchingproblem which is known to be NP-complete. The3-dimensional matchingproblem is stated

as follows.

Definition 1: Let X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn} be three disjoint sets with identical

sizen, andT is a subset ofX ×Y ×Z. That is,T consists of triples(x, y, z) such thatx ∈ X , y ∈ Y , andz ∈ Z.

A T ′ ⊆ T is a 3-dimensional matching if|T ′| = n and∪ti∈T ′ti = B ∪ C ∪ D. The problem is to find whether

such aT ′ exists.

Theorem 2: Int-CPF allocation problem is NP-hard.

Proof: Consider a3-dimensional matchingproblem whereT consists ofk triples (k > n, otherwise the problem

becomes trivial). We construct a correspondingInt-CPF allocationproblem as follows. For each tripeti ∈ T , we

create a corresponding BSti with capacity1. We create two types of MSs: normal MS and privileged MS. For

each elementm ∈ X ∪ Y ∪ Z, we create a corresponding normal MSm. There are totally3n normal MSs. A
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normal MSm is covered by a BSti if and only if m ∈ ti. In addition, we createk− n privileged MSs, which are

covered by all BSs. We assume the link data rates of all adjacent MS-BS pairs are equal to a constantR. A normal

MS has weight1, while a privileged MS has weightwp > 2. The weight of privileged MS is selected such that, if

possible, packing the3n normal MSs inton BSs, while assigning each of thek − n privileged MSs into each of

the rest ofk − n BSs, gives the highest value ofUmax =
∑

m∈M wmlog(xm) = 3nlog(R
3 ) + (k − n)wplog(R).

Thus, it is easy to verify that if there is a 3-dimensional matching solutionT ′, the Int-CPF allocationproblem

achieves the optimal solutionUmax. Conversely, if theInt-CPF allocationproblem achieves the optimal solution

Umax, there is a3-dimensional matchingsolution for the original problem.

Note that, ifwm = 1, ∀m ∈ M , and assuming that we know the congestion vector(Nb, b ∈ B) for the optimal

solution of Int-CPF, whereNb denotes the number of MSs assigned to BSb, we can reduce the problem of finding

optimal solution forInt-CPF allocationto finding the maximum weight perfect k-matching in a bipartite graph as

follows. Consider the complete bipartite graphG(M, B, E) whereM denotes the MSs andB denotes the BSs.

The requirements (k-values) ofm ∈ M is 1. For a BSb ∈ B, k(b) = Nb, the bth coordinate of the congestion

vector. The weight on each edge(m, b) is set tow(m, b) = log(Rmb

Nb

), whereRmb is the link data rate between

MS m and BSb. The optimalInt-CPF allocationcorresponds to the maximum weight perfect k-matching, as each

MS is associated with one BS, each BS gets the number of MSs as specified by the optimal congestion vector, and

the logarithmic sum of allocated data rates for all MSs is maximized. Note that the number of possible congestion

vectors is polynomial in|B|. In our evaluation, we use this approach to calculate the solution of Int-CPF allocation

for a constant number of BSs.

B. Incentive Compatibility

In contrast to the multi-cell allocation game withCPF allocationscheme, the multi-cell allocation game with

Int-CPF allocationscheme is not incentive compatible.

Theorem 3: A multi-cell resource allocation game with Int-CPF allocation scheme is not incentive compatible.

Proof: The theorem can be simply proved by providing counter examples.

In the example of Figure 3 (a), there is a MSm1 covered by both the Wi-Fi APb1 and cellular BSb2, with

rate of 1Mbps and 2 + ǫMbps (ǫ > 0) respectively. In addition, there is a MSm2 which is covered only byb2

with rate1Mbps. The Int-CPF allocationis to assign MSm1 to b1, and MSm2 to b2, thus bothm1 andm2 get

a throughput of1Mbps each. However, if MSm1 cheats by hiding its association withb1, the Int-CPF allocation

is to assign both MSm1 and MSm2 to b2, and allocate half the resource to each of them. In this case,m1 gets

a higher throughput of1 + ǫ
2Mbps, while m2’s throughput is reduced to12Mbps. This example shows that a MS

with multiple adjacent BSs can manipulate its adjacent BS set, so as to be allocated to the BS that it prefers.

On the other hand, the example of Figure 3 (b) shows that, a MS can also manipulate its reported data rate to

increase its benefit by changing other MS’s association. In the given setting, both MSm1 and MSm2 are covered

by both the Wi-Fi APb1 and cellular BSb2. Their link data rates to the AP and BS are shown in the figure. It

is easy to verify that, theInt-CPF allocationis to assign MSm1 to b1 andm2 to b2, such that the throughput of
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MS m1

Wi-Fi AP b1

2+  Mbps 1Mbps

1.4Mbps
1Mbps

1.5Mbps 1Mbps

(a) MS m1 may cheat to gain

(b) MS m2 may cheat to gain

MS m1
MS m2

MS m2

Cellular 
BS b2

Cellular 
BS b2

Wi-Fi AP b1

1Mbps

Fig. 3: Cheating under Int-CPF allocation

m1 is 1.5Mbps and the throughput ofm2 is 1Mbps. If MS m2 cheats by hiding its adjacency with BSb2, i.e.,

set the data rate of link(m2, b2) to 0, the Int-CPF allocationwill swap the assignment, withm2 associated tob1

while m1 to b2. Thus, the throughput ofm2 increases to1.4Mbps. Note thatm1 can react similarly by hiding its

adjacency, which leads to vicious competition and results in both inefficiency and instability.

The example of Figure 3 (b) also shows that optimalintegral coordinated max-min fairness, as proposed by

Bejerano et. al. in [21], is also not incentive compatible.

C. Selfish Load Balancing: A Congestion Game Formulation

As Int-CPF allocationdecision is computationally expensive, and does not define an incentive-compatible game,

a natural alternative is to let selfish users decide for themselves which BS to associate with, while the coordinator

just ensures that each MS is associated with a single BS at anytime.

When each MS can make individual association decision directly, instead of themulti-cell resource allocation

gameas defined above, we have asingle-association game.

A single-association game is defined as(M, S, x), where:

• M is the set of MS players.

• S = ×mSm denotes the set of all possible ways in which players can pickstrategies. For each playerm ∈ M ,

Sm denotes his own set of possible strategies, which corresponds to the subset of BSs which it can associate

with. In particular, one strategybm ∈ Sm corresponds to the association of MSm with BS bm. A strategy

profile s ∈ S consists of the vector of each player’s selected strategy, i.e. s = (bm, m ∈ M).
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• Under the assumption that each BS implements individualproportional fairness, and that all users have the

same weight, the throughputxm received by a MSm under a strategy profiles = (bm, m ∈ M) can be simply

expressed as:

xm(s) =
Rmbm

Nbm
(s)

(12)

whereRmbm
is the link data rate between MSm and its selected BSbm, andNbm

(s) is the congestion level

(number of associated users including MSm) of BS bm under strategy profiles.

For each player in thesingle-association game, its reward (in terms of allocated bandwidth) of employing a

certain strategy is affected only by the number of other players who employ the same strategy (choosing the same

BS to associate with), rather than who they are. Thus, this game falls into the class ofcongestion gameswhich is

first introduced by Rosenthal in [22].

Rosenthal showed that if the reward function is the same for all players choosing the same strategy, then these

games possess a rich structure, in particular they always have a Nash equilibrium in pure strategies. The term of

“pure strategy” means each playerdeterministicallyplays a single chosen strategy, instead of randomly picks among

multiple strategies. This result follows from the existence of a potential function, which is a real-valued function

defined over the set of strategy profiles having the property that the gain of a player shifting to a new strategy is

equal to the corresponding change of the potential function.

The existence of an exact potential function implies thefinite improvement property (FIP): Any sequence of

strategy-tuples in which each strategy-tuple differs fromthe preceding one in only one coordinate (such a sequence

is called apath), and the unique deviator in each step strictly increases the payoff he receives (animprovement

path), is finite. The first strategy-tuple of a path is called theinitial point; the last one is called theterminal point.

Obviously, anymaximal improvement path, an improvement path that cannot be extended, is terminatedby a Nash

equilibrium.

Milchtaich [23] extended the definition ofcongestion gameto allow player-specific reward functions, i.e. different

players have different rewards by choosing the same strategy. He showed that even these games have a pure Nash

equilibrium.

In our setting, different MSs have different wireless link data rate with the same BS, thus the reward function

is player-specific. However, the simple structure of the player-specific reward function as defined in Equation 12

allows us to prove a stronger result than Milchtaich. More specifically, Theorem 4 shows that thesingle-association

gamepossessesFIP. To prove Theorem 4, we define for every strategy profiles = (bm, m ∈ M) the following

potential function:

Φ(s) =
∑

m∈M

log(Rmbm
) −

∑

b∈B

log(Nb(s)!) (13)

whereRmbm
is the link data rate between MSm and its selected BSbm, andNb(s) gives the number of MSs

allocated to a BSb under the strategy profiles.

Theorem 4: Single-association game possesses the finite improvement property.
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Proof: Consider a selfish steps → s′ where a playerm ∈ M switches from BSb to BS b′. Φ(s′) − Φ(s) =

(log(Rmb′) − log(N ′
b(s) + 1)) − (log(Rmb) − log(Nb(s))) = log(xm(s′)) − log(xm(s)).

Based on the result, theselfish load balancing (SLB)scheme as described below always converges to a Nash

equilibrium within finite steps. Under theSLB scheme, the resource manager starts from a feasible allocation

decision, and a user is allowed to switch to a BS that can improve its throughput. In each iteration, only one

user can switch. The iteration ends until aNash equilibriumis reached, i.e., no user can unilaterally change its

association to achieve a higher throughput.

Note that, there can be multiple Nash equilibria in thesingle-association game, andSLBcan converge to any of

them. For example, in Figure 3 (b), there are two Nash equilibria. In the first equilibrium, MSm1 is associated to

BS b1, while MSm2 is associated to BSb2. In the second equilibrium, the associations are swapped. Individual MS

can have significantly different bandwidth allocation under different Nash equilibria. Note that whileSLBconverges,

it is not incentive compatible. For example, MSm2 in Figure 3 (b) can hide its association with BSb2, so as to

make the system converge to the second equilibrium instead of the first one.

Despite the fact that it is not incentive compatible,SLB is still a valuable solution, as no MS can gain by

unilaterally change its association. In addition, our evaluation in Section VI shows thatSLB converges quickly

and performs close toInt-CPF. It remains an interesting research problem to design incentive-compatible resource

allocation schemes for single-association setting, such that MS cannot gain by cheating, while system can operate

in a fair and efficient state.

VI. EVALUATION

We compare the performance of the following six schemes. Forallocation schemes which can split a user’s flow

among multiple interfaces, we consider:

• Coordinated Proportional Fairness (CPF)scheme, as formulated in Section IV-A.

• Uncoordinated Proportional Fairness (UPF)scheme, where a MS associates to all neighboring BSs by

simultaneously turning on multiple radio interfaces. Thisrepresents a non-cooperative scenario where all users

are selfish and the system is uncoordinated.

For single-association setting, which enforces each MS to associate with only a single BS, we consider:

• Int-CPF scheme as formulated in Section V-A. Despite its NP-hardness, we can use a maximum weight perfect

k-matching formulation to calculate its decision in polynomial time when the number of BSs is a small constant

as described in Section V-A.

• Strongest-Signal-First (SSF)scheme, which always associates a MS to the BS with the strongest received

signal strength, regardless of network load.SSFscheme is the default association method for multiple radio

access technologies, including Wi-Fi networks.

• Least-Population-First (LPF)scheme, which always associates a MS to the BS with the least number of

associated MSs, regardless of the channel condition.LPF scheme is widely adopted in single-rate cellular

networks.
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• Selfish Load Balancing (SLB)scheme, as described in Section V-C. We use the allocation decision of SSF

scheme as the initial point forSLBprocess.

For fair comparison, we assume each BS implements individual proportional fair scheduling for all schemes above,

except for the case ofCPF scheme, which decides for each BS its allocation vector, thus does not necessarily follow

the individual proportional fair scheduling. We assume allMSs honestly report their channel state and association

information.

Our simulation is based on a600m × 600m torus topology where9 BSs are placed on a 3 by 3 grid, with the

distance between two adjacent BSs set to200 meters. All BSs have identical transmission power and operate on

non-interfering channels. The maximum transmission rangeof a BS is set to150 meters. The setB(m) of BSs

covering a MSm are determined from MSm’s location by examining whether its distance to a BS is within 150

meters. We have conducted evaluations for two user distributions:

• Uniform setting: MSs are distributed uniformly at random;

• Hot spot setting: Out of all MSs,50% are randomly generated in a circle-shape hot spot with the radius of

150 meters around the center of a selectedhot BS.

The arrival of MSs follows a Poisson process, and the sojourntime of a MS in the system follows an exponential

distribution, both of which are independent of MSs’ allocated throughput. Loadρ = E[|M|]
|B| is defined as the average

number of active MSs in the system divided by the number of BSs, with default value set to5. We use the log-

normal shadowing propagation model to calculate the received signal strength at MS from its adjacent BSs. Given

the distanced < 150m between a MSm and a BSb, the received signal powerPdB(d) from b at m is calculated

as PdB(d) = PdB(d0) − 10βlog10
d
d0

+ Xσ, whered0 = 10m is the reference distance,β = 3 is the path loss

exponent, andXσ is a Normal random variable in dB having a standard deviationof σ = 12dB and zero mean. We

set the Signal Noise Ratio (dB) within reference distance toPdB(d0) − PdB(N0) = 35dB, and use an empirical

threshold-based mapping to determine the link data rate accordingly. The parameters are set to model the typical

loss in an urban environment [24]. Each experiment below is carried out 500 times with different seeds, and the

average is presented.

A. Performance comparison under honest report

Figure 4 (a) (b) plot the per-user throughput sorted in non-decreasing order under the uniform setting, and Figure

4 (c) (d) plot the result under the hot spot setting. Table I summarizes the arithmetic and geometric mean of per-user

throughput under different schemes for the two settings respectively.

As expected,Coordinated Proportional Fairness (CPF)scheme produces the optimal geometric mean of per-

user throughput. In contrary,Uncoordinated Proportional Fairness (UPF)performs much worse, providing arith-

metic/geometric mean not only lower thanCPF scheme, but also inferior to all other schemes except forLPF

scheme in some cases. This observation holds for both uniform and hot spot settings. The significant performance

gap between them strongly advocates the adoption of a coordinated resource allocation approach for integrated

heterogeneous wireless networks.
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Fig. 4: Per-user throughput sorted in non-decreasing order

Uniform Hot spot

Arith. Mean Geo. Mean Arith. Mean Geo. Mean

CPF 1.26 0.89 1.21 0.81

UPF 0.89 0.67 0.87 0.59

Int-CPF 1.26 0.89 1.21 0.81

SLB 1.26 0.89 1.22 0.80

SSF 1.29 0.86 1.27 0.73

LPF 1.02 0.63 0.93 0.55

TABLE I: Arithmetic and geometric mean of per-user throughput (Mbps)

Among all allocation schemes for single-association setting, Int-CPF scheme has the optimal geometric mean

of per-user throughput, given that users do not cheat. Its performance is close to CPF scheme under both uniform

setting and hot spot setting. For both settings, the coordinate wise performance gap between the two schemes is

never greater than3.5%, and is less than1% for more than70% of MSs.

Our result also shows that,Selfish Load Balancing (SLB)scheme often has very close performance toInt-CPF,

thus toCPF as well. For around65% of user distribution in uniform setting,SLB scheme andInt-CPF make the

identical association decision. For99% of user distributions, the performance gap between the two schemes is less



17

than 1%. Similar phenomenon is observed under hot spot setting as well. In fact, such an approximation among

SLB, Int-CPF andCPF holds for a wide range of settings, as demonstrated in Figure5 which will be explained in

detail later.

Based on this, we make the following observation:By using an (appropriate) single radio per user, the system

can largely achieve the optimal performance when simultaneously using multiple radios per user.

Among all six schemes,Strongest-Signal-First(SSF)scheme achieves the highest arithmetic mean of per-user

throughput. This is as expected, becauseSSF scheme greedily assigns each MS to the BS providing the best

channel condition. However,SSF’s geometric mean of throughput is lower thanCPF, Int-CPF, andSLBschemes,

because a MS often associates to an overloaded BS which can only allocate a small portion of its overall radio

resource to serve the MS, thus provide poor throughput despite of the high link data rate between them. This

situation is particularly common in hot spot setting. As shown in Figure 4 (d), for hot spot setting, there are15%

of the MSs underSSFscheme have throughput lower than150 Kilobit per second (Kbps), compared to5% under

CPF scheme. For the15% of MSs with lowest bandwidth allocation, their throughput under SSFscheme is less

than70% of their throughput underCCF scheme. Thus,SSFcan be unfair to a significant portion of users.

Least-Population-First(LPF)scheme often performs worst in terms of both arithmetic and geometric mean of

per-user throughput, implying that traditional load balancing technique is not applicable to multi-rate wireless data

networks.

Since geometric mean of per-flow throughput embodies both the overall system resource efficiency and fairness

among users, in the following experiments we use geometric mean as the performance metric.
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(b) Varying traffic asymmetry

Fig. 5: Geometric mean of throughput under varying settings

Figure 5 (a) demonstrates different schemes’ performance under varying load in uniform setting. The performance

of Int-CPF andSLBscheme is close to each other in all range of load. Further, the performance gap between them

and theCPF scheme reduces with increased traffic intensity. This is because bothInt-CPF andSLBschemes allocate

resource on a per MS basis. Hence, the larger the traffic load,the finer the relative granularity of them. In fact,

the only case that we observe obvious difference betweenCPF scheme and the two single-association schemes is
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when the average number of MS per BS is very small (e.g.≤ 3).

Figure 5 (b) demonstrates the impact of asymmetric traffic distribution. The figure shows that the performance of

both Int-CPF scheme andSLB scheme is close toCPF scheme even under highly asymmetric traffic distribution.

Such robustness is largely because both schemes take into account factors including both network load and link data

rate. In comparison, performance ofSSFdeteriorates faster than all other schemes with increasingtraffic asymmetry,

while LPF scheme performs better thanUPF scheme under high traffic asymmetry.

B. Strategic interaction under SLB and Int-CPF
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Fig. 6: Convergence speed of SLB over varying load

Figure 6 shows the average number of steps required in the whole multi-cell system forSLB to converge to a

Nash equilibrium, starting from theSSFallocation. As can be seen from the figure,SLB converges quickly, and

the number of steps required grows linearly with the system load.

While SLB takes strategic interactions among MSs into consideration, Int-CPF simply ignores them. Our evalu-

ation also shows that, up to15% of decision made byInt-CPF is not a Nash equilibrium in the single-association

game. More specifically, there is at least one user who can unilaterally changes its association to gain higher

throughput from the network underInt-CPF allocation. As illustrated in Figure 3 (a), the user can cheat by hiding

all of its adjacent BSs except for its desired BS, so as to affect theInt-CPF resource allocation decision and increase

its own bandwidth.

We observe that, in more than30% of settings, there are multiple Nash equilibria in the inducedsingle-association

game, meaning that there is MS that can cheat about its channel state to drive the system to the Nash equilibrium

that it prefers.

VII. C ONCLUSION

This paper considers thecoordinated radio resource allocation problemfor users which are simultaneously

covered by multiple overlapping heterogeneous wireless networks. We introduce incentive compatibility as a new

criterion for making allocation decision by formulating the resource allocation process as amulti-cell resource

allocation game. We prove that the game with CPF allocation is incentive compatible. However, for the single-

association setting, the integral version of CPF allocation (Int-CPF) is both computationally expensive and prone
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to user-manipulation. Alternatively, we propose the selfish load balancing scheme, which can quickly converge to

a Nash equilibrium, and often achieves performance near to CPF allocation as shown by our simulation.
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