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Abstract—In this paper, we present an efficient routing algo-
rithm, Plankton, for Delay/Disruptive Tolerant Network (DTN).
Plankton utilizes replica control to reduce overhead and contact
probability estimates to improve performance. Plankton has two
major features. First, it uses a combination of both short-term
bursty contacts and long-term association based statistics for
contact prediction. Second, it dynamically adjusts replication
quotas based on estimated contact probabilities and delivery
probabilities.

Our evaluation on extensive traces shows that Plankton
achieves significantly better prediction accuracy than existing
algorithms for contact probability prediction. In addition, we
show that while Plankton incurs much lower communication
overhead compared to Spray-and-Wait, MaxProp and RAPID
with savings from 14% to 88%, it can also achieve similar if not
better delivery ratios and latencies.

Index Terms—delay/disruptive tolerant network (DTN) rout-
ing, contact prediction, replication control

I. INTRODUCTION

Mobile nodes with short range wireless interfaces can

communicate when they move sufficiently close to each

other. While the mobility disrupts the formation of stable

connections, it enables nodes to communicate via intermit-

tent connections. Mobile nodes can communicate by carry-

and-forward messages without end-to-end connections, which

forms a delay/disruptive tolerant network (DTN) [1].

In the last decade since the work by Vahdat and Becker [2],

the DTN research community has been focusing on designing

routing algorithms that can deliver more messages in short

latencies with constrained transmission and buffer capability.

Two major approaches adopted in DTN routing algorithms are

replica control and contact prediction.

As more message duplications cause more energy con-

sumption, a number of DTN routing algorithms focus on

limiting the number of message replicas without consid-

ering nodes’ contact probabilities. Such algorithms include

‘Spray and Wait’ (S&W) [3] and many more ([4],[5],[6],[7]).

Many routing algorithms do not limit messages’ replicas.

They instead prioritize messages based on contact prob-

abilities. Some examples include PRoPHET [8], ‘Bubble

Rap’ [9], MaxProp [10], RAPID [11] and many more

([12],[13],[14],[15],[16],[17],[18],[19]).

The two approaches indicate a fundamental trade-off be-

tween performance and overhead. Compared to algorithms that

limit replicas, algorithms that utilize contact information and

duplicate messages without limits tend to perform better but

incur more overhead. It is thus natural to seek to combine

replica control and the exploitation of contacts prediction. A

number of DTN routing protocols have in fact attempted to

perform this trade-off ([20],[21],[22],[17]).

In this paper, we present Plankton, an efficient DTN routing

algorithm that achieves good performance with a novel replica

control approach. Plankton is designed based on the idea that

in order to achieve good performance, it is sufficient for a link

to be classified into either strong one or weak one. The link

strength in this work does not mean the transmission quality

of a connection. It instead indicates the delivery probability

of messages transmitted over a contact. A message sent via a

strong link is likely more deliverable than it is sent via a weak

link. Replica control varies with the ability to discover strong

links. Once a replica of a message encounters strong links, its

replica quotas is reduced substantially.

This paper makes the following contributions. (1) We pro-

pose an association based prediction and show that strong links

can be identified through these association relationships that

can be observed at different time scales. Our evaluation shows

that the accuracy of our association based prediction is much

higher than the contact predictions used in PRoPHET, Max-

Prop, RAPID and ‘Bubble Rap’. (2) Based on the proposed

contact prediction, we design Plankton that controls replicas

by contact probabilities and message delivery probabilities.

We compare Plankton with S&W, EBR [21], ‘Bubble Rap’,

MaxProp, and RAPID on seven mobility traces. The evaluation

results show that Plankton consistently generates significantly

less number of replicas, but it achieves similar, if not better,

delivery ratios and latencies.

The paper is organized as follows. Section II presents the

evaluation of existing contact prediction algorithms. We then

present Plankton prediction algorithm and its evaluation in

Section III. The initial setting and adjustment of replica quota

is described in Section IV and routing evaluation is discussed

in Section V. Finally, we present related work in Section VI

and summarize the work in Section VII.

II. CONTACT PREDICTION EVALUATION

A. Evaluation of PRoPHET, MaxProp, and RAPID

First, we evaluate three representative contact prediction

algorithms used by PRoPHET, MaxProp, and RAPID. They

can be briefly described as follows. Let a node v’s probability

of encountering a node u be pv,u.

• In PRoPHET, pv,u additively increases when v has a new

contact with u, pv,u = pv,u(old) + (1− pv,u(old))× pinit,
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Trace No. of
Nodes

Interface/
Trans. range

Context

RollerNet[23] 62 bluetooth outdoor rollerblad-
ing

Haggle IC06[24] 98 bluetooth conference

Reality[25] 100 bluetooth campus

SF taxi[26] 500 50m city taxi

Seattle Bus[27] 1200 50m city shuttle bus

RPGM[28] 100 10m reference point
group mobility

Random Way Point
(RWP)

100 10m random and free
node movement

TABLE I: Summary of traces used in evaluation.

and multiplicatively decreases by the time since the last

contact (k), pv,u = pv,u (old) × γk. We set pinit to 0.75
and γ to 0.98 [8].

• In MaxProp, pv,u’s initial value is zero. pv,u on v halves

when v encounters a node other than u, and increases to

(1 + pv,u)/2 when v encounters u.

• RAPID uses a prediction algorithm based on exponen-

tial inter-contact distribution. The probability u will en-

counter v in t is computed as 1− e−λt, where 1/λ is the

average Inter Contact Length (ICL) between v and u.

When two nodes meet, after meta-data exchange, each node

predicts the probabilities of encountering other nodes in the

future. Such computations are performed for each contact. The

total number of estimates can be up to the product of the

number of contracts and the square of the number of nodes in

the network.

Each estimated contact probability falls between zero and

one. Let it be ei. For each ei estimated at time t, we can

consult contact oracles whether the predicted contact actually

occurs before the time t + d, where d is the time period of

interest. The length of period of interest depends on messages

and applications. Based on this answer, we form a tuple of

〈ei, ai〉, where ai equals zero if the contact does not occur or

equals one if it occurs.

These tuples are then placed into b bins by the value of ei,

and each bin is of size 1/b. The tuples with ei between j
b

and
j+1

b
are placed into bin j, 0 ≤ j < b. For each bin j, we

compute the accuracy Aj as

∑

ei in bin j
ai

No. of elements in bin j
. We exclude

estimates made during warm-up and cool-down periods. Also,

if the number of elements in a bin is too small, say less than

thirty, we do not consider the result of the bin.

Finally, we use the midpoint of the bin as the value of the

estimate. Let this value be Ej . Hence, after the processing, we

get a series of tuples, 〈E0, A0〉, · · · , 〈Eb−1, Ab−1〉. If the esti-

mate can provide useful information to routing algorithms, we

should expect the sequences E0, · · · , Eb−1 and A0, · · · , Ab−1

have strong correlation. This evaluation can also apply to

the scheme where the predicted values are utilities instead of

contact probabilities, e.g., MaxProp, and PRoPHET.

By the above approach, we only evaluate one-hop contact

probability. One-hop probability evaluation is sufficient, since

multi-hop probability is based on one-hop probability.

Trace Exponential PRoPHET MaxProp Plankton

RollerNet -0.58 0.92 0.60 0.99

Haggle IC06 0.84 0.75 0.37 0.95

Reality -0.43 -0.35 0.16 0.60

SF taxi -0.26 0.86 0.68 0.99

Seattle Bus -0.22 0.65 0.57 0.94

RPGM -0.44 0.98 0.52 0.87

RWP 0.08 0.04 0.13 0.64

TABLE II: Correlations between tested predictions and the

ideal prediction.

Contact predictions were evaluated on seven traces in Ta-

ble I with different settings of d (1800s, 3600s, and 7200s)

and b (10, 50, 100, and 200). As the results from different

settings are similar, we will only show the results where d
equals 3600s and b equals 100.

First, we present the results of different algorithms on a

particular trace, namely the SF taxi trace. Figure 1a shows

the plot of Ei versus Ai. The case for ideal prediction, where

Ei equals Ai, is included for reference. The results show that

all the three algorithms are fairly inaccurate. The Exponential

algorithm is the most inaccurate. MaxProp and PRoPHET

generate more accurate results than Exponential algorithm, but

their predictions are still noisy.

To view the evaluation on different traces, we plot Max-

Prop’s prediction on different traces in Figure 1b. It shows that

Ei is often far away from the respective Ai on most traces.

Due to space limits, we cannot show the detail results for all

traces. Instead, we quantitatively measure prediction reliability

by computing the Pearson correlation between the estimate

values and the ideal prediction. A strong positive correlation

indicates a reliable prediction. Table II lists the correlations

from the three algorithms on all traces. We can make the

following observations.

First, while correlations vary among different traces, these

prediction algorithms are often unreliable. In many cases, the

Exponential algorithm has negative correlations. The reliability

of PRoPHET varies significantly from -0.35 (Reality) to 0.98

(RPGM). The results by MaxProp are better, but the correla-

tions still vary from 0.16 (Reality) to 0.68 (SF taxi).

Second, the results indicate that while routing algorithms

using these contact prediction schemes can achieve high

message delivery ratios and short latencies, the good perfor-

mance sounds unlikely due to accurate prediction on contact

probabilities.

B. Evaluation of ‘Bubble Rap’

‘Bubble Rap’ utilizes nodes’ centrality for selecting relays,

instead of pair-wise contact probability. In ‘Bubble Rap’, when

u with message m encounters v without m, u either duplicates

m to v (v is a relay) or does not duplicate m to v, depending

on the result of centrality comparison and community informa-

tion. For Bubble Rap, we record the duplication decision, and

check whether the relay and destination actually meet within

a given delay d by off-line contact oracle. A good estimator

should make a larger proportion decisions where the relays do

meet the destinations. For Plankton, we record the result when
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(a) Accuracy of different prediction algorithms on
the SF taxi trace.
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(c) Plankton prediction on different traces

Fig. 1: Prediction accuracy by different algorithms on different traces.

Algorithm Roller IC06 Reality SFtaxi SeattleBus RPGM RWP

‘Bubble Rap’ 0.24 0.19 0.18 0.12 0.02 0.20 0.25

Plankton 0.29 0.31 0.55 0.30 0.58 0.25 0.25

TABLE III: Contact prediction accuracy: Bubble Rap vs.

Plankton.

a link is declared as a strong link and check whether the relay

meet the destination by off-line contact oracle.

Table III shows the utility of the decision in terms of how

often the selected relays meet destinations. It reveals that 2%

to 25% replication decisions by ‘Bubble Rap’ result in one-

hop delivery, with an average of 17% over all seven traces.

III. PLANKTON CONTACT PREDICTION

Plankton’s contact prediction is based on two key ideas.

First, links can be classified into either strong or weak link

by how likely a message sent on this link can be delivered to

the destination. Second, strong links can be identified through

association relationships observed in different time scales.

In the rest of this section, we first discuss how weak and

strong links are defined, then how strong links are discovered,

and finally how these estimations are combined into a single

contact prediction.

A. Weak Links (ρ)

The division between weak links and strong links is rela-

tively. As the names suggest, a message sent via a weak link

is less likely to be delivered to the destination than one sent

on a strong link. Hence, the first task is to define what a

weak link is. The approach taken by Plankton is to classify

all links initially as weak links. A link may be reclassified

as a strong link later using the association relationships to be

defined below. Since all links are initially classified as weak,

we approximate the delivery probability of a weak link as ρ,

the average contact probability between any two nodes within

a time window (win). A good value for win closely depends

on remaining lifetime of a message and applications. With

the assumption that contacts are independent and identically

distributed (i.i.d.), ρ can be approximated as follows:

ρ =
avg. encountered nodes within win by a node

total No. of nodes − 1
. (1)

S
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Fig. 2: The prediction by bursty contacts.

The assumption of i.i.d. does not tightly fits real world

contacts, as some nodes have more contacts than others

and a node encounters some nodes more frequently while it

encounters others less fluently. However, with the assumption,

the probability ρ can provide a gross remark on different

contact chances of different traces. For example, a node in

the RollerNet trace can encounter 20% of all nodes within

900s, while a node in the Seattle bus trace can only encounter

1% of all nodes within 900s. The value of ρ can be estimated

online or computed off-line through historical information.

B. Prediction by Recent Busty Contacts (pb
v,u)

Bursty and self-similar events have been well investigated

and exploited in many fields, such as web caching and internet

traffic modeling. In real-world mobility pattern, once two

nodes are in the same proximity, they have a good chance

of being close to each other in the near term. These could be

because these nodes are two persons in the same seminar room

attending a talk, two passengers on the same subway train, or

two vehicles traveling along a road in the same direction. In

DTN routing, such bursty contacts have been exploited in last

contact based routing [13][20], but they only consider the most

recent contact.

Plankton however exploit a number of most recent intervals

previous to contact prediction time. Let pb
v,u denote the contact

probability between v and u based on recent contacts. To

compute pb
v,u, v checks its contacts in the most recent n

time intervals, where each interval has a duration of average

pairwise inter-contact length (ICL). If v encounters u in nu

out of the n intervals, pb
v,u equals nu/n.

Figure 2 illustrates an example, where n is set as five. The

probability pb
v,u computed by v equals 3/5, as v encounters u

in three out of the five intervals.
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Symbol Interpretation

ρ pairwise average delivery probability

pv,u the contact probability between v and u

pa
v,u the contact probability between v and u based on

associated contacts

pb
v,u the contact probability between v and u based on

bursty contacts

dl
m local delivery probability for m

d
g
m global (maximum of known local)delivery probability

for m

nm m’s destination node

TABLE IV: Summary of symbols.

The probability pb
v,u provides an estimation based on short-

term contact features, and its implementation is straightfor-

ward. We use average pairwise ICL, instead of an absolute

time length because ICL is adaptable to different traces. ICL

is easy to compute by a node with local contact information

without causing any overhead on metadata exchange. A pa-

rameter Plankton uses is n. The settings of n have little effect

on performance as long as it is not too big (larger than twenty)

or too small (less than five). We set it to ten in our evaluation.

C. Prediction by Indirect Associations (pa
v,u)

The intuition behind prediction by indirect association is

as follows. If whenever v encounters w, it often encounters u,

then it is likely that once v meets w, the probability of meeting

u is high. Such association captures indirect relationship

among nodes that occurs over longer time scale. It exploits

community relationships among nodes without the need to

perform community clustering or search for nodes with high

centrality as is done in ‘Bubble Rap’.

We write the contact probability between v and u through

the indirect association with w as pa
v,w,u, which can be

computed by the following steps. The node v first locates the

recent n non-overlapping intervals with the length of ICL that

start with an encounter with w. Next, v counts the intervals that

also contain at least one encounters with u and let this number

be nu. pa
v,w,u is computed as nu/n. Since the association can

happen through different nodes, pa
v,u is taken as the maximum

value over all indirect associations through the nodes that v
recent encounters. The node w is v’s recent encounter if the

time since the last contact between w and v is less than ICL,

which uses the same length as the interval for checking indirect

association. Indirect association probability can be computed

as follows:

pa
v,u = max

i
{pa

v,i,u} (i is v’s recent encounter).

Figure 3 illustrates an example, where n equals five. In the

past five non-overlapping intervals starting with an encounter

with w, v encounters u in four intervals. Thus, pa
v,w,u equals

4/5.

By taking the maximum value over all possible associations,

we follow the idea taken in popular universal prediction

algorithm [29] and mobile nodes location prediction [30],

which looks for the longest subsequence.
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Fig. 3: The prediction by associated contacts.

D. Combining Different Predictions

Based on the previous discussion, v has three estimates for

the contact probability between v and u, based on the three

predictions used, namely ρ, pb
v,u and pa

v,u. Given that pb
v,u and

pa
v,u are meant to be the stronger links, they are only useful

or meaningful when their values are larger than ρ.

Next, while it is possible to combine the values of pb
v,u

and pa
v,u by assuming that they are independent, we choose

not to take this assumption for the following reasons. First,

the two estimations are for the same pair of nodes. We do

not find reason to believe that the estimates are independent.

Second, we prefer conservative estimates due to our approach

to contact probability based dynamic quota adjustment, as we

will explain later. The quota adjustment can tolerate false

negative to some extent, but we need low false positive for

high contact probability. We thus compute the final contact

probability between v and u, pv,u, as:

pv,u = max{ρ, pb
v,u, pa

v,u}. (2)

E. More Discussion on Contact Estimators

These three contact estimators are complementary. The first

estimator, ρ, explores the contacts that are difficult to predict,

e.g., the contacts having few past contacts of respective node

pair to exploit. While these contacts are ‘unreliable’, they

are plentiful. For example, more than 80% of all contacts

happen between node pair that have two or less contacts in

one day in SF taxi trace. Many existing algorithms either

simply ignore such contacts by setting the delivery probability

to zero or incorrectly estimate the probability because of the

lack of past contact information. These contacts however can

significantly contribute to messages dissemination [31] as they

are abundant. By exploiting average contact chances by ρ,

Plankton can efficiently utilize these contacts without historical

contact information of specific nodes pairs.

The other two estimators capture different features of con-

tact patterns provided past contacts provided sufficient contacts

information is available. Recent contacts based prediction

capture burstiness of contacts by investigating short term

contacts, while indirect association based prediction captures

contact association by investigating long term contacts. The

two estimators exploit different association behaviors and can

cover different set of nodes.

F. Evaluation

We evaluate the accuracy of Plankton prediction and com-

pare it to other contact estimator presented in Section II.

Results in Figure 1a and Figure 1c show that Plankton

can achieve much more accurate predictions than the other
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three estimators. From Table II, we can see that Plankton

outperforms the other three estimators on all traces. It achieves

correlation equal to or larger than 0.87 on all traces except

Reality (0.60) and RWP (0.64). Even for these two traces,

Plankton achieves much higher correlations than the other

estimators.

As ‘Bubble Rap’ does not make contact prediction but

instead make binary decision on whether a message should

be forwarded to another node, we compare the utility of the

decision of ‘Bubble Rap’ and Plankton based on the ratio

of message delivery for every message forwarded. Table III

compares the utilities of the forwarding decision in Bubble

Rap and Plankton. It shows that the utility of the Plankton

is always better or equal to ‘Bubble Rap’. The improvement

varies from 20% for RollerNet to 2800% for the Seattle Bus

trace except for RWP where there is no difference, .

IV. PLANKTON

A. Overview

To deliver a message m, the source node first assigns m an

initial replica quota by ρ and target delivery probability. As m
is duplicated, the quota is divided among the replicas. A novel

feature of Plankton is that it decreases the replica quota when

m is duplicated to a node that has high contact probability

or the replicas of m have generated sufficiently high delivery

probability.

B. Initial Quota Setting

The initial replica quota Q defines a message’s maximum

delivery probability. When Q is fully utilized, i.e., Q replicas

are transferred onto Q relays, the message gains maximum

delivery probability. In order to accurately set Q, the source

needs to know which nodes will be the relays and their contact

probabilities to the destination. This however is generally

infeasible in DTNs. Plankton estimates Q using the delivery

probability of weak link ρ.

Suppose that X replicas of m are duplicated onto X relays

(x1, x2, · · · , xX ), whose delivery probabilities (pxi,nm
) may

be smaller or larger than ρ. By the definition of ρ in Equation

1, the following approximation holds when X is large:

X
∑

i=1

pxi,nm
≈ X × ρ (3)

The contact probabilities of pxi,nm
are for different node pairs.

We simply assume that they are independent. We use P to

symbolize the delivery probability when m is duplicated to

x1, x2, · · · , xX . By Equation 3, we can get the following

inequality:

P = 1−
X
∏

i=1

(

1− pxi,nm

)

≥ 1− (1 − ρ)X

By above inequality, we can get X ≤
log(1− P)/log(1− ρ). Since the actual quota Q cannot be

larger than N , the number of total nodes, we can get:

Q = min{log(1 − P)/log(1− ρ),N}. (4)

Note that Q is a conservative approximation (larger than

necessary) without the information of online contact proba-

bility when replicas are generated. Thus, replica quotas are

accordingly reduced once a node duplicates m to a relay that

has high delivery probability, which we discuss as follows.

C. Dynamic Quota Adjustment Based on Contact Probability

Plankton defines two types of link, strong links and weak

links. A node pair (u, v) has a strong link if pu,v is larger

than ρ. Otherwise, it is a weak link. The typical scenario of

checking strong links is as follows. The node u has a message

for the destination v. The node u encounters w, and then u
checks whether w has a strong link with v or not.

The judgement behind the division of strong links and weak

links is the reliability of contact prediction. Labeling two

nodes with weak links does not mean their contacts is useless

in message forwarding, but it indicates that it is difficult to

reliably predict their contacts. Another important implication

is that two weak links may have minor difference in contact

chances, but it is difficult and likely unworthy to differentiate

them. Strong links have opposite properties. Their contacts can

be reliably predicted and two strong links can have significant

different contact chances, which is knowable and worthy

to know. Thus, weak links and strong links have different

contributions to routing performance. Message duplications

over weak links help to seek strong links. Large number

of replicas duplicated via weak links themselves certainly

can generate considerably large chances for message delivery.

Strong links mainly contribute to direct deliver messages.

Therefore, Plankton wields weak links and strong links by

different policies as follows.

Suppose that node v with m encounters u. If u and nm have

a weak link, v performs duplication procedure similar to binary

split S&W. If u and nm have a strong link, v always duplicates

m to u when v’s quota for m is larger than zero. v adjusts

the quota by computing the number of weak links that equal

the strong link between v and nm, measured by the chance of

delivering m. Let h be the number of weak links. We can get

pu,nm
= 1 − (1 − ρ)h, and h = log(1 − pu,nm

)/log(1− ρ).
Let q denote m’s quota on v. v has a quota of one and u has

a quota of q′, as follows:

q′ = max(1, q − h) (5)

The replica quota adjustment and send-list generation is

listed in algorithm 1. We would like to highlight the follows.

First, the above quota adjustment scheme requires low false

positive in contact prediction. This explains our preference

for conservative contact probability estimates by Equation 2.

Second, the number of strong links do not have to be large.

A small number of strong links is sufficient.

D. Dynamic Quota Adjustment based on Delivery Probability

1) Efficient Delivery Probability Estimate: Besides reduc-

ing replica quotas through strong links, Plankton stops du-

plicating replicas for a message when it detects that replicas
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generated are sufficient to meet the achievable delivery prob-

ability adapted to constrained DTN resources.

Delivery probability of m is computed based on the contact

probability on all relays of m. Plankton does not utilize

multiple-hop delivery probability for three reasons. (1) DTNs

are small world network [32][9], which means messages can

be delivered in a small number of hops. (2) Our measurements

and evaluations have indicated that multiple-hop delivery prob-

abilities are often highly inaccurate. (3) Multiple-hop delivery

probability estimation requires expensive exchange pairwise

contact probabilities. Thus, we compute delivery probability

from multiple relays by direct delivery. This may underes-

timate the true delivery probability by ignoring multiple-hop

delivery chances, but we can have a conservative estimate from

which we can safely reduce quota. Also, note that while the

multi-hop delivery probability is not utilized, Plankton allows

multiple-hop transmission.

The local delivery probability of a message m computed by

a node u is:

dl
m = 1−

∏

(v∈V )

(

1− pv,nm

)

,

where V is the set of nodes that u has encountered and known

to have buffered m.

Since local delivery information of nodes having small

number of neighbors is limited, each node also records the

maximum local delivery probability known so far, which we

name as dg
m. Plankton uses dg

m as m’s delivery probability.

While dg
m may be not accurate global delivery probability, the

use of dg
m as delivery probability has the advantages that dg

m

can propagate quickly in the network with a very small amount

of meta-data exchange.

2) Estimating Achievable Delivery Ratio: Replica control

by online feedbacks can quickly adapt to traffic and connec-

tions change. The key idea is that if the network is under

utilized, we can aim for higher delivery ratio and performs

more replication. However, if the network is congested, then

set a lower threshold and replicates less. Otherwise, with too

many replicates, performance can be worse.

Plankton uses online feedbacks to compute the achievable

delivery ratio, pach. On receiving the acknowledgement for m
for the first time, the receiver memorizes its dg

m. The node

averages all known dg
ms of delivered messages as pach.

A node simple sets the quota for a message m as zero after

it knows dg
m is larger than pach, and it never duplicates m to

any other nodes except the destination.

Sometimes, the target delivery ratio cannot be met. This

can be due to node specific behavior (e.g., node is isolated)

or network congestions which would make the increase in

replication a bad option. A node running Plankton computes

the achievable delivery probability

V. PERFORMANCE EVALUATION

We evaluate Plankton with an event-based simulator adopted

from ONE [33]. We simulate a wide range of buffer and

bandwidth settings on extensive traces to ensure that the

Input: v’s buffer list

Output: sorted send-list for v: list
foreach m in u’s buffer, not in v’s buffer do

if v = nm then
gain(m)← 1, add m to list

else if m′s quota > 0 then

if pv,nm
≤ ρ and m′s quota > 1 then

gain(m)← (1− dg
m)× pv,nm

add m to list,
evenly split m’s quota

end

if pv,nm
> ρ then

gain(m)← (1− dg
m)× pv,nm

add m to list, compute quota by Eqn. 5
end

end

end

decreasingly sort list by gain(m)

Algorithm 1: Node u generates duplication list for v.

simulation results are more realistic [34]. Message lifetime

is set to 1,000s for the Roller net trace, and 20,000s for the

Reality trace, and 7,200s for all other traces. Message sizes are

uniformly distributed between 1KB and 100KB. Warm-up and

cool-down periods are set and the metadata communication

overhead are simulated.

We compare Plankton with MaxProp, RAPID, S&W, EBR,

and ‘Bubble Rap’. For fair comparison, acknowledgement

packets are flooded for all algorithms since MaxProp and

RAPID use acknowledgements. The quota for S&W and EBR

is set to be the same as the initial quota used by Plankton.

DTN routing performance is often measured by delivery

ratio (DR) and average latency. DR is the ratio of delivered

messages to unique messages to be delivered. Average latency

is the average latencies of delivered messages. We measure

delivery overhead by dividing the number of replicas generated

for all messages by the number of delivered messages.

A. Evaluation on the SF taxi trace

1) Performance of Varying Bandwidth and Buffer: Figure

4 shows the results when bandwidth is varied. Figures 4a

and 4b show that Plankton achieves much higher DR (up

to 80% higher) and lower latencies (up to 70% lower).

Plankton achieves similar DR as MaxProp but with much

lower latencies and less overhead (saving up to 60%).

Figure 5 shows the results when buffer size is varied. Figure

5a shows that Plankton achieves higher DRs than all other

algorithms. Figure 5b indicates that when buffer size is more

than 200 messages, Plankton achieves the lowest latencies

among all algorithms. When the buffer size is less than 200,

Plankton delivers significantly more messages with slightly

higher latencies compare to EBR, S&W, and MaxProp.

2) Overhead Comparison: Figures 4c and 5c compare the

delivery overhead when buffer or bandwidth is varied. For

the same delivery ratio, Plankton incurs the lowest delivery

overhead. Plankton can save up to 60% replicas compared to
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Fig. 4: Routing performance for varying bandwidth.
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Fig. 5: Routing performance for varying buffer size.
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Fig. 6: Routing overhead comparison with bandwidth of 2.4MBps and the buffer size of 500 messages.

MaxProp and RAPID that do not limit on replicas. Meanwhile,

Plankton can also achieve savings (up to 40%) over efficiency

oriented algorithms, such as EBR and S&W, which limit

replicas. The results from Figures 4c and 5c show that the

Plankton can efficiently control replicas so as to achieve good

DR while using the least number of replicas. The result of

delivery latency is similar and is not discussed here.

We also examine the distributions of the number of replicas

generated for both delivered and undelivered messages. Figure

6a shows that MaxProp and Rapid generate many more

replicas than Plankton for delivered messages, thus consuming

more resources. These are the overhead Plankton attempts

to save. Similarly, Figure 6b shows that 1/3 of undelivered

messages are really difficult to deliver, as MaxProp fails to

deliver them after generating replicas onto more than 10% (40

out of 400 nodes) of total nodes. One possible reason is that

the destinations are kind of isolated. Plankton saves resources

in these cases by avoiding generating too many replicas.

Plankton, S&W, and EBR use quotas to control message

replicas. Their efficiency varies with the quota used. We

examine their energy efficiencies by varying quota. Results in

Figure 6c show that Plankton incurs significantly less overhead

for all quota settings evaluated. We can see that Plankton

generates the smallest increase in replicas among the three

algorithms when the quotas increase. This demonstrates the

effectiveness of the dynamical quota adjustment in Plankton.

The saving on replicas closely relates with the encountered

strong links. Figure 7 shows that the number of strong links
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Trace/ ρ /Q Algorithms DR Delivery
over-
head

Latency
(sec)

RollerNet/ 0.23/ 9

Bubble Rap 0.66 9.82 516
Plankton 0.90 10.34 291

EBR 0.83 12.33 432
S&W 0.86 12.70 387
MaxProp 0.88 13.93 322
RAPID 0.90 15.19 314

Haggle IC06/ 0.1/ 22

Bubble Rap 0.49 13.61 3890
Plankton 0.73 17.25 1639

S&W 0.73 22.58 1800
EBR 0.74 17.85 1840
MaxProp 0.76 37.53 1491
RAPID 0.76 40.64 1571

Reality/ 0.03/ 75

Bubble Rap 0.34 7.07 9052
Plankton 0.56 14.01 7815

S&W 0.52 16.11 8538
EBR 0.52 18.57 8621
MaxProp 0.55 23.95 8793
RAPID 0.54 28.15 8569

SF taxi/ 0.1/ 20

Plankton 0.79 16.00 3939

S&W 0.76 21.19 4625
EBR 0.71 24.77 5473
Bubble Rap 0.45 24.80 6126
RAPID 0.65 31.88 4451
MaxProp 0.79 36.22 4818

SeattleBus/ 0.04 / 55

Plankton 0.90 39.74 2955
EBR 0.89 51.61 3043
S&W 0.90 53.44 2919
Bubble 0.76 100.16 3898
MaxProp 0.94 331.15 2759
RAPID 0.90 341.50 2611

RPGM/ 0.22/ 9

Plankton 0.81 14.09 1709

EBR 0.72 17.86 2413
Bubble Rap 0.22 19.02 2383
S&W 0.73 19.68 2218
MaxProp 0.82 48.72 2122
RAPID 0.85 53.92 2035

RWP/ 0.24/ 8

Plankton 0.85 8.56 2155

EBR 0.69 9.91 2845
Bubble Rap 0.42 10.64 2944
S&W 0.80 12.61 2788
RAPID 0.82 14.18 2034
MaxProp 0.80 19.24 2608

TABLE V: Performance comparison on different traces.

encountered over different time periods. Over a duration of

1800s, 55% of the messages encounter at least one strong link.

For a longer duration of 7200s, about 70% of the messages

encounter at least one strong link. Encounters with strong links

allow Plankton to dramatically reduce the replica quota with

minimum impact on performance.

B. Results for Different Traces

We present the results on seven traces in Table V. ρ is

computed using Equation 1, and Q is computed via Equation

4 with P set to 0.9. Bandwidth is set to 2.4Mbps and buffer

size is 500 messages. We compare Plankton to five other

algorithms. For each mobility trace, we rank the algorithms

in ascending order of delivery overhead, with the algorithm

that incurs the least overhead listed first.

Plankton incurs the lowest communication overhead per

delivered message in four of the seven traces, namely: SF taxi,

Seattle Bus, RPGM, and RWP with saving from 14% to 88%.

For the other three traces, Plankton occurs larger overhead

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

P
r(

X
 <

=
 x

)

no. of encountered strong links per message

life length: 1800s
life length: 3600s
life length: 7200s

life length: 10800s

Fig. 7: The No. of encountered strong links in SF Taxi Trace

than only Bubble Rap, but has significantly higher DRs and

shorter latencies.

In all mobility traces, Plankton has the highest or close to

the highest DR among all algorithms evaluated. For Haggle

trace, DR of Plankton is 73% and DR of RAPID is 76%.

The 3% loss in delivery ratio is compensated by 57% gains in

delivery overhead. The result is similar for latency. Plankton

has the lowest latency in four out of seven traces.

We have two interesting observations. (1) MaxProp trans-

mits more replicas and performance better than RAPID. One

reason is that MaxProp generates much less metadata overhead

than RAPID. (2) Performance of Bubble Rap is not as good

as other algorithms. Our observation suggests two reasons.

(1) Bubble Rap renders too few replicas as it is very selective

in choosing relays, which lowers delivery overhead but loses

in the DR and latency; (2) Bubble Rap selects relays by

‘centrality’ that reflects nodes’ dissemination capability. Such

a scheme can cause congestions at the central nodes.

VI. RELATED WORK

DTN routing can be roughly divided into three types:

(a) non-prediction based routings, (b) prediction based local

optimal routings, and (c) prediction based global optimal

routings.

Early efforts mainly focused on (a), which limits the number

of replicas without investigating the delivery probabilities.

These work include (1) the schemes that use the fixed number

of replicates, e.g., ‘random single copy’ [4] and S&W [3];

(2) the schemes that approximately control replicates by the

number of nodes that the source node can encounter, such

as ‘two hop routing’ [5] ‘gossip based routing’ [6]; (3) the

schemes that balance the number of replicas of different

messages, e.g., SCP [7]. These work simply control resource

usage without exploring contact probabilities.

One weakness of these approaches is the rigid control on

the number of message replicas. DTNs however may have

very different transmission and buffer capability, traffic loads.

Some messages may require fewer replicas to deliver while

others may require many more replicas. Approaches using a

fixed quota for all messages all the time fail to be aware of

these diversities. Nevertheless, by placing a limit on resource

usage, these approaches tend to be more resource efficient.

More recent works in (b) facilitate message exchanges by

predicting future contacts from past contacts. They include (1)
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last contact based routing [12][13] [20], (2) multiple history

contact based routing [8][10][16] [14][21][17], and (3) social

network based routing [15][9][35][19].

DTN routing algorithms in (c) include RAPID [11] and

Max-Contribution [18]. A node computes optimal transmis-

sion utilities by collecting the global information on replicas

distribution and pairwise delivery probabilities.

A common weakness of routing schemes in (b) and (c) is

that message replicas can be many more than necessary. In

addition, for algorithms like RAPID that operate on ‘global’

information, the meta-data of ‘who has what’ and ‘who

encounters whom’ is substantial.

‘multi-phase routing’[17] explicitly divides replicas gen-

eration process into different phases, and the process stops

once the generated replicas can likely deliver the message

within deadline. The feedback can add in delays to replica

quota adjustment. ‘Retiring replicants’ [22] controls traffic

congestion by node-based replicas management, without the

information on forwarding decision.

Plankton controls replicas in two novel ways. First, its

contact prediction algorithm is novel and we have shown

that it gains much more accurate contact prediction than

existing algorithms. Next, Plankton dynamically adjusts the

replica quota needed based on contact probability and delivery

probability, which is not done by any other DTN algorithms.

VII. CONCLUSION

Our analysis and simulation results suggest that efficient

routing schemes for DTNs can be achieved through controlling

message replicas based on reliable contact predictions. Besides

this main findings, we have two interesting observations that

might be helpful for DTN research community. First, many

existing contact estimators are not accurate or reliable enough.

Second, our performance evaluation shows that substantial

overhead reduction can be achieved without loss in delivery

ratios and latencies. Our work provides a technique that inte-

grates highly reliable contact predictions and replica controls.

We believe that our work can arouse more research interesting

in contact prediction quality and its utilities in designing

practical DTN routing algorithms.
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