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Abstract—Connectivity-based routing protocols provide an of landmarks to attain good performance. For example, in
attractive option for point to point communication in wireless BVR[3], 10~90 nodes are selected as beacons, out of which
networks due to its potential for low routing overhead. However, 10 beacons closest to the destination are selected fongputi

when the entire hopcount vector is used to address each node,S hi b f land K d ti ts |
the communication and storage overhead in the packets are often uch large number of landmarks and routing components 1S

so high that it is not feasible to implement existing connectivity- Very expensive for resource constraint sensor nodes, makin
based routing protocols infeasible on resource-constrained sems such approach difficult to implement in practice.

networks. In this paper, we apply the technique of dimension  |n this work, we exploit the observation that as sensor
reduction, in particular Principle Compongn_t Analysis(PCA), to networks are physically deployed in a 2D or 3D space, the
the hopcount vectors. Compared to the original hopcount vectp . .~ " . - . -

the embedding coordinates preserve the network geometry with intrinsic dimensionality of the topology is uslually muchrvler .
much lower Overhead’ making their use much more practica| than the number Of |andmal’ks. Therefore, d|mens|0n I’edDICtI
on current sensor platform. Simulation results show that the technique[4] can be applied to extract the major axises of
coordinates computed by PCA can achieve higher packet delivery the connectivity graph and project each node on to a lower
ratio, lower path stretch and shorter flooding range in local -dimension Euclidean space.

minimum cases. We have also implemented the PCA algorithm on o h f Principal C t Analvsis. Each
MICAz motes and conducted experiments in a testbed containing ur approach uses of Frincipal L.omponent Analysis. Eac

48 nodes deployed on two floors of an office building. With the Node constructs a hopcount matrix, describing the paiewis
use of9 landmark nodes and only 3 dominant components, the distance of the landmarks. The embedding algorithm apply

PCA coordinates can achieve5% of the delivery ratio obtained  gingular value decomposition to the matrix to extract the most
using full hopcount vector and maintain an low path stretch of significant dimensions. The process outputs a transfoomati
112, matrix that can capture the largest variance in the network
topology. The inter-node distance is well preserved thinoug
the first few components in the coordinates and the embedding
Wireless sensor networks provide a flexible platform to supeordinates are more resilient to degenerate landmark set.
port a variety of applications such as ecological monigitihy Experiment results show that by compressing the hopcount
intrusion detection and security surveillance. The tiadél vectors into three dimensional coordinates, the nodes can
on-demand ad-hoc routing protocols require a path disgovenaintain 95% of the packet delivery ratio (relative to using
procedure for inter-node communication, which may lead fall hopcount vectors) with a path stretch of orilyl2.
intensive bandwidth consumption in a resource-constdaine The rest of the paper is organized as follows. The related
sensor network. The geographic routing protocols achiewsrk on dimension reduction and connectivity-based rautin
scalability by using node location for packet forwardingprotocols is given in Section Il. The details of the embed-
However, accurate position information is hard to obtaid anding procedure are explained in Section Ill. The simulation
violation of the unit disk assumption in real deploymentsesults on large scale performance comparison are presente
may result in persistent routing failures. In connectiigsed in Section IV. The testbed settings and experimental result
routing, a group of nodes are designated as lmelmarks are detailed in Section V. The conclusion and future works
L;(i € [1,k]), propagating beacon messages to the netwoeke given in Section. VI.
Each node measures the distance toitt@ndmarks to create
a hopcount vectord = [hi, hs,..., hi], where h; is the Il. RELATED WORK
hopcount to landmarld;. Routing is performed by treating Connectivity-based routing protocols perform packet for-
the hopcount vectaoH as thek-dimensional coordinates whichwarding by minimizing the distance computed from the hop-
can be accessed through a location service[2]. count vectors between the nodes and the landmarks. Logical
Routing performance is directly affected by the number @oordinate Routing(LCR)[5] and Hop-ID Routing(HIR)[6]
landmarks used during packet forwarding, creating a tradeelect the next hop as the node that can reduce the Eu-
off between control overhead and routing efficiency. Erigti clidean distance to the destination according to thagrcal
connectivity-based routing protocols require a large neimbcoordinates or hop-ids in the form of singleton Lipschitz

I. INTRODUCTION
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embedding[7]. The Beacon Vector Routing(BVR)[3] applies a 59121 D[1,2,1,0]
similar technique relying on the weighted Manhattan dis¢an A
metric. e
Landmark placement is crucial for network distance iz S
estimation[8] and connectivity-based routing. Clustelat- V| ERLLC
mark nodes with low path diversity will generate highly B[1,071,2\j $C[2,1,0,1]
correlated hopcount distance and become less effectivé-to d
ferentiate nodes at different locations. Zhahgl.[9] proposed
a hierarchical landmark selection approach that groups therig. 1. An Embedding Example with Landmarks:A, B, C and D
candidates into clusters. Landmarks are then chosen frdm bo
nearby and distant clusters, in order to improve the graityla
of _the embedding and capture the global network CO””_eﬁti"i[:onnectivity—based routing,
Srinivasanet al.[10] conducted a performance comparison of
different landmark selection methods based on randorizati;, hopcount generally conform to the triangle inequalitylan

cI_ustering, hierarchical structure and min_/max intediziark symmetry properties. (This property always holds for unit
dlstan_ce. The r_esult shows that the heurl_sncs based lakdmgiq graph.) Our approach is practical in sensor network and
selection algorithms provide nearly identical perform@®s | o are able to implement a distributed version of the PCA

random selection in general, while determining the Cmic%lgorithm on MICAz motes and have conducted experiments
landmark number required for a satisfactory embedding is

< oft a medium scale testbed for performance evaluation.
non-trivial task.

Using graph embedding technique to compute virtual co-
ordinate has been applied for node localization in wireless
networks. The NoGeo[11] protocol selects the perimeteeaod
from the network boundary and allows each node to compute
and refine its coordinates through iterative updates wih it In this section, we will present the details of the dimension
neighbors. Both Vivaldi[12] and GSpring[13] treat the netlv reduction procedure with dimensionality analysis and Ity
as a spring system, where each link has a normalized lengbme implementation issues.

By applying the contraction and expansion rules according
to the node distance, the network system converges to a
stabilized state, where the node location can be determin/?.dErrbedding with Dimension Reduction
independently. Although the iterative methods can achieve

good results for network distance estimation, they suffemf In a network withk landmarks. each node measures the

long convergence time, require the network deployment foinimum hopcount distance; to each landmark. The hop-
have some special structure and may be vulnerable 10 10gg|,nt vector(d;, ds, .. ., d; ) is utilized to address the nodes.
minimum conditions. L . In order to apply PCA, the vector distances between all jpdirs

_ Another popular application of network embedding algQzngmark nodes are broadcasted to all nodes. Once a matrix
rithm to compute virtual coordinates is distance and/oayiel ontaining all these vector distance information is ofin
estimation over the Internet. In [14], the distance betw®n o501 node independently performs the PCA-based dimension
nodes in the Internet is .estlmated by |terat|vel.y MINIMIZineqyction process. The result provides nearly isometrioezm

a potential energy function. Maet al.[15] applies matrix qing coordinates and ensures the transformed node disitance
factorization to obtain an incoming and an outgoing vectqhe empedded graph will approximate the original value. The
for each node, such that the network distance between tWQ, yirtyal coordinate of each node can be computed using

nodes is the dot product of the two vectors. _ the transformation matrix and the original hopcount vector
PCA is a popular technique used in data analysis[16] and

mage processngl17) I the nevoring ares, CS1a] ang 5 4 IUSUalon ssauning o andnark nogksrs 0
Virtual Landmarks[19] are two algorithms that perfofnin- y 9. '

cipal Component Analysis(PCA)[20] to embed each node imoh;qc(c))ulnt ve;cdtorls ;f lthoe 4_:_?1ndma\r/ks twrel’fz’rir]]’ 1,0, 1|’r2v]w
a k-dimensional Euclidean space. The resulting coordinates ] a 1,21, ].' ese vectors form a pairwise
are used to predict network latency. andmark distance matrix/ as given in Equation 1. We create

- . a matrix M’ by normalizing each row of\/ with a zeroed
Instead of predicting the network latency (and distancey ov ean. such thaMi'j — My, — (Z,;:1 M) k.

the Internet, the purpose of this work is to reduce routin
overhead while achieving satisfactory routing perforngamnc

(a) Connectivity Graph (b) Embedded Topology iiR?

when all nodes are placed in a
D or 3D Euclidean space, the geodesic distance measured

IIl. PROTOCOLDESIGN

resource constraint sensor network. In addition, as the net 01 2 1 -1 0 1 0
work latency may violate the triangle inequality prope2tif 1 0 1 2 y 0 1 0 1
assumed by the Euclidean embedding approaches, the njg{—: 2 1 0 1}|° M= 1 0 -1 o0 (1)
work dimensionality often varies among different dataséts 12 10 0 1 0o -1
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-5 0 =% 0 and select th€0 percentile — the firstk components that con-
0 _§ 0 _§ tribute t090% of the total variance. The variance contribution

) . of the i,;, component is computed a@/Z}Ll o;, whereo;
By applying Singular Value Decomposition(SVD) on the g 5 diagonal entry in matri. In the example at Fig. 1(b),

i i Ny ™ _ /
nornrahzed (distance matrid/ 'd[Uk; S’I‘E/ ] = SUZ(MT%’ tt:je_ the contributions of the first two components are bath
reslut ;n_atgxes targ ctohmpL!te ” y qualtlon - '€ diago e yse simulation to examine the critical dimensionality
nal matrix.5 contains the significance values, o, .. ., on required. Nodes are deployed in a 2D and 3D area with a

Ior a:,l con:ponentst n fa d?ﬁreisc'rf ordt;er.dtlj\(latﬂx_ll_i thgc ide length of400m and the communication range 39m.
ranstormation matrix tor the embedaing. € he number of nodes and landmarks are varied in different

empeddmg goordlnateBA fcar_landmarkA can be _compu_ted scenarios. The distribution of principal components is- dis
as in Equation 3, wherel is vector A normallzed with played in the scree plot at Fig. 3. In Fig. 3(a), when all nodes
a zeroed mean. The PCA embedding coordinatesHpC are placed on a plane, each of first two components in the
and D are Py = [0,v2, 0.’ 0], Pc - [=/2,0,0,0] and. coordinates contributes 3% ~ 25% of the total variance,
Pp = [0, ~v/2,0,0]. By taking th? first two compor)entsQ "while each non-intrinsic component contributes less tr&n

the result vector as the embedding coordindtes)) in R® ) gig "3y "\when the intrinsic dimensionality becomesethr

space, the four 'a”qmaf". nodes can be plotted ona p'aBSch of the first three components contributeg 2% ~ 15%
which resembles their original structure as shown in Fig).1( of the variance, while each of the rest contributes less than
It is clear that the inter-node distance remains unchanged5' '

this isometric embeddinglist(A, B) = dist(P, Pp). For a The90-percentile components are illustrated in Fig. 3(c) and

_normal nod_eE with a hop count vector off = [1,1,1,1], Fig. 3(d). When10% and 1% of nodes are randomly selected
its embedding coordinates can be computed from the trar&ss- the landmarks for the 2D and 3D network8% of the
formation matrix/ as Py = E' - U = [0,0,0,0]. The R? ’

) ) L . ] . _total variance comes from the firg80% of the components.
coordinates of E i%0, 0), which is consistent with the reIa‘uveGiVen that the actual network topology has a limited degfee o

position of £. freedom, the number of dominant components should remain
_g 0 g 0 relatively stable.
) 0 _VZ g A2 Based on the above results, it would seem that the critieal di
Py = A"-U=[-1,0,1,0]: No3 02 No3 8 mension needed is fairly large and the potential for dimamnsi
(?) % (?) g reduction is limited. However, as our application is rogtin

(rather than say data analysis or image processing), thet nee
= [\/5,0,0,0} (3) to include 90% of the total variance may be unnecessarily
igh. In fact, if the deployment is in a 3D space, as little as

R . h
The zeroed-mean normalization is a necessary step, Wlthg rincipal components may suffice in some deployments.

which the first component in the output will represent the cur In practice, we can resort to empirical measurements to
vtaturg of t?e d‘ita sargpleTgSZ].Flnmdzentally(,jtms normﬂogd.assist in the dimension selection. As we will shown later
Step 1S not pertormed in - 71g. £ provides an embe II'ilrg(fection IV-D, the critical dimensionality for connedti

example of 800 nodes. One way to evaluate the PCA generaﬁ@i ed routing in 2D and 3D networks is only between 5 to 7

virtual coordinates is by looking at the projection on the X0 uniformly random node placement, which is much smaller

y plane which indicates that only the coordinates comput an the 20 components required % variance coverage

with scaling can correctly reflect the relative node poxamoin a network with 1000 nodes.

As shown in Fig. 2(b), the projection without normalization
fails to recover the original 2D topology. C. Routing with Fallback

B. Critical Dimension Assuming a source nodeS with PCA coordinates
A key issue in the dimension reduction procedure is {84, s2,. .., sx] has a packet for destinatidnat [¢1, to, . . ., tx].
determine the critical dimensionality required. The rule dNodeS will search among all iten neighbors to find the next
thumb[22] is to draw a scree plot of the principal component®p that can minimize the distance 76 During the greedy
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Algorithm 1 Routing Algorithm with Fall-back coordinatedoc in a neighbor entry stores the 3D embedding
;: Letp be thte p%(;kjet f{ﬁm SrS_t%gsﬂ;V i ¢ [Lm]) coordinates and the neighbor’'s hopcount vector is stored in
: p arrives at node” with m neighborsN; (i € [1,m .
3 DstT’s coordinatesp.t = (i1, to, ..., £ in k-dim space hv. hv_matrix keeps a rgcord of the hopcount vectors fpr all
4: Distance vector td is p.dv = [dy, dg, . . . , dj] landmark nodes in multiple rows, where each row contains the
23 4/ UPdatfi tzedm'n'mum distance 0 correspondingandmark_id, parent_id and its distance to other
: for i — 1,k do . . e .
70 if disty(P,T) < p.dvli] then Ian.dmarl_<s. The vanr;,\blmxent_ld |dent|f|e§ the ngghbor from
8: p.dvli] = dist;(P,T) > updated; to avoid loop Which this landmark’s hopcount vector is received.
9: end if
10: end for —
11: /I search for the next hop Neighbor List (nbrlist) : :
12: for i « k,1 do > for each dimension # of entries: 20 Landmark Hv Matrix (hv_matrix)
13 newxthop = null :Fbrt_i(hj: Zd' 4 # of rows: 9
14  for j — 1,m do > for each neighbor Hoc(xy 7): 12 | | Tandmarkid 2 T :
15: if dist;(N;,T) < p.dv[i] then _-A--ihv: 54 : ‘parent_id: 2
16: p.dvli] = dist;(N;,T), nexthop = N; v ——————————————— | ilist of hopcounts(k=9): 36 .
17: end if S Hopcount Vector (hv) 1<l andmar k_! d, hopcount >,:
. 12:<landmark_i d, hopcount>,: :
18: end for # of entries: 9 e v
19: if nexthop # null then Candmark a0 3,‘,}'(::<'|, é”rdrf,mrf Efljd", h°PC°Um> ;
20: returnnexthop > return the greedy neighbor hopcount: 2
21:  end if Lparent_id: 2
22: end for

23: flood the packep for disty (P, T) hops. > local minimum reached Fig. 4. Data structures in the nodedrlist, local_hv and hv_matrix

2) Memory Requirements:. The memory cost for the data
forwarding step, upon reaching a local minimum node, a faktructures in Fig. 4 is estimated in Table I. The local homtou
back mechanism is activated as depicted in Algorithm. 1. Fogctor local_hv has maximally 9 entries in the format of
each destinatio” in a k-dimensional Euclidean space, thglandmark id, hopcount, parenid], which consumes 54 bytes.
packetp contains a distance vectdd;,ds,...,d;] to node Each neighbor entry uses 2 bytes fdy 4 bytes forlast_heard
T, whered;(i € [1,k]) represents the minimum Euclideartimestamp and 12 bytes for PCA coordinatasy(z). The
distance encountered from any visited nodeTtocomputed hopcount vectohv in the neighbor entry contains maximally 9
from the first; components of their embedding coordinates. Hopcount entries, each with a size of 6 bytes. The total numbe
an intermediate nod® has no such a neighbor that can bringf bytes required for each neighbor is thus 72 bytes. Given a
the packet closer t& by dj, in the k-dimensional space? will  capacity of 20 neighbor entries, thrlist consumes 1440
search in the space of dimensidaX) by examining distance bytes. The matrix of landmark hopcount vecher matrix has
di—1. The fall-back procedure continues until the next hop & rows, where each row containdandmark_id, a parent_id
found or the current nod® is a local minimum for alld;. If and 9 hopcount entries of format [landmaik hopcount].
the fallback mechanism fails, the scoped flooding will bedusérhe size ofhv_matrix is 360 bytes. The total memory cost for

as the last resort. nbrlist, local_hv and hv_matrix is thus 1440+54+360 = 1854
. bytes.

D. Implementation Issues y

1) Data Structures: As shown in Fig. 4, each node main- MEMORY COST(BYTES): ZTSEELE':BORS DO LANDIARKS
tains three data structures: the hopcount veltoal _hv, the '
list of neighborsnbrlist and the matrix containing the inter- ["size ofid, hopcount | nbrlist | Tocal_hv | hv_matrix | total |
landmark distancehv_matrix. local_hv stores the hopcount 2 Bytes 1420 54 360 1854
entries to all landmarks, wheparent_id refers to the neighbor 1 Byte 880 27 180 1087

with the minimum hopcount to that landmanbrlist contains
the neighbor records, in which thast_heard variable records In a network with less than 255 nodes, it is adequate to
the time when a neighbor's beacon is received. The PQfse ui nt 8_t type for node id and hopcount instead of



ui nt 16_t, which will reduce the total memory cost fromcompatible entries, each node will be able to calculate its
1854 bytes to 1087 bytes and also reduce the control packetbedding coordinates independently.

size during network initialization. This modification is@jed
in the experiments.

3) Timer-based Operation: The operation of the nodes are We first evaluate performance in simulation so results for
controlled by three timers: beacon timehrlist refresh timer large network can be obtained. In Section V, evaluation on a
and thelandmark_hv timer. The beacon timer allows each#8 nodes MICAzZ testbed will be presented. In the rest of this
node to periodically broadcast a beacon packet containiBgPer, we us€CA to denote the routing algorithm leveraging
its nodeid{d) and hopcount vectanj). Once a beacon is the PCA coordinates. For simulation performance compayiso
received from a neighbonbr, the node will either insert a We implemented Greedy, NoGeo, BVR, LCR and PCAis2
nbr entry tonbrlist if it is from a new neighbor or update theand a Java based simulator. The output of the Java simulator
nbr.last_heard timestamp for an existing neighbor. For eack verified withns-2. Due to the limited scalability ofis-2, the
new landmark learned from that beacon, a new hopcount engfnulation results presented in this section are obtaineuh f
will be created in the local hopcount vectacal_hv. For all the customized simulator. PCA employs thema[23] library
entries inlocal_hv whose parent isbr, if the corresponding to perform singular value decomposition.
landmark is not found imbr’s beacon, those invalid entries

IV. SIMULATION RESULTS

TABLE I

will be erased. To avoid the count to infinity problem, a SIMULATION PARAMETERS
clear_entry message will be sent for each removed entry, such

that the stale landmark records in the child nodes will be | Name [ Velue

cleared accordingly. The details are presented in Algarith Deployment Space 2D: 400mx<400m

3D: 400mx 400mx400m

Number of Nodes| 2D: 100~ 2000, step = 100
Algorithm 2 Actions triggered by beacon timer 3D: 1000~ 20000, step = 1000
Topology | 50 topos/density, uniform random

1: each node broadcasts beacon every 10s. a beacombiois received. i dhabid
2: if nbr.id ¢ nbr_list then > nbr is a new neighbor RCad|o R?nge :]3_881 unit d'?k m/(t)del
3:  addnbr to nbr_list Connections connections/topo
4: else > update timestamp of an existing neighbor Routing Beacons max = 10,candidates10%(2D), 1%(3D)
5: updatenbr.last_heard to the current time. Routing Protocols| Greedy, NoGeo, BVR, LCR, PCA
6: end if
g; for iﬁ?mdem’iﬂﬁvgfocal hy then > nbr has a new landmark _ Configuration of the simulation parameters are listed in
9 insert [v.landmarkid, v.hopcount, nbr.id] to locahv Table 1. The simulation area is a square plane for 2D scesari
10 . elshe ifV-lan(;marlKi}fLi =;]N-|andmarlsid and \gh%pCOUf}K W-hgpcount and a cubic space for 3D scenarios with a side lengthofn.
1g, D Wnerew € local_h hen > nor has a fower hopeount rhe number of nodes deployed varies frdfo to 2000 for
: w.parent_id = nbr.id andw.hopcount = v.hopcount + 1 - : )
12:  end if 2D scenarios and 000 to 20000 for 3D scenarios. With a
ﬁf ]?”d f0fh focal ho d oshiocal radio range of30m, the node density range {$.77,35.34].
m e p“;fen?cfd-zvnbf i then > TEITeSNIo@-V For each node density, 50 random topologies are generated
16: it w.landmark_id ¢ nbr.hv then > wis a stale entry and within each topology, 100 node pairs are chosen to be
gf | ff;‘me\l/e‘Ndffom LOQZI-hV' flOfW;fd Clzaf:ientfy mse. the source and destination. For BVR, LCR and PQA%
1o. O o hapoount v hopeoumt b 1 (v € nbrho) then  and 1% of the nodes are selected to be candidate beacons in
20: end if 2D and 3D scenarios respectively. The maximum number of
g%f defnd if routing beacons is set tt) as suggested in [5] and [3]. We
. enda ior

use the five protocols to route packets for each connection
and measure the packet delivery ratio, path stretch and the

The nbrlist refresh timer is used to detect the missingverage flooding range as the performance metrics. As the
neighbors due to link quality changes or hardware failurgesults for 3D scenarios show similar trend as the 2D ones

A neighbornbr will be removed if its beacon has not beefyith merely different magnitude, we will present the result
received for 10 beacon intervals. For each local hopcouny enfor 2D scenarios only.

v € local_hv, if v.parent_id = nbr.id, v will be removed and
a clear_entry messages will be sent. Similarly, for each row Packet Delivery Ratio
r € hv_matriz, if r.parent_id = nbr.id, r will be removed In this work, packet delivery ratio is measured as the pro-
from hv_matrix. portion of packets that can be successfully delivered witho
The landmark nodes udandmark_hv timer to broadcast flooding. For PCA to be effective, the number of landmarks in
the landmark_hv message, which consists of the landmatk the distance matrix should be larger than the dimensignatit
and local_hv. All nodes receiving théandmark_hv message the deployment space. In a sparse network with a node density
will insert the landmark hopcount vector tov_matrix. In less thans, the number of landmarks in a connected compo-
order to reduce the network traffic, each node will onlpent is often below the threshold, leading to a performance
forward thelandmark_hv messages received from the pareribferior to BVR. The PCA coordinates achieve higher packet
nodes inocal_hv. Oncehv_matrix andlocal_hv have obtained delivery ratio, as the node density grows abéve
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Fig. 5. Routing Performance Comparison in 2D Space

At the medium node density range 6f~ 15, the packet NoGeo, LCR and BVR ard.25, 0.95, and 0.14, while the
delivery ratio of PCA is73.3% ~ 97.9%, significantly higher flooding range of PCA approaches the minimum valué.of
than that of NoGeo and LCR. BVR employs a backtracB Effects of Dimensionalit
procedure that diverts the packet to the closest beacontirem ~ y
local minimum position, obtaining a delivery ratio 69.1%  While utilizing more components in PCA coordinates pro-
to 90.4%. At the highest node density df5, the delivery Vides better routing performance, it also brings higher aieds
ratios for NoGeo, LCR and BVR react8.4%, 90.1% and for processing time and memory space in the packet header.
97.3, while PCA has the highest delivery ratio 9.9%, Determining the critical dimensionality is important fob-o

nearly equivalent to the performance of greedy forwardirigining a balance between routing performance and overhead
with perfect position information. We use empirical results to derive the critical dimensiyal

value.
B. Path Sretch Factor TABLE Il

Assuming the routing protocol generates a patth,ohops PERFORMANCE OFPCAAT CRITICAL DENSITY OF5

and the shortest path has, hops, the path stretchh is | Metric | 5D Networks l
computed as\ = Z—p The protocol with a lower path stretch Dimensionality 2 3 B* 10 30
A achieves shorter routing paths and lower delay. Delivery Ratio | 52.6% | 62.4% | 70.5% | 73.3% | 73.5%

The greedy protocol achieves the lowest path stretch in a!FIO;”i‘;Z %;ent;g LoL ;:gg ;:(6)3 ;:2? Lo
density ranges. The path stretch for PCA is comparable to tha
of LCR at node densities less th&nlower than NoGeo and .
BVR. As the node density increases abeyehe path stretch !N 9eneral, when node density increases, the need for
of NoGeo, BVR and PCA starts to stabilize, while LCR’s patRigher dimension reduces (Results are not shown due to
stretch gradually increases. The converged path stretoles/a SPACe constraint). Therefore, the effect of dimension isemo

for NoGeo. LCR. BVR and PCA are 1.14. 1.09. 1.12 angfucial at lower node density. The routing performance of

1.02. Thus, for high density 2D networks, the routing patHDsCA with node density 5.3 under various dimensionalities is

discovered by PCA i§% ~ 11% shorter than the rest. summarized in Table Ill. We choose to highlight node density
5.3 because this is the minimum node density required for any
C. Scoped Flooding Range geographical or connectivity based algorithm to work wedir

higher node density, equal or less components will be needed
For NoGeo, BVR, LCR and PCA, the primary forwarding As shown in the table, routing performance gradually im-
procedure may fail to deliver a packet due to anomalies Hioves as more dimensions or components are utilized. In
the coordinates, while scoped flooding can be invoked @gs 2D deployment, the incremental improvement diminishe
a recovery step. As the network traffic grows exponentialpgpidly beyond a dimension of 5. As the components are sorted
during flooding, the protocol with a shorter flooding rangg, their significance order, the subsequent componentsen th
introduces less duplicate packets to the network. PCA coordinates will have even lower influence on routing
PCA and BVR obtain the lowest flooding range amongerformance.
all the evaluated protocols. At the node density aroéry] To summarize, for 2D networks, the performance of PCA
the average flooding range for all protocols reaches the peakpilizes once the dimensionality reachefor 3D networks,
as SCOped f|00ding is frequently triggered. The maXimUme critical dimensiona“ty is around
flooding ranges for Greedy, NoGeo, LCR, BVR and PCA are
9.8, 11.5, 7.5, 2.1, and2.4. As the node density increases, all V. TESTBEDRESULTS
protocols obtain higher delivery ratio and the flooding mng To explore the practicality of the dimension reduction
starts to decrease. The converged flooding range values faethod for real sensor networks, we implemented the PCA
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(a) Node z-001 to z-025 in Basement (b) Node z-027 to z-049 in Level-1

Fig. 6. Deployment Floorplan of the Testbed(inter-floor §inkot shown). Landmarks: 2, 8, 18, 21, 28, 31, 36, 38, 45

algorithm on MICAZz[24] motes with 4KB RAM running S
TinyOS 2.0.2[25]. The singular value decomposition code ..
is adopted from [26]. The experiments were conducted on G-

6

a testbed deployed on two floors of an office building, a&
demonstrated in Fig. 6. The parameter settings are listed in’

2

Table IV. ) = v
TABLE |V Node Degree k (Number of Neighors)
PARAMETER SETTINGS OF THETESTBED (a) Distribution of Node Degree (b) Network Embedding
[ Parameter | Value ] Fig. 8. Node Degree and 3D Embedding Grapht®&fNodes

Network Size | 48 MICAz nodes, 303 directional links
Num of Neighbors| avg = 6.31, min = 2, max = 15
Transmission Powey 31 (max, 0 dBm) on different floors clearly form two clusters, implying tttae

802.15.4 Channel 26 (default) . . .
Number of Landmarks| 9 (4 in basement, 5 in Tlevel-1) PCA coordinates can successfully retain the locality fieatu

Intrinsic Dimension | 3 (25 in basement, 23 in level-1)

A. Distance Metric Comparison

To compare the Euclidean distance computed from the
hopcount vectors and the PCA coordinates, we calculate the
inter-node distances in both ways. For two nodésand
B with hopcount vectors$ay, as, ..., a,] and[by,be, ..., b,],
the hopcount vector distancé,, is computed asd,, =

>y (a; — b;)%. The PCA distancel,., betweenA and
B is the Euclidean distance computed from their PCA coor-
dinates(za,ya,24) and(x g, yp, z5). We plot the difference

(a) z-003 at Basement (b) z-027, z-028 at Level-1 between these two distancés= dj, — dycq in Fig. 9, where
_ _ 50% of the distances computed from the PCA coordinates
Fig. 7. Images of Nodes deployed in the Testbed are within a deviation 0f0.25 from the corresponding full

hopcount vector distances.
The testbed containss nodes and03 directional links. All

nodes transmit at the maximum power levelBaf We deploy Diflerence between HY and PCA Disances COF ofDiference Ratio between dy and
nodes z-001 to z-025 at tHmsement floor and nodes z-027
to z-049 at the flootevel-1. Nine nodes were chosen as the
landmarks, four in the basement and five in level-1. Fig. 7;
gives a snapshot of the deployment. The distribution of node !
degree is displayed in Fig. 8(a), where the average number czf' Difference Ratio ——

0 05 1 15 2 25 3
neighbors at each node Gs31. o o o o o i Ratio = hy - dpallhy

Network initialization took five minutes for neighbor dis-

covery and hopcount propagation. Once the landmark hop-
count matrix and the hopcount vector are established, each Fig. 9. Comparison between Distancés;, and dpca
node computes its coordinates individually as described in
Section 1lI-A. Only the first three components are used for We use theSpearman’s Rank Correlation metric to quantify
the embedding in order to reduce the overhead in the packwet effectiveness of using PCA coordinates to replace hayco
header. The coordinates plotted in Fig. 8(b) show that nodesctors. Given two ranking listX = [z1,22,...,z,] and

ce: dp, - dpca

» A N o N~ o ®
Distribution
o
@

Difference: dyy - dpca —— o

(a) Difference:dn, — dpca (b) CDF of Difference Ratio



TABLE V

Yj = [Y1,Y2,-- -, Yn), the Spearman’s Rank Correlation Coeffi- ROUTING PERFORMANCEEVALUATION OF dy,,, AND dpcq
cientp betweenX andY can be computed by Formula 4. The
value of p varies in the range of-1, 1]. A higher coefficient | [ No. of Paths | Path Length | Path Stretch ovediy,, ]
value indicates a higher consistency between the two lists.| dn, | 581+467=1048| [1, 11], avg = 3.85 1
dpca 581+417=998 | [1, 11], avg = 3.94| [0.17, 4], avg = 1.12
6 i, d;

p = w2 —1)’ where d; = x; — v; (4)
For each nodéV;, we compute its hopcount vector distanc
d;; to each nodeV;(j € [1,n]) and form a distance vector
D = [di1,ds2,...,din]. According to the distance,;, we
assign a rank;;(r;; € [1,n]) to nodeN;, such that ifd;; <
dik, Tij; < Tik- We USER%W = [Til,’f‘ig,...,’f’in] to denote

gy dn,. The path length of applyingy, and d,., varies in

the range of1, 11], whered,,, has an average & .85 hops.

The average path length df., is 3.94, a slight increment of
2%. The path stretch ofl,., over dy, ranges from0.17 to

4; thus, either metric has found some paths shorter than the

the ranking list of hopcount vectors at node. We compute ones discovered by the other. The overall path stretch rfacto

another ranking list with the PCA coordinates and name 9{ dpea 1S 1.12, representing an average increment of just

) . ; hops in the worst case.
R? . For each nodeV;, the correlatiorp; betweenR! and . N
pea ie h The path lengths are displayed in Fig. 11(a) and the routes

pea’, : .
Ryeq 1s computed as in Equation 4. discovered bydy, and d,., are marked in Fig. 11(b) and
Fig. 11(c). The route map af,, in Fig. 11(c) clearly indicates
that nodes from z-013 to z-020 form a cluster inaccessible
from the rest part of the network, causing most routing fatu
This is due to the lack of resolution in the input hopcount
vectors. It is possible to alleviate the problem by applypadg-

Spearman’s Rank Correlation between dy,, and dpc, CDF of Correlation between dy,, and dyc,

3DPCA ——
T—
0.9 Correlatio 0.9 - 3 random landmarks

Correlation Coefficient
o
@
Percentage of Nodes
o
o

0z 02 N - wise' transmission power control[27] to create a smal! .scale
%5 5 10 15 20 25 30 35 40 45 50 o multihop topology in these nodes or introducing additional

fndex of 48 Nodes i the Testoed Corrlaion Coeffent Valve landmark nodes in this cluster. Meanwhile, the route map of
(a) Correlation at 48 Nodes (b) CDF of Correlation dne in Fig. 11(b) is less indicative for network performance
Fig. 10. Spearman’s Rank Correlation betwekn and dpcq diagnosis.

The correlation coefficient values at each node are depicteg Packet Overhead
in Fig. 10(a). The correlation lies in a range [6£39, 0.91], The control overhead in the packets mainly comes from
with an average equal t6.76 and a standard deviation ofthe hopcount vectors or coordinates used to address the
0.017. As shown in Fig. 10(b),80% of the nodes have destination. To use the full hopcount vector of the destimat
a correlation above).65, indicating that the node locality each packet must carry the hopcount entries to 9 landmarks.
characteristics estimated from the PCA coordinates islhighAssuming that botmodeid and hopcount are of ui nt _16
consistent to that of the full hopcount vectors using all §pe, this constitute86 bytes. Thed,., metric relies only on
landmarks. the 3D embedded coordinates, which cttbytes — just one

For comparison, Fig. 10(b) shows the CDF of distandéird of that indy,,. It can be further reduced ®bytes, if all
correlation using 3 randomly chosen landmarks as is donedes are placed on a plane. Although the PCA operation has
on LCR (data is averaged of 5 different data sets). It is cletr maintain a hopcount matrix of size?(n is the number
that with the same amount of overhead, the randomly chosaihlandmarks), the memory and computational overhead is
landmarks significantly deviates from the geometry of thenly required once during the initialization stage. The rogm

original graph. space can be reclaimed once the procedure completes. There-
. fore, the computational overhead of the PCA coordinates is
B. Routing Performance transient, while the storage and communication overhead of

To compare the routing performance, we employ gree@pplying full hopcount vectors is persistent throughoug th
forwarding to find a routing path between two nodes based éntire network lifetime.
dny andd,., respectively. We measure the number of paths In summary, using dimension reduction method, the routing
discovered and the path length,, and L,,.,. The path stretch protocol can work with only 3 components, while maintaining
A= LL"T“ will imply the performance degradation by using th&€quivalent packet delivery performance with negligiblehpa
lower dimensional coordinates instead of the full hopcoufitretch overhead.
vector for routing. The results are provided in Table. V.

With 48 nodes in the network, we can form 2256 pairs of
source and destination. Th&,, distance metric discovered In this paper, we evaluated the technique of applying
1048 paths and thd,., metric discovered 998 paths. Onlydimension reduction method for connectivity-based rautin
581 of the paths are common to both metrics. In terms Bfy extracting the underlying dimension information from
packet delivery ratiod,., found95.2% of the paths discovered the sampled connectivity graph, the resulted coordinates c

VI. CONCLUSION
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Fig. 11.

significantly improve routing efficiency. We implementeck th [9]
PCA algorithm on MICAz nodes and conducted experiments
on a medium scale testbed. With a 3D embedding of 9
landmarks, the distance computed from the virtual cootdina 1°
can closely approximate the distance computed by the full
hopcount vector. The experiment results show that the dimemnt]
sion reduction algorithm can effectively reduce the ragtin
overhead to make connectivity-based routing more app&calt)lz]
for real sensor network deployments, without compromising
the routing performance significantly.

The current connectivity-based routing still leaves thie foll3]
lowing aspects for further investigation. A better distan 14]
metric for Lipschitz embedding may exist, which is more
tolerant to local minimum conditions. An analytical apprha
is more desirable than empirical methods for evaluating the!
quality of various landmark sets. Embedding the network by
the hopcount distance may generate unstable coordinatesy g
the hopcount vectors may vary due to the fluctuation of link
quality. Higher preference should be assigned to morehielia

links in order to reduce oscillation in the coordinates. 7
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