P3: A Practical Packet Pipeline Using Synchronous
Transmissions for Wireless Sensor Networks

Manjunath Doddavenkatappa and Mun Choon Chan
School of Computing, National University of Singapore

Abstract—While high throughput is the key for a number of
important applications of sensor networks, performance of the
state-of-the-art approach is often poor in practice. This is because
if even one of the channels used in its pipeline is bad, the pipeline
stalls and throughput degrades significantly.

In this paper, we propose a new protocol called P> (Practical
Packet Pipeline) that keeps its packet pipeline flowing despite
the quality differences among channels. P> exploits sender
and receiver diversities through synchronous transmissions (con-
structive interference), involving concurrent transmissions from
multiple senders to multiple receivers at every stage of its packet
pipeline. To optimize throughput further, P> uses node grouping
to enable the source to transmit in every pipeline cycle, thus fully
utilizing the transmission capacity of an underlying radio.

Our evaluation results on a 139-node testbed show that P3
achieves an average goodput of 178.5 Kbps while goodput of
the state-of-the-art high throughput protocol PIP (Packets In
Pipeline) is only 31 Kbps. More interestingly, P> achieves a
minimum goodput of about 149 Kbps, while PIP’s goodput
reduces to zero in 65% of the cases.

I. INTRODUCTION

Generating data in bulk is intrinsic to many sensor network
applications such as monitoring of active volcanos, structural
health, wildlife [32], [16], [3], [23], [7], and acoustic/image
based sensing [24], [12], [1]. A model in which nodes sense
and store the sensed data locally for later transfer in bulk
is an attractive option for non-realtime sensor applications
such as soil monitoring studies [27], [21], environmental
monitoring [28], [30], and energy auditing [14]. This is because
it has been shown that this model allows such applications to
achieve ultra-low power consumption [20].

Transferring generated bulk data with high throughput can
be important because: (1) High throughput reduces event miss
rate [26]. Sensor nodes in applications such as monitoring
of structural health and volcanos are required to suspend
their event sampling during data transfer in order to avoid
overwriting of the limited flash memory [32], [16]. (2) The
time slots available for uploading of the collected bulk data can
be short. For example, in railway-bridge monitoring [3], data is
uploaded to passing trains. High throughput allows gathering
and uploading of more data in the limited available time slots.
(3) Ensuring a high throughput is an energy-saving technique
as nodes can complete the data transfer faster and can go back
to sleep for energy conservation [26].

The state-of-the-art approach to achieve high throughput in
bulk data transfer in sensor networks is to exploit pipelining
and channel diversity [22], [26]. The idea is to setup a packet
pipeline by using different channels for different hops of a
data collection route so that parallel transmissions can be

978-1-4799-3146-0/14/$31.00 ©2014 IEEE 203

accommodated without any self/intra-flow interference. There
are two problems with this approach. First, it is vulnerable
to the quality differences that exist among different channels.
Our measurements demonstrate that the existence of even a
single bad channel on one of the links can completely stall the
packet pipeline resulting in zero throughput. Second, as the
source transmits and the destination receives only in alternate
cycles, the maximum achievable throughput is only up to half
the link rate.

In this paper, we propose a Practical Packet Pipeline (P3)
that is robust to channel quality differences over multiple
hops and allows the source to transmit and the destination
to receive in every pipeline cycle so that the achievable
throughput approaches link rate. The design of P3 includes the
use of packet pipelining, multiple channels, and synchronous
transmissions. All or some of these concepts are also exploited
in PIP [26] and Splash [5]. However, P3 uses a number of
novel techniques that are built on top of these concepts:

(1) We use synchronized multi-path transmissions to ex-
ploit both sender and receiver diversities so that the
packet pipeline is robust to bad channels. P? is based
on a key observation that packet receptions under
such concurrent transmissions are not correlated. In
P3, we select a subset of relay nodes such that
in every pipeline stage, except for the source and
destination nodes, there are a minimum number of
relays available for transmitting and receiving. As
receptions are not correlated, with high probability,
at least one of the receivers will correctly decode
the packet. In this way, pipeline stalls (bubbles) are
avoided as long as at least one node receives and
forwards the packet at every stage. We call this
bubble-free pipelining.

(2) We completely fill up the packet pipeline by enabling
the source to transmit and the destination to receive
in every pipeline cycle. To do so, we group nodes
at each of the intermediate stages into 2 distinct
subgroups, so that parallel transmission and reception
can be accommodated in each cycle. While one
subgroup receives, the other transmits. In this way,
the full capacity of the underlying radio is utilized
end-to-end.

(3) Finally, we exploit bubble-free pipelining even in the
reverse direction of destination to source, for trans-
mitting acknowledgements (NACKSs). This is needed
so that feedback on which packets to retransmit
can be conveyed quickly and robustly by avoiding
stalls caused particularly by channel asymmetry. With
reliable feedback, retransmission can be performed

only as needed without the need to resort to complex
error correction and coding schemes.

We have implemented P3 in Contiki-2.5 and evaluated
our implementation on a 139-node testbed (Indriya) [4]. Our
results show that P3 achieves an end-to-end average goodput
of 178.5 Kbps while PIP’s average goodput is only 31 Kbps.
This 5.7 times improvement is achieved despite of the fact
that we reimplemented PIP and our reimplementation is 57%
faster than its original implementation. More importantly, P3
achieves a minimum goodput of about 149 Kbps, while PIP’s
goodput reduces to zero in 65% of the cases. Overall, the
maximum observed end-to-end utilization of P3 is 90.6%,
with an average value of 80.9% of the effective link rate. This
performance of P3 is much higher than that of all the previous
high throughput protocols [26], [22], [6], [15].

The rest of the paper is organized as follows. Background
and related work are discussed in Section II. Section III
presents a measurement study of performance differences that
exist among different channels together with a study of re-
ception correlation under synchronous transmissions on those
channels. These studies serve as motivation for our work. We
present P3 and the details of its implementation in Section IV.
Our evaluation results on the Indriya testbed are discussed in
Section V. In Section VI, we provide a brief discussion on
the extension of our work planned for the future. Finally, we
conclude in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we provide a discussion of the literature re-
lated to our work and background information on constructive
interference that is exploited in our work.

Bulk Data Transfer. Bulk data in sensor networks is
typically downloaded sequentially, from one node at a time.
Only a single flow would be active at any given point of
time so as to avoid inter-flow interference when multiple
flows are active [15]. Sequential download also allows to
achieve an ultra-low duty cycling [20], without increasing the
overall completion time for downloading from an entire net-
work [15]. These considerations drive existing high-throughput
protocols [15], [22], [26], [6] to attempt to improve throughput
over a single flow of bulk data transfer.

High-Throughput Protocols. While sequential download
avoids inter-flow interference, self/intra-flow and external in-
terferences still pose challenges for achieving a high through-
put even on a single flow. A simple method to avoid intra-
flow interference is to allow the source node to incorporate
an inter-packet interval such that its previous transmission
would be out of the interference range before the node at-
tempts its next transmission. However, this method drastically
reduces throughput as a long inter-packet gap is required in
practice [16]. Flush [15] attempts to optimize this inter-packet
interval by using an overhearing technique. But as typical
interference range is more than the decoding (overhearing)
range, Flush’s approach is not effective in practice.

Osterlind et al. [22] are the first to propose to exploit
channel diversity to completely avoid intra-flow interference
in sensor networks. Their method involves assigning different
channels for different hops of the active flow. As assigned

204

channels are non-interfering with each other, nodes within a
flow can make parallel transmissions without intra-flow inter-
ference. PIP [26] extends this idea to a full-fledged protocol
which can achieve a high throughput (up to 63 Kbps) when
the channel qualities over all hops are good. However, the
existence of even a single bad channel on one of the hops can
completely stall PIP’s packet pipeline, reducing its throughput
to zero.

Handling Channel Quality Differences. Channel hop-
ping/cycling is a well-known technique that although reduces
throughput, avoids the risk of packet pipelines being stalled
completely. It involves changing the receiving channel of every
hop in every pipeline cycle thus giving every hop chances to
use good channels. However, unlike P3, it is not a technique
for ensuring a high throughput despite drastic channels-quality
differences. For example, evaluations of PIP coupled with
channel hopping [26] show that under intense interference, this
combination can only achieve a goodput of below 15 Kbps.

While techniques like channel hopping does not ensure a
high throughput, Duquennoy et al. proposed Burst Forward-
ing [6] so that nodes can at least conserve energy by switching
to sleep mode (duty-cycling) during stalls. With duty-cycling,
goodput of this protocol is lower than that of PIP. Finally, a
naive method to handle channel quality differences is to use the
maximum transmission power for data transfer over a route that
is built using a lower transmission power or a poor channel.
However, such an approach can induce self interference. Also,
the underlying network may not be connected on lower power
levels or poor channels.

Synchronous Transmissions (Constructive Interfer-
ence). When multiple nodes transmit the same packet with
strict synchronization, it can result in a physical phenomenon
called constructive interference. A receiver node experiencing
such interference can correctly decode the packet despite
overlapping receptions. The key advantage of constructive
interference is that it completely eliminates the need for
contention resolution when multiple nodes have the same
packet to transmit. Rahul et al. are the first to exploit this
advantage in SourceSync [25] to improve the performance
of WiFi networks. They improve download throughput in
infrastructure networks and also enhance the performance of
opportunistic routing [2] in ad hoc mesh networks.

Ferrari et al. are the first to demonstrate in Glossy [10]
that strict synchronous transmissions lead to non-destructive
interference even in wireless sensor networks. They showed
that for the standard sensor radio (CC2420), if the maximum
time displacement among concurrent transmissions of the same
packet is less than 0.5 microsecond, with high probability,
a receiver can correctly decode such transmissions. They
exploited this fact to provide an efficient flooding and time-
synchronization service. Splash [5] is another protocol that
exploits constructive interference to rapidly disseminating large
amounts of data to all nodes in a sensor network. Constructive
interference is also used for collecting infrequent and periodic
data in LWB [9] that allows to achieve a low duty-cycling ratio.
Different from these uses, P> exploits constructive interference
for achieving near optimal throughput in transferring bulk data
between a source and a destination node.

Capture Effect Under Synchronous Transmissions.
Landsiedel et al. recently demonstrated in Chaos [18] that the
time required for all-to-all communication in sensor networks
can be significantly reduced by exploiting capture effect under
synchronous transmissions. The capture effect plays a key role
in Chaos (it is mandatory) as all-to-all communication typically
involves concurrent transmissions of different packets. How-
ever, its role under synchronous transmissions of the same
packet is not as critical as in Chaos. It is demonstrated in
Glossy [10] that reception reliability for identical packets is
reasonably good without capture effect: 75% and 95% for
packet sizes of 128 (maximum) and 8 bytes respectively.
A strict synchronization among concurrent transmissions is
the most critical requirement for identical packets as desyn-
chronization even by a small value of 8 microseconds can
degrade the reliability to below 15% [10]. Therefore, as P3
involves only concurrent transmissions of the same packet,
the requirement for synchronous transmissions (constructive
interference) dominates over the need for capture effect.

Correlation among Packet Receptions. Recent
works [33], [29] study reception correlation among different
receivers of a packet transmitted by a single transmitter in
sensor networks. These studies show that packet receptions
are correlated on some channels whereas they are not on
others. While Ting Zhu et al. exploit the observed correlation
to improve the performance of network flooding [33],
Srinivasan et al. attempt to quantify the correlation [29]. We
study the correlation under constructive interference where
a packet is simultaneously transmitted by multiple nodes to
multiple receivers. Our measurement study demonstrates the
fact that packet receptions under constructive interference are
not correlated on all channels. Receptions are independent on
sufficient number of channels so that P3 can exploit node
diversity through constructive interference to avoid pipeline
stalls caused by channel quality differences.

III. CHANNEL QUALITY AND RECEPTION CORRELATION
MEASUREMENTS

In this section, we present two measurement studies. First,
we demonstrate that the performance of different channels on
a link differs drastically. While it is known that the quality
of a channel differs from that of another, we demonstrate that
differences can be significant as a good link on one channel
may not exist on another channel. Moreover, unlike previous
works, we aim to provide extensive experimental evidence for
the existence of the problem that we are tackling in this paper:
channel quality differences can severely affect the performance
of the state-of-the-art approach of exploiting channel diversity
for bulk data transfer.

Second, we show that packet receptions under synchronous
transmissions involving transmissions from multiple senders
to multiple receivers are not correlated on all channels. While
Marco Zimmerling et al. have shown in [34] that it is largely
valid to assume packet receptions under synchronous trans-
missions to be independent, their experiments are limited to
Channel 26. As P? is a multi-channel system and one of its
central requirements is that the independence must be true on
at least four different channels, we carryout experiments to
demonstrate that this requirement can be satisfied in practice.

205

This observation forms the crux of our proposed solution of
P3, allowing its pipeline to keep flowing.

A. Channel Quality Differences

IEEE 802.15.4 is the de facto physical layer standard
for wireless sensor networks. This standard supports 16 non-
overlapping channels defined in the 2.4 GHz band that is
also shared by the WiFi devices. These 16 channels are
usually referred by the numbers from 11 to 26, with each
channel occupying a width of 2 MHz, and with an inter-
channel space of 3 MHz. We evaluate performance of each
of these 16 channels on links of the Indriya testbed [4], a 139-
node sensor network deployed across three floors of a large
building. We select links that are parts of the routes chosen by
Contiki’s collection tree routing protocol [17] as existing high-
throughput protocols assume that their data routes are given by
one such routing protocol. Moreover, we particularly choose
high-quality inter-floor links which are critical in providing
connectivity among nodes placed on different floors of the
building.

Links are selected from two collection trees, one built on
Channel 26 and the other on Channel 20. Both the channels
are generally free from WiFi interference [19]. Channel 26
is used as the default channel in most of the sensor network
deployments, and while network-wide quality of Channel 20 is
generally not as good as Channel 26, it is one of those channels
on which Indriya is consistently connected. On every link, we
evaluate the performance of each of the 16 available channels.
On each channel, we transmit 10,000 packets with an inter-
packet interval of 10 milliseconds and use packet reception
ratio (PRR) as an indicator of the channel quality.

Table I depicts the performance of all 16 channels (C) on 10
links (L) randomly chosen from the tree built on Channel 26.
Each entry of the table corresponding to a link L and a channel
C represents PRR observed over 10,000 packet transmissions
made using channel C on link L. For example, the first entry
(1, 11) whose value is 0.00 indicates that PRR observed for
link numbered 1 on Channel 11 is zero. We can make two key
observations. First, the quality of most of the other channels on
all links are much lower than that of Channel 26. For example,
on Link 1, not even one packet got through on any channel
other than Channel 26 whose quality is almost perfect with a
reception ratio of 0.99. Therefore, a good link on one channel
may not even exist or it can be of bad quality on another
channel (see last row that depicts percentage of links with the
quality less than 0.1 (%<g.1)). As a result, when an existing
protocol exploits a channel on a link that is chosen on some
other channel, its packet pipeline can be stalled completely,
resulting in zero throughput. The second observation is that
no other channel is consistently as good as Channel 26. Thus
making it difficult to find even a small set of channels that are
good across most links.

Note that these observations were found true even on links
which were chosen from a tree built on Channel 20. We
found that Channel 20 is the only channel that is consistently
good across those links (due to the lack of space, we are not
presenting the corresponding data). Therefore, choosing routes
on a somewhat poor channel where the network is consistently
connected does not help existing protocols.

TABLE I: Quality differences among different channels on links of a tree built on Channel 26.

L\C 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 000 000 000 000 000 000 0.99
2 023 0.00 0.00 0.00 0.00 0.00 037 051 072 003 038 026 000 000 001 1.00
3 082 001 0.00 021 053 067 001 037 026 000 014 030 0.00 036 097 0.99
4 0.00 0.00 028 050 049 0.00 005 026 069 000 000 002 000 000 100 1.00
5 0.00 0.00 0.00 0.00 0.00 051 047 049 059 000 003 010 0.00 0.06 094 0.98
6 0.00 0.00 0.00 0.00 0.00 001 001 000 008 091 050 048 040 036 077 0.92
7 072 001 0.00 002 010 0.00 0.00 0.03 007 001 001 001 001 000 008 1.00
8 009 038 036 070 097 055 050 047 016 052 026 018 018 029 099 1.00
9 011 023 041 097 099 048 047 045 003 009 001 030 046 091 065 1.00
10 069 073 073 023 0.1 023 015 036 095 083 015 000 040 069 1.00 0.96

Avg. 027 014 0.8 026 032 025 020 029 035 024 015 017 015 027 064 0.98

Y%<01 | 50% 70% 60% S50% 40% 50% 50% 30% 40% T10% 50% 40% 60% 50% 30% 0%

TABLE II: Correlation coefficients observed on channels 15
and 20.

R 1 2 3 4 5 6 7 8 9 10
1 1.0 | .02 | 0.0 16 | .08 | .08 | .01 | 0.0 | .06 12
2 12 1 1.0 | -.01 A3] .07 | .05 22 | -.01 | .06 | .09
3 14) .12) 1.0 | -01 | 0.0 | 0.0 | 0.0 | .07 02 | 0.0
4 1.0 | .12 14 1.0 25 | 37 | .13 01 20 | .55
5 16 10 | .13 16 | 1.0 | .10 | .08 | -01 | .26 | .23
6 18 06 | .11 18 08 | 1.0 | .06 | 0.0 | .09 | .21
7 24 14 17 24 17 | .08 | 1.0 01 .07 | .09
8 14 | .08 10 .14 08 | .05 08 | 1.0 | .01 01
9 30 | .09 08 30 | .21 08 19 12 | 1.0 | .18
10 | .61 07 08 61 12 11 14 09 19 | 1.0

In summary, the-above observations demonstrate the fact
that a common assumption of all channels behave similarly
on a link chosen on some default channel does not hold in
practice. The problem is that this assumption forms the crux
of many existing protocols that are designed to achieve high
throughput.

B. Correlation among Packet Receptions

Next we study the correlation among packet receptions
under synchronous transmissions. Our experimental setup con-
sists of 21 nodes that are installed on the same floor in
an area of about 30m x 30m. These 21 nodes form a 2-
hop setup in which one node acts as an initiator transmits
a packet once every second to a set of 10 first-hop relay
nodes, which in turn concurrently forward the received packet
so that their transmissions interfere non-destructively at the
remaining 10 second-hop receiver nodes (R), across which we
study correlation. We repeat this experiment on four channels
(15, 20, 25, and 26). Packets are transmitted for a duration of 5
hours on each channel. We particularly choose these channels
because they are generally non-overlapping with commonly
used WiFi channels [19].

In order to quantify correlation, we compute Pearson’s
correlation coefficient at a packet-level granularity. For il-
lustration, Table II depicts the coefficient values observed
for Channels 15 and 20. Note that as a coefficient matrix
corresponding to a channel is symmetric, we represent data
corresponding to two channels in a single table (matrix). The
lower half of the table (below the diagonal) corresponds to
Channel 15 and the upper half corresponds to Channel 20.

It can be observed that the coefficient values are generally
small for every channel with at least 80% of the values being

206

less than 0.2. This indicates that when packet reception is
unsuccessful on one of the receivers, some other receivers may
be able to receive the packet successfully. Similar coefficient
values were observed for the other two channels numbered
25 and 26. However, note that this is not true across all 16
available channels. For example, since Channel 22 typically
overlaps with a commonly used WiFi channel, it experiences
relatively strong correlation. On the other hand, since channels
15, 20, 25 and 26 are generally not affected by the WiFi, the
correlation is low.

As long as there exists at least four such channels with low
packet reception correlation under synchronous transmissions,
P3 can successfully exploit node diversity through synchro-
nized multi-path transmissions to keep the pipeline flowing
without stall.

1v. P3. A HiGH THROUGHPUT PROTOCOL

The state-of-the-art protocol to achieve high throughput in
sensor networks is PIP [26]. Given a collection route chosen on
some default channel (see Fig. 1(a)), the key idea of PIP, which
is adopted from [22], is to setup a packet pipeline by assigning
different channels to different hops of the route. However, the
problem with this approach is that it often leads to a scenario
depicted in Fig. 1(b), where no packet gets through from node
1 to 2 on the assigned Channel C2. This completely stalls PIP’s
packet pipeline to result in zero throughput at the destination.

In order to tackle this problem, we propose P32, a practical
high-throughput protocol that keeps its packet pipeline flowing
despite drastic channels-quality differences.

P3 is mainly a combination of three key innovations:

1) Bubble-free pipelining exploits both sender and re-
ceiver diversities through synchronous transmissions
to avoid bubbles (stalls) over a multi-channel packet
pipeline.

2) Pipeline filling allows to create a packet pipeline
in which the source transmits a packet in every
cycle, similar to a CPU-instruction pipeline where an
instruction is fetched and fed in each cycle. On the
other hand, existing packet pipelines allow source to
transmit a packet only in alternate cycles.

3) Bi-directional pipelining supports pipelined transmis-
sions of acknowledgement messages (NACKs) ex-
ploiting node diversity in the reverse direction from
destination to source so that the stalls due to link
asymmetry are effectively avoided.

ORES gpm—py
. %
a2y)
RO ©) p o O

W

(b) Cycle 2

(a) Cycle 1

. Both odd and even pkt handler

1 Odd pkt handler O Even pkt handler

®

—> complete pkt RX

s (s
- pktl -)
YR e
pkt3 Pk**.[) S pkt4 pki2 D

60 ® ©

0 pkt4

(c) Cycle 3 (d) Cycle 4

fffff > aborted pkt RX

Fig. 3: P3’s packet pipeline achieving the maximum possible end-to-end throughput.

ONENCO
@a ®c1 @m

©® ©

(a) Default data route chosen on the default channel (C1).

® ©
@ C2 X C3
©® ©

(b) Channel Assignment by PIP on a given route.

®

O (®)

Fig. 1: Problem with the state-of-the-art approach to achieve
high throughput.

=—(s)
C1 C3
()7
C2

Fig. 2: Proposed solution of exploiting node diversity through
synchronous transmissions.

O

In the rest of this section, we discuss various components
of P? and some of its implementation details.

A. Bubble-Free Pipelining

P35 core technique is to exploit node diversity through
synchronous transmissions, so that pipeline bubbles can be
avoided despite drastic channels-quality differences. This is
depicted in Fig. 2. At every intermediate stage, there are
multiple nodes, all of which forward a received packet, so that
at least one of such senders would successfully communicate
to at least one of the multiple receivers available at the next

207

hop. This increases the chance that a transmission between two
hops is successful. Such transmissions using multiple senders
and receivers are said to exploit sender and receiver diversities
respectively [25], [2]. For illustration, consider Fig. 2 in which
although there is no communication link on the assigned
Channel C2 from node 1 to 2, other links such as 4-to-6, 3-to-
2, 3-to-5, and 1-to-6 are of good quality on the same channel.
All that is needed is that at least one transmission succeeds so
that the pipeline can continue without creating a bubble.

A key question while exploiting node diversity is that
when and which of the multiple receivers of a packet should
forward the received packet? Conventional approaches used an
agreement protocol to select such a forwarder [2]. However,
such an agreement protocol is typically expensive, trading
both throughput and energy. Instead, we exploit synchronous
transmissions as in [25] to completely eliminate the need
for such an agreement protocol. On receiving a packet, all
receivers forward the packet immediately and synchronously
so that their transmissions interfere non-destructively at the
next-hop receivers. As packet receptions under synchronous
transmissions are not correlated (see Section III), with high
probability, at least one of the receivers would correctly decode
the packet.

B. Pipeline Filling

Existing protocols can at most utilize 50% of the capacity
of an underlying radio as their source node can only transmit in
alternate pipeline cycles where the first-hop node is listening,
not transmitting. On the other hand, the source node in P3
transmits every cycle, utilizing the radio to its full capacity.

Let us describe how P3 achieves this using an example
network of 10 nodes depicted in Fig. 3. To begin, source (S)
transmits the first packet (pktl) in the first pipeline cycle (see
Fig. 3(a)). Although this packet is heard by all the first-hop
nodes, only nodes 1 and 2 choose to completely receive the
incoming packet while others abort the reception midway. In
the second cycle (see Fig. 3(b)), the next transmission (pkt2)
immediately follows from the source, and this time nodes
labelled as 3 and 4 receive pkt2 while nodes 1 and 2 are
busy in forwarding pktl synchronously on another channel.
So the first-hop stage is both transmitting and receiving in
the same cycle. Moreover, source does not waste the second
cycle as in existing protocols. By grouping nodes at each
intermediate stage into two subgroups (one receiving and
transmitting packets which source generates in odd-numbered

pipeline cycles and the other handling packets generated in
even-numbered cycles), once the pipeline is filled, P? keeps
every stage busy in every cycle: the source transmits, an
intermediate stage both receives and transmits, destination
receives (see Figs. 3(c) and (d)).

C. Selection of Data Routes

In this subsection, we explain the procedure that P> uses
for selecting its data routes between a given source and a
destination node.

1) Network Flooding is Inefficient: Network flooding
over synchronous transmissions offers the maximum node
diversity at every hop. However, it has two key drawbacks:
(1) it requires an entire network to be awake for transferring
data between only two nodes, which is highly inefficient
in terms of energy consumption; (2) it is well-known that
reception reliability of synchronous transmissions suffers from
scalability problem, both in terms of number of concurrent
transmitters and packet size [31], [S]. Most of the previous
protocols [10], [9], [5] exploiting flooding over synchronous
transmissions rely on multiple retransmissions of every packet,
for higher reliability. However, such a retransmission policy is
not an option for P3 as it drastically reduces throughput by a
factor of the employed number of retransmissions.

2) Finding Multiple Node-Distinct Paths: Instead of
using the maximum diversity offered by flooding (all network
nodes), P? exploits node diversity available in a much smaller
sub-group of nodes that form a set of node-distinct paths,
of a certain hop-length (H), between the given source and
destination nodes. This is illustrated in Fig. 4. Fig. 4(a) shows
a sample network topology used to illustrate the route selection
process. There are two special nodes, the source (S) and
destination (D). For all other nodes, the number indicated
within each node is the hop-length from the source node.

Provided with this global topology at the gateway node,
it finds distinct paths as follow. First, it identifies the shortest
path from node S to node D (obtain using a standard shortest
path algorithm), which is 3 hops in this case. One can now
ask for node-distinct paths with 3 or more hops. In our current
implementation, for a given value of H, the gateway uses a
depth-first-search algorithm to find the largest set of available
node-distinct paths of the given length H. For H = 3, two
such paths can be found for the sample network as shown
in Fig. 4(b). All other nodes that do not lie on these selected
paths will not participate in the data transfer, thus significantly
reducing the overhead.

A key question is how many such node-distinct paths can
be found (and is needed) between any given two nodes so
that the selected set of nodes offer sufficient node diversity?
Note that while a logical value for H is the hop-length of the
shortest path between the source and destination nodes, we
can always choose to use a different H so that the number of
distinct paths (diversity) available changes. Also note that hop-
length has minimal effect on the performance of P? because
of the use of pipelining. We select H such that there should
be at least N distinct paths of length H. Typically, there will
be several sets of distinct paths between the given source and

208

destination, with each set corresponding to a different hop-
length. Hence, there is a high chance of finding at least one
set among them having at least /V distinct paths.

A fundamental assumption we made in the design of P?
is that the network deployment is dense. In the testbed we
used to evaluate P3 (Indriya), the average number of neighbors
per node (density) is about 20. Node density is even higher
for other popular testbed deployments such as Twist [13] and
Kansei [8]. Based on our experimental observations, we choose
a value of six for N. Therefore, P3 exploits at least six (IV)
distinct paths for creating its packet pipeline (see Table IV in
Section V for number of distinct paths (M > N) forming our
experimental routes).

Nevertheless, it is always possible that the network is not
sufficiently dense and the number of paths with distinct nodes
is small. In such cases, P3’s performance degrades and in the
worst case, the performance is no worse than the performance
of our baseline protocol, PIP, which uses only a single path.

3) Selection of Even and Odd Forwarding Nodes: If
there are M (M > N) distinct paths available between a
given source and destination, a subset of M /2 paths receive
and forward odd-numbered packets (i.e., packets which are
generated in the odd-numbered pipeline cycles at the source)
and the remaining paths handle even-numbered packets. We
build these subsets by choosing paths randomly among the
available M paths. In addition, our current implementation of
P3 also supports increasing node diversity by adding extra
nodes. For example, one additional node can be added as
shown in Fig. 4(c) to the first hop in addition to the set of
nodes shown in Fig. 4(b). Its addition increases receiver and
sender diversities at the first and second hops respectively.

D. Overhead of Route Selection

All bulk data collection protocols need a routing protocol
for selecting routes over which bulk data is downloaded. There
are two choices for such a routing protocol: (1) a conventional
distributed protocol like CTP [11], as assumed by systems
such as Flush [15] and PIP [26]; (2) a centralized approach
as proposed in Koala [20], which involves gateway node
collecting qualities of all the links of every node in the network
and using the collected information for computing data routes.
In other words, gateway node needs have the knowledge of
the global topology.

For P3, we adopt the centralized approach because (as
demonstrated in Koala), while this approach incurs an overhead
when collecting network topological data, it still can be more
efficient than a distributed protocol that incurs the overhead
of persistently maintaining routing state, which is not needed
for infrequent transfer of bulk data. We will discuss in more
detail the two main sources of overhead (1) collection of link
quality statistics to the central gateway and (2) dissemination
of routing information to the network nodes.

1) Link Quality Collection: Collection of link qualities
involves two phases: (a) measuring the link qualities and (b)
collecting the measured data from every network node to the
gateway.

(a) A sample network.

(b) Two distinct paths of hop-length 3.

® P S ®
T
@@ o O=0 /
©) @] q\@ 'O
O NNON

(c) Two distinct paths with added diversity.

Fig. 4: P3 Data Route Selection.

Link Quality Measurement. The overhead incurred in
link quality measurement is common to any bulk data transfer
protocol. The additional requirement for P3 is that this link
quality measurement should be done quickly so that the
measurements remains useful for P3 during the data transfer
phase.

The proposed approach uses a Glossy-like [10] efficient
synchronization protocol and it involves every network node
broadcasts a certain number of beacon packets to its neighbors
so that they can compute qualities of the incoming links. A
key requirement for this method is the need for orchestrating
broadcasts from one node at a time, for which we propose
to use Glossy that limits orchestration overhead to only a
few milliseconds per node. Based on the capability to achieve
efficient synchronization, we can write down a simple equation
(shown below) that represents the total time required for
measuring link qualities from a network of size n nodes.
In the equation, 7, is the time required to disseminate a
control packet to a network node using a protocol like Glossy,
indicating the node to start broadcasting. [PI represents inter-
packet interval used for transmitting beacons, and IV, is the
number of such beacons transmitted.

T = (T, + (IPI x Ny)) x n (1)

Using the above equation and making an assumption that
T, is less than 10 milliseconds [10], measuring link qualities
of a 100-node network with a diameter of up to 10 hops would
take only about 101 seconds, assuming /P = 100 millisec-
onds and NV, = 10.

Collection of Measured Link Qualities. We propose to
make use of an efficient collection protocol such as Low-
Power Wireless Bus (LWB) [9]. It has been shown in [9] that
LWB can complete the collection of 15-byte packets from a
network of 260 nodes within only about 5 seconds. Hence, it is
reasonable to assume that for network sizes of up to 260 nodes,
an overhead of no more than 10 seconds is needed to collect
link statistics from all nodes with each node transmitting a
bigger 30-byte packet accommodating more link entries.

2) Dissemination of Routing Information and Channel
Assignment: Once gateway node computes distinct paths,
we exploit synchronous transmissions for disseminating the
computed data to the network so that the paths are installed

209

(network nodes which are part of the computed paths are
informed to get ready for the data download that follows).

The disseminated routing data contains node identity, hop-
length, and reception channel for every node of the set of node-
distinct paths. Nodes of the same hop-length use the same
reception channel. Nevertheless, different channels are used
for different hops so that packet pipelining can be supported.
We exploit only those four ZigBee channels (15, 20, 25, and
26) which are typically free from WiFi interference [19].
This is because such a ZigBee channel exhibits no positive
correlation among its packet receptions under synchronous
transmissions (see Section III), which is a key requirement for
P3. Importantly, due to node diversity available at every stage
of the P%’s pipeline, only four such channels are sufficient to
cope with any self interference on routes longer than 4 hops.

Dissemination involves Glossy-like [10] flooding, which
completes within a few tens of milliseconds, thus minimally
affecting the overall download throughput.

3) Impact of Variations in Topology: A key issue is
whether the collected topology undergo significant changes in
the period between measuring-and-collecting link qualities and
the completion of bulk data transfer from every node in the
network.

It is easy to infer from equation 1 and assuming LWB
for collection that it takes at most 111 seconds for measur-
ing and collecting link statistics from a 100-node network
(101 seconds for link quality measurement (beacon IPI =
100 milliseconds, N, = 10, and T, = 10 milliseconds) and
10 seconds for collection using LWB). Moreover, based on
P3’s average throughput of about 178.5 Kbps (as observed
in our experiments that takes dissemination time of routing
information into account), P> requires about 287 seconds for
downloading a 64 KBytes object from every node in a network
of 100 nodes. Therefore, total data download completion time
is about 400 seconds. It is reasonable to assume that the global
topology does not drastically change over these relatively short
durations.

E. Scalability at the Last Stage

As there are multiple senders and receivers between any
two intermediate stages of P3’s pipeline, with high probability,
at least one of the receivers will correctly decode the packet.

However, the last stage (destination node), lacking any receiver
diversity, often experiences poor reception reliability due to too
many concurrent senders causing the scalability problem [31].
To tackle this, we use a simple technique in which only
those nodes on the penultimate stage with a good reception
reliability of at least a predefined threshold value would
participate in forwarding the received packets. This typically
limits the number of concurrent transmissions overlapping at
the destination.

FE. Bi-Directional Pipelining

Packet losses are common in wireless networks and missing
data has to be recovered. Rateless/XOR coding is not suitable
as these techniques involve decoding overhead that reduces
throughput considerably. As there exists only one destination,
the source can have accurate information of missing packets.
We use a simple retransmission policy involving transmission
of NACKSs indicating missing packets in the form of a bit
vector. The key is that even NACKs are transmitted over
a bubble-free pipeline exploiting node diversity, but in the
reverse direction from destination to source. This is particularly
useful as existing pipelines lacking such diversity often fail to
communicate NACK-like control messages due to the effects
of channel asymmetry on their links.

Source starts the retransmission procedure by transmitting
a control message that immediately follows the transmission
of the last data packet. It is conveyed over the same bubble-
free pipeline used for data. This control message serves two
purposes of informing the destination to transmit a NACK and
notifies intermediate nodes to change their sending channels
so that the NACK can be transmitted over pipelining. As
a response to the reception of a NACK, intermediate nodes
forward it and switch back to their original sending channel,
and the source starts retransmitting missing packets. The entire
process is repeated until the destination receives all packets.

G. Implementation of P3

P3 is implemented in Contiki OS based on code from
Glossy [10] and Splash [5]. In particular, support for syn-
chronous transmissions is derived from Glossy, and the ca-
pability to exploit multiple channels while accommodating
synchronous transmissions is derived from Splash’s code. In
this section, we provide an overview of the implementation
aspects that are specific to P3.

Packet Transfer from MCU to Radio'. As the source
node in existing approaches alternates between transmission
busy and idle cycles, the time taken for loading a packet
from MCU to radio memory has no impact on the end-to-
end throughput. This is because a packet can be loaded in an
idle cycle for its transmission in the proceeding busy cycle.
On the other hand, P? allows the source to transmit a packet
in every cycle. Therefore, waiting until a packet is entirely
loaded into radio memory before starting its transmission
considerably degrades its throughput. Note that packet loading
takes considerable amount of time but typically less than the
duration that radio requires for packet transmission.

INote that this issue is different from the bottleneck issue of SPI (Serial
Peripheral Interface) discussed in PIP [26].

210

We tackle this issue by parallelizing loading of a packet
with its own transmission. We start loading a packet imme-
diately after sending a command strobe to the radio for its
calibration, and radio starts transmitting the packet as soon as
it is calibrated while packet’s loading is still in progress. As
loading is faster than transmission, buffer underflow is not an
issue [10]. The same technique is exploited in Glossy [10]
but for a different purpose of ensuring synchronization for
synchronous transmissions.

Avoiding Explicit Synchronization. Existing high
throughput protocols require their pipeline nodes to be tightly
synchronized to one another so that their channel switching
can be coordinated. Such synchronization is ensured and
maintained by explicit regular transmissions of timestamps
by the source to all the other nodes. On the other hand, P
supports the required synchronization at no additional cost
and its explicit maintenance is also not required.

This is because P2 is built on the code for Glossy and
Splash [10], [5], which allows nodes to ensure a highly
deterministic and constant delay in a sequence of operations
of receiving a packet, switching to the transmit channel,
forwarding of the received packet, and finally switching back
to the receiving channel. When such determinism is coupled
with strictly regular transmissions from the source and packets
of equal length, by the time a pipeline stage starts its next trans-
mission, its next stage receiver nodes would have completed
forwarding of the previous packet and switched back to their
receiving channel.

Lack of OS Services. As P2 exploits synchronous trans-
missions for both data and control packet transmissions, its
code does not use any service from its OS (Contiki) as
such services incur variable delays making it impossible to
support synchronous transmissions. P is implemented entirely
as part of an interrupt handler with all the other interrupts
being disabled during P3’s operation. Lack of OS services
such as abstractions that expose any number of timers made
implementing P3 a difficult task. Particularly, all the required
timeouts for control operations had to be implemented using
only two timers out of only six available timers in total, while
the remaining four were used for mainstream data operations.

Flash Access. As P3 achieves almost maximum goodput,
packets are always being received at the destination node. Thus
it is challenging for this node to find sufficient amount of time
so that received packets can be written into the external flash
or transmitted over the serial port. One option is to overlap
reception of a byte by radio with writing of the immediate
previously read byte into flash. As flash access is faster than
the radio reception, MCU can become free in time to read the
next radio byte. Another simpler option is to have a set of
two sensor nodes as the base station (destination), in which
one node receives packets in the odd-numbered cycles and
the other in the even-numbered cycles. This gives each node
sufficient time duration to write a received packet into the flash
or transmit it onto the serial port while the other node is busy
in receiving a packet over the radio.

However, for simplicity, in our current implementation of
P3, we assume that the base station has enough RAM memory
to hold all the bulk data from all the network nodes.

Goodput Comparison between P3 and PIP on Indriya

250 T
pS o—
- 200 - PIP —=
a
Ie)
X 150 - -
2
ko] 100 B 1
o
o
) ° I I | I I I I |
0 0 0 0 0 0 0 0 0 0 0 0 0 0
XY T
OO/ O(// OO/! Oof OO/ OO/ OO/ Oof OO/t OO/ O(// Oof O(// OO/ O(// OO/ O(// OO/ Oof OO/!
@} @é @‘5) @7 @6\ @@ @) GCP @& @}0 @,} @<3 Q{P @}7 @,6\ 6}6’ @’) @}c? @{9 Gﬂ:’o

Fig. 5: Goodput comparison between P3 and PIP.

V. PERFORMANCE EVALUATION

In this section, we present the results of our experiments
carried out on Indriya [4], a 139-node facility available at the
National University of Singapore. Indriya uses TelosB nodes
built with CC2420 radio chips and is deployed over three floors
of a building.

We compare P2 against PIP [26]. We reimplemented PIP
in Contiki based on Glossy code [10] and it is much faster
than all the previous implementations of PIP. While the original
implementation can at most achieve a goodput of 63 Kbps [26],
[6], our reimplementation can achieve the maximum goodput
of about 99 Kbps. This improvement is due to the fact
that our code is based on Glossy’s code that ensures highly
deterministic and minimum delays in processing packets. Note
that PIP was also reimplemented by Duquennoy et al. in
Burst Forwarding [6] and their implementation can at most
reach a goodput of 73 Kbps. Similar to the reimplementation
by Duquennoy et al. [6], our code for PIP is also a basic
version that does not support supplementary techniques such as
channel hopping. These missing techniques do not address the
effects of drastic quality differences that exist among different
channels, which is the main goal of P3. For simplicity, we
use our testbed’s USB-backend for collecting all the required
data representing global topology of the underlying network.
Nevertheless, we provide an analysis of the overhead incurred
when a collection protocol is used for collecting such data.

For all our experiments, we use the maximum transmission
power of 0 dBm and distinct routes on which pipelined
transmissions are carried out are chosen on Channel 26 which
is the most commonly used default channel. For both P2 and
PIP, we use the same set of channels to support pipelining. For
P3, we choose multiple routes as explained in Section IV. For
fair comparison, we randomly choose one among these routes
for PIP and retain the same assignment of channels as used in
P3. We make sure that these routes are built using high-quality
links (with ETX 1). For packet size, we use the maximum
possible value of 128 bytes for both the protocols (as supported
by the CC2420 radio), with each packet containing a data
payload of 118 bytes. For every experimental run, we transmit
500 such maximum-sized packets for a total bulk data size

211

of 59 KBytes. Moreover, content of every packet is randomly
generated. For metric, we measure goodput, the number of
application-data bits successfully received at the destination
per unit time. It is computed by measuring time duration that
starts with transmission of the first wakeup packet by the root
(base station/destination) that contains routing information and
channels to be used for pipelined transmissions. The duration
ends when the root successfully receives the last data packet.

Summary of Testbed Results. Fig. 5 compares goodput
achieved by P2 and PIP on 20 routes whose source and
destination nodes are located on different floors of Indriya
in most cases. Hop-count for these routes ranges from 2 to
6 hops with an average value of 4.13 hops per route. Note
that typical maximum hop-count for common routing protocols
like CTP [11] on Indriya is 5 or 6 hops at 0 dBm. We can
make a few observations from the figure. First, PIP’s goodput
often reduces to zero as observed on 13 out of 20 cases
(e.g., Route2). This is due to the lack of a communication
link on at least one of the channels assigned for one of the
PIP’s pipeline stages (hops), which in turn completely stalls
its pipeline resulting in a goodput of zero. On the other hand,
as P2 exploits node diversity, it is able to achieve an average
goodput of 179.1 Kbps in cases where PIP’s goodput is zero.

The second observation is that link asymmetry is a major
problem for PIP as it can also completely stall its pipeline.
For example, on Route9, while an assigned channel over a
certain hop experiences good quality in the forward direction
from source to destination, there is no communication link
in the opposite direction for control packets such as NACK
messages that requests retransmission of missing packets. Lack
of control messages prevents the source from transmitting any
missing data reducing goodput to zero. P3 handles asymmetry
effectively as it exploits node diversity in the opposite direction
from destination to source, thus resulting in a goodput of
189.1 Kbps on the same route (Route9).

Overall, the minimum and maximum goodput values ob-
served for P3 are 148.8 Kbps (Routel0) and 199.7 Kbps
(Route 7) respectively. On average, P3 achieves a goodput of

P3 with wakeup E—1

P2 without wakeup EE—

End-to-End Effective Utilization of P3 (Given an effective data rate of 220.4 Kbps)

O T T To To T oo T T o
RS ox EMICER S 2X RS
20 228 L0 05 84 oX oF =2 g5
— T N3 Te 22 0S8 B B2 s 6
%) 0 o8 SO o S o) goo o)
s Om o Qi
< 165 B ~
5
2 110}
[o]
[e]
O 55}
0
% % % % % % % % %
5, @ @ B, B & o

o o X o o o X
R 2R B 56 X5 o Zh o 56 0
oX g0 ¥Y 26 4 T B 6B R 8P Oy]
5% 80 O RO 0L Jo © o [O SD
A l\w NLD '\l\ 0,
SR NI i
©
EEEEEEE R
G, . U U U U % % % 4 %
G@ @, Q/ @, @, O] G/ @, Q/ @, @7 @9
o T R Ty e T e 9 S0

Fig. 6: End-to-End Effective Utilization of P3.

TABLE III: Analysis of Transmission Rounds in P3.

Route No. | Nrxg | R1 (%) | Prrx (%) | G (Kbps)
1 1 100.0 0.00 199.74
2 3 89.60 9.74 165.32
3 2 99.40 0.59 192.18
4 4 80.20 19.22 147.13
5 2 98.40 1.57 188.42
6 4 76.60 21.50 142.94
7 2 99.40 0.59 189.40
8 3 90.20 9.58 166.96
9 1 100.0 0.00 197.40
10 3 87.40 12.12 162.98
Avg. 2.5 92.12 7.49 175.25

178.5 Kbps whereas PIP’s average goodput is a much lower
value of only 31 Kbps.

Effective Utilization. In order to measure utilization, we
need to know the effective physical data rate supported by an
underlying radio. It is defined as the maximum speed at which
a radio can transmit application bits. From our measurements,
it is 220.4 Kbps for the de facto standard CC2420 radio. Given
this rate, we define effective utilization as the percentage of this
capacity that P? utilizes in exclusively serving application data
end-to-end.

Fig. 6 depicts effective utilization of P3 for two of its cases:
(1) includes the time taken for wakeup that control packet
dissemination; (2) does not consider overhead, only complete
end-to-end transmission of bulk data. As shown, utilization
can reach up to 90.6% as observed on Route 7. The lowest
utilization of 67.5% can be seen on Route10. Nevertheless, the
goodput on Routel0 is still significantly high at 148.8 Kbps.
On average, 80.9% of the effective data rate is utilized by P>
to serve its application data. The remaining capacity of 19.1%
is mainly taken by P3’s 7-bytes application header, wakeup,
and retransmissions.

Transmission Rounds. Table III depicts the total number
of transmission rounds (Npxr) that P3 needs to complete
the data transfer, for another set of 10 random routes. The
table also depicts R1, the reliability observed at the destination
after the first round that involves transmission of an entire
bulk object, Prrx is the percentage of retransmissions in

212

Runi1 —— Run2 m=ssm Ryn3

Goodput of P3 for Different Payload Sizes

250 T T T T T

200 -
@
ke
¥ 150 T
2
3 100 - b
(o)
Q)

50 | -

0
25 50 75 100 118
Bytes

Fig. 7: Goodput of P3 for different packet payload sizes.

the total number of data transmission attempts made over all
rounds, and G is the goodput. As shown, P3 takes up to
four transmission rounds as can be observed on the 4*" and
6!" routes. For R1, its average value is a good reliability of
92.12%, showing that P?3 effectively exploits the benefits of
node diversity. The lowest reliability of 76.6% can be observed
on the 6" route, where retransmissions constitute about 21.5%
(PrTx) of the total transmission.

Finally, the goodput (G) ranges from 142.9 to 199.7 Kbps,
with an average value of 175.2 Kbps. P2 is able to achieve
such high goodput as pipeline stalls in all of its multiple
transmission rounds are avoided by its bubble-free pipelining,
exploited in both the directions of source to destination and
the reverse.

Effect of Packet Size. There exists a well-known tradeoff
in wireless communications that while increasing packet size
can reduce control overhead such as headers and preambles, it
increases the probability that a packet gets corrupted. This is
particularly true under synchronous transmissions [5]. So we
execute P3 configured with 5 different payload sizes. Fig. 7

TABLE IV: Number of active nodes and node-distinct paths
exploited in PIP and P3.

Route No. | H | NA,i, | NAps | M (P3)
I 3 4 4 6
2 5 6 26 6
3 2 3 10 8
4 5 6 30 7
5 5 6 30 7
6 4 5 23 7
7 2 3 8 6
8 4 5 29 9
9 3 4 14 6
10 4 5 20 6
11 6 7 37 7
12 6 7 32 6
13 5 6 26 6
14 5 6 30 7
15 5 6 30 7
16 5 6 34 8
17 4 5 32 10
18 5 6 26 6
19 5 6 30 7

20 4 5 26 8

plots P3’s goodput for the considered sizes, with three runs
in each of the cases. As we can see, goodput is maximum
for the maximum-sized payload of 118 bytes as gain that is
rendered by a larger packet outweighs the loss that it incurs
due to corruption. Therefore, we use the maximum value as
the default payload size in P3.

Number of Active Nodes and Energy Consumption. An
obvious observation is that P3’s multi-path pipeline requires
more nodes to participate in data transfer compared to what is
required to build PIP’s single-path pipeline. Table IV compares
the number of active nodes (N A;, and N Aps) for PIP and
P3 on the 20 considered routes. The table also includes other
statistics such as hop-length (H) and the number of node-
distinct paths exploited in P3 routes (M). We can see that P3
needs on the average 4.7 times more active nodes than PIP.
However, at the same time, P3’s average goodput is 5.7 times
more than PIP (see Fig. 5).

As energy consumption is directly proportional to through-
put, P3 consumes lesser energy than PIP. For example, power
consumption for a PIP’s route of 6 nodes is about 5.59 Watts
whereas P although exploits a more number of about 28
nodes on the same route, it consumes a lesser energy of 4.56
Watts. These power consumption values are calculated based
on the measured average number of active nodes and through-
put, a 64-KBytes data object, and the power consumption
specification of the underlying CC2420 radio. Therefore, P3
offers a much higher goodput at a lower energy consumption
than PIP for downloading the same amount of data. For
applications that require shorter completion time, P3’s much
higher throughput is clearly more desirable.

Routing Overhead. As the overhead of link quality mea-
surement is common to any bulk data transfer protocol, similar
to recent protocols of PIP [26] and Bursty Forwarding [6], we
do not include this overhead. Instead, we only consider the
link statistics collection time that is specific to P3. Assuming
that the LWB collection protocol [9] is used, it would require
only up to 10s for collecting the measured information from
an entire network of 260 nodes [9]. Therefore, given the fact

213

that P2 achieves an average goodput of about 178.5 Kbps, it
requires about 746 seconds to download a 64-KBytes object
from every node of the same 260-node network. Therefore, a
10 seconds overhead required for collecting link statistics adds
only about 1.32% to the total data download time.

VI. FUTURE WORK

Ensuring high packet reception reliability under varying
topological and channel conditions is a challenge for any
wireless system. In addition, synchronous transmissions are
more prone to corruption as additional factors such as number
of concurrent transmitters can also affect the reliability. While
these factors affect most of the previous protocols exploiting
synchronous transmissions [10], [9], [5], they also affect P3.
We are currently working on an adaptive method to learn about
the best channel and nodes at a hop which should be exploited
for concurrent transmissions (forwarding) of a received packet
so that the average reception reliability at the next hop is
maximized. This future work will be useful in general to
protocols that exploit synchronous transmissions and which
rely on a fixed number of packet retransmissions for high
reliability.

VII. CONCLUSION

Due to drastic quality differences that exist among dif-
ferent channels, performance of the state-of-the-art approach
of exploiting channel diversity to create a high-throughput
packet pipeline is often poor in practice. In order to tackle
this problem, we have proposed P?, a practical packet pipelin-
ing protocol that keeps its packet pipeline flowing despite
channels-quality differences. Our key technique is to exploit
both receiver and sender diversities through constructive in-
terference. Moreover, unlike existing approaches whose max-
imum achievable throughput is only half the link rate, P? can
closely reach the link rate. Our evaluation results on a 139-
node testbed show that P achieves an average goodput of
178.5 Kbps while PIP’s average goodput is only 31 Kbps.
More interestingly, P2 achieves a minimum goodput of about
149 Kbps, while PIP’s goodput reduces to zero in 65% of the
cases.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our
shepherd, Bhaskar Krishnamachari for their comments and
suggestions.

REFERENCES

[1] P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R. E. Hudson,
K. Yao, and D. Estrin. Collaborative Sensor Networking Towards Real-
Time Acoustical Beamforming in Free-Space and Limited Reverber-
ance. Mobile Computing, IEEE Transactions on, 2004.

[2] S. Biswas and R. Morris. EXOR: Opportunistic Multi-Hop Routing for
Wireless Networks. In Proceedings of ACM SIGCOMM, 2005.

[3] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and R. Kumar.
Brimon: A Sensor Network System for Railway Bridge Monitoring.
In Proceedings of MobiSys, 2008.

[4] M. Doddavenkatappa, M. C. Chan, and A. Ananda. Indriya: A
Low-Cost, 3D Wireless Sensor Network Testbed. In Proceedings of
TRIDENTCOM, 2011.

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast
Data Dissemination with Constructive Interference in Wireless Sensor
Networks. In Proceedings of NSDI, 2013.

S. Duquennoy, F. Osterlind, and A. Dunkels. Lossy Links, Low Power,
High Throughput. In Proceedings of SenSys, 2011.

V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo,
B. Pésztor, S. Scellato, N. Trigoni, R. Wohlers, and K. Yousef. Evolution
and Sustainability of a Wildlife Monitoring Sensor Network. In
Proceedings of SenSys, 2010.

E. E, A. A, R. R, and N. M. Kansei: A Testbed for Sensing at Scale.
In Proceedings of the IPSN, 2006.

F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Wireless Bus. In Proceedings of SenSys, 2012.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient Network
Flooding and Time Synchronization with Glossy. In Proceedings of the
IPSN, 2011.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
Tree Protocol. In Proceedings of SenSys, 2009.

B. Greenstein, A. Pesterev, C. Mar, E. Kohler, J. Judy, S. Farshchi, and
D. Estrin. Collecting High-Rate Data over Low-Rate Sensor Network
Radios. Technical report, 2005.

V. Handziski, A. Kopke, A. Willig, and A. Wolisz. TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with
Sensor Network. In Proceedings of REALMAN, 2006.

X. Jiang, M. Van Ly, J. Taneja, P. Dutta, and D. Culler. Experiences
with a High-Fidelity Wireless Building Energy Auditing Network. In
Proceedings of SenSys, 2009.

S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: A Reliable Bulk Transport Protocol
for Multihop Wireless Networks. In Proceedings of SenSys, 2007.

S. Kim, S. Pakzad, D. E. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health Monitoring of Civil Infrastructures Using Wireless
Sensor Networks. In Proceedings of IPSN, 2007.

J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, M. Durvy,
J. Vasseur, A. Terzis, A. Dunkels, and D. Culler. Beyond Interop-
erability: Pushing the Performance of Sensor Network IP Stacks. In
Proceedings of SenSys, 2011.

O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of SenSys, 2013.

C.-J. M. Liang, N. B. Priyantha, , J. Liu, and A. Terzis. Surviving
Wi-Fi Interference in Low Power ZigBee Networks. In Proceedings of
SenSys, 2010.

R. Musaloiu-E, C.-J. M. Liang, and A. Terzis. Koala: Ultra-Low Power
Data Retrieval in Wireless Sensor Networks. In Proceedings of IPSN,
2008.

Low-Power

214

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[33]

[34]

R. Musaloiu-E, A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J. Gray.
Life Under Your Feet: A Wireless Soil Ecology Sensor Network. In
Proceedings of EmNets, 2006.

F. Osterlind and A. Dunkels. Approaching the Maximum 802.15.4
Multihop Throughput. In Proceedings of HotEmNets, 2008.

J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and S. Masri. A Wire-
less Sensor Network for Structural Health Monitoring: Performance and
Experience. In Proceedings of EmNetS-1I, 2005.

M. Rahimi, R. Baer, O. 1. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava. Cyclops: In Situ Image Sensing and Interpretation
in Wireless Sensor Networks. In Proceedings of SenSys, 2005.

H. Rahul, H. Hassanieh, and D. Katabi. SourceSync: A Distributed
Wireless Architecture for Exploiting Sender Diversity. In Proceedings
of ACM SIGCOMM, 2010.

B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale. PIP: A Connection-
Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High
Throughput Bulk Transfer. In Proceedings of SenSys, 2010.

N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Har-
mon, and D. Estrin. Suelo: Human-Assisted Sensing for Exploratory
Soil Monitoring Studies. In Proceedings of SenSys, 2009.

L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,
W. Kang, J. Stankovic, D. Young, et al. Luster: Wireless Sensor
Network for Environmental Research. In Proceedings of SenSys, 2007.
K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim, P. Levis,
and B. Krishnamachari. The K-Factor: Inferring Protocol Performance
Using Inter-link Reception Correlation. In Proceedings of Mobicom,
2010.

G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, et al. A Macroscope
in the Redwoods. In Proceedings of SenSys, 2005.

Y. Wang, Y. He, X. Mao, Y. Liu, Z. Huang, and X. yang Li. Exploiting
Constructive Interference for Scalable Flooding in Wireless Networks.
In Proceedings of INFOCOM, 2012.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and Yield in a Volcano Monitoring Sensor Network. In Proceedings of
0SDI, 2006.

T. Zhu, Z. Zhong, T. He, and Z.-L. Zhang. Exploring Link Correlation
for Efficient Flooding in Wireless Sensor Networks. In Proceedings of
NSDI, 2010.

M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. On Modeling
Low-Power Wireless Protocols Based on Synchronous Packet Trans-
missions. In Proceedings of MASCOTS, 2013.

