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Abstract—Connectivity-based routing protocols provide an
attractive option for point to point communication in wireless
networks due to its potential for low routing overhead. However,
when the entire hopcount vector is used to address each node,
the communication and storage overhead in the packets are often
so high that it is not feasible to implement existing connectivity-
based routing protocols infeasible on resource-constrained sensor
networks. In this paper, we apply the technique of dimension
reduction, in particular Principle Component Analysis(PCA), to
the hopcount vectors. Compared to the original hopcount vector,
the embedding coordinates preserve the network geometry with
much lower overhead, making their use much more practical
on current sensor platform. Simulation results show that the
coordinates computed by PCA can achieve higher packet delivery
ratio, lower path stretch and shorter flooding range in local
minimum cases. We have also implemented the PCA algorithm on
MICAz motes and conducted experiments in a testbed containing
48 nodes deployed on two floors of an office building. With the
use of 9 landmark nodes and only 3 dominant components, the
PCA coordinates can achieve95% of the delivery ratio obtained
using full hopcount vector and maintain an low path stretch of
1.12.

I. I NTRODUCTION

Wireless sensor networks provide a flexible platform to sup-
port a variety of applications such as ecological monitoring[1],
intrusion detection and security surveillance. The traditional
on-demand ad-hoc routing protocols require a path discovery
procedure for inter-node communication, which may lead to
intensive bandwidth consumption in a resource-constrained
sensor network. The geographic routing protocols achieve
scalability by using node location for packet forwarding.
However, accurate position information is hard to obtain and
violation of the unit disk assumption in real deployments
may result in persistent routing failures. In connectivity-based
routing, a group of nodes are designated as thelandmarks
Li(i ∈ [1, k]), propagating beacon messages to the network.
Each node measures the distance to thek landmarks to create
a hopcount vectorH = [h1, h2, . . . , hk], where hi is the
hopcount to landmarkLi. Routing is performed by treating
the hopcount vectorH as thek-dimensional coordinates which
can be accessed through a location service[2].

Routing performance is directly affected by the number of
landmarks used during packet forwarding, creating a trade-
off between control overhead and routing efficiency. Existing
connectivity-based routing protocols require a large number

of landmarks to attain good performance. For example, in
BVR[3], 10∼90 nodes are selected as beacons, out of which
10 beacons closest to the destination are selected for routing.
Such large number of landmarks and routing components is
very expensive for resource constraint sensor nodes, making
such approach difficult to implement in practice.

In this work, we exploit the observation that as sensor
networks are physically deployed in a 2D or 3D space, the
intrinsic dimensionality of the topology is usually much lower
than the number of landmarks. Therefore, dimension reduction
technique[4] can be applied to extract the major axises of
the connectivity graph and project each node on to a lower
-dimension Euclidean space.

Our approach uses of Principal Component Analysis. Each
node constructs a hopcount matrix, describing the pair-wise
distance of the landmarks. The embedding algorithm apply
singular value decomposition to the matrix to extract the most
significant dimensions. The process outputs a transformation
matrix that can capture the largest variance in the network
topology. The inter-node distance is well preserved through
the first few components in the coordinates and the embedding
coordinates are more resilient to degenerate landmark set.
Experiment results show that by compressing the hopcount
vectors into three dimensional coordinates, the nodes can
maintain 95% of the packet delivery ratio (relative to using
full hopcount vectors) with a path stretch of only1.12.

The rest of the paper is organized as follows. The related
work on dimension reduction and connectivity-based routing
protocols is given in Section II. The details of the embed-
ding procedure are explained in Section III. The simulation
results on large scale performance comparison are presented
in Section IV. The testbed settings and experimental results
are detailed in Section V. The conclusion and future works
are given in Section. VI.

II. RELATED WORK

Connectivity-based routing protocols perform packet for-
warding by minimizing the distance computed from the hop-
count vectors between the nodes and the landmarks. Logical
Coordinate Routing(LCR)[5] and Hop-ID Routing(HIR)[6]
select the next hop as the node that can reduce the Eu-
clidean distance to the destination according to theirlogical
coordinates or hop-ids in the form of singleton Lipschitz
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embedding[7]. The Beacon Vector Routing(BVR)[3] applies a
similar technique relying on the weighted Manhattan distance
metric.

Landmark placement is crucial for network distance
estimation[8] and connectivity-based routing. Clusteredland-
mark nodes with low path diversity will generate highly
correlated hopcount distance and become less effective to dif-
ferentiate nodes at different locations. Zhanget al.[9] proposed
a hierarchical landmark selection approach that groups the
candidates into clusters. Landmarks are then chosen from both
nearby and distant clusters, in order to improve the granularity
of the embedding and capture the global network connectivity.
Srinivasanet al.[10] conducted a performance comparison of
different landmark selection methods based on randomization,
clustering, hierarchical structure and min/max inter-landmark
distance. The result shows that the heuristics based landmark
selection algorithms provide nearly identical performance as
random selection in general, while determining the critical
landmark number required for a satisfactory embedding is a
non-trivial task.

Using graph embedding technique to compute virtual co-
ordinate has been applied for node localization in wireless
networks. The NoGeo[11] protocol selects the perimeter nodes
from the network boundary and allows each node to compute
and refine its coordinates through iterative updates with its
neighbors. Both Vivaldi[12] and GSpring[13] treat the network
as a spring system, where each link has a normalized length.
By applying the contraction and expansion rules according
to the node distance, the network system converges to a
stabilized state, where the node location can be determined
independently. Although the iterative methods can achieve
good results for network distance estimation, they suffer from
long convergence time, require the network deployment to
have some special structure and may be vulnerable to local
minimum conditions.

Another popular application of network embedding algo-
rithm to compute virtual coordinates is distance and/or delay
estimation over the Internet. In [14], the distance betweentwo
nodes in the Internet is estimated by iteratively minimizing
a potential energy function. Maoet al.[15] applies matrix
factorization to obtain an incoming and an outgoing vector
for each node, such that the network distance between two
nodes is the dot product of the two vectors.

PCA is a popular technique used in data analysis[16] and
image processing[17]. In the networking area, ICS[18] and
Virtual Landmarks[19] are two algorithms that performPrin-
cipal Component Analysis(PCA)[20] to embed each node into
a k-dimensional Euclidean space. The resulting coordinates
are used to predict network latency.

Instead of predicting the network latency (and distance) over
the Internet, the purpose of this work is to reduce routing
overhead while achieving satisfactory routing performance in
resource constraint sensor network. In addition, as the net-
work latency may violate the triangle inequality property[21]
assumed by the Euclidean embedding approaches, the net-
work dimensionality often varies among different datasets. For
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Fig. 1. An Embedding Example with4 Landmarks:A, B, C andD

connectivity-based routing, when all nodes are placed in a
2D or 3D Euclidean space, the geodesic distance measured
in hopcount generally conform to the triangle inequality and
symmetry properties. (This property always holds for unit
disk graph.) Our approach is practical in sensor network and
we are able to implement a distributed version of the PCA
algorithm on MICAz motes and have conducted experiments
on a medium scale testbed for performance evaluation.

III. PROTOCOLDESIGN

In this section, we will present the details of the dimension
reduction procedure with dimensionality analysis and highlight
some implementation issues.

A. Embedding with Dimension Reduction

In a network withk landmarks, each node measures the
minimum hopcount distancedi to each landmark. The hop-
count vector(d1, d2, . . . , dk) is utilized to address the nodes.
In order to apply PCA, the vector distances between all pairsof
landmark nodes are broadcasted to all nodes. Once a matrix
containing all these vector distance information is obtained,
each node independently performs the PCA-based dimension
reduction process. The result provides nearly isometric embed-
ding coordinates and ensures the transformed node distancein
the embedded graph will approximate the original value. The
new virtual coordinate of each node can be computed using
the transformation matrix and the original hopcount vector.

As an illustration, assuming four landmark nodesA, B, C
andD are connected consecutively as shown in Fig. 1(a), the
hopcount vectors of the 4 landmarks are[0, 1, 2, 1], [1, 0, 1, 2],
[2, 1, 0, 1] and [1, 2, 1, 0]. These vectors form a pair-wise
landmark distance matrixM as given in Equation 1. We create
a matrix M ′ by normalizing each row ofM with a zeroed
mean, such thatM

′

ij = Mij − (
∑k

x=1
Mix)/k.

M =









0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0









, M ′ =









−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1









(1)
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M ′ = U · S · V T , where
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By applying Singular Value Decomposition(SVD) on the
normalized distance matrixM ′, [U, S, V T ] = svd(M ′), the
result matrixes are computed by Equation 2. The diago-
nal matrix S contains the significance valuesσ1, σ2, . . . , σn

for all components in a decreasing order. MatrixU is the
transformation matrix for the PCA embedding. The PCA
embedding coordinatesPA for landmarkA can be computed
as in Equation 3, whereA′ is vector A normalized with
a zeroed mean. The PCA embedding coordinates forB, C
and D are PB = [0,

√
2, 0, 0], PC = [−

√
2, 0, 0, 0] and

PD = [0,−
√

2, 0, 0]. By taking the first two components in
the result vector as the embedding coordinates(x, y) in R

2

space, the four landmark nodes can be plotted on a plane,
which resembles their original structure as shown in Fig. 1(b).
It is clear that the inter-node distance remains unchanged in
this isometric embedding,dist(A,B) = dist(PA, PB). For a
normal nodeE with a hop count vector ofE = [1, 1, 1, 1],
its embedding coordinates can be computed from the trans-
formation matrixU as PE = E′ · U = [0, 0, 0, 0]. The R

2

coordinates of E is(0, 0), which is consistent with the relative
position ofE.

PA = A′ · U = [−1, 0, 1, 0] ·
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= [
√

2, 0, 0, 0] (3)

The zeroed-mean normalization is a necessary step, without
which the first component in the output will represent the cur-
vature of the data samples[22]. Incidentally, this normalization
step is not performed in ICS. Fig. 2 provides an embedding
example of 800 nodes. One way to evaluate the PCA generated
virtual coordinates is by looking at the projection on the x-
y plane which indicates that only the coordinates computed
with scaling can correctly reflect the relative node position.
As shown in Fig. 2(b), the projection without normalization
fails to recover the original 2D topology.

B. Critical Dimension

A key issue in the dimension reduction procedure is to
determine the critical dimensionality required. The rule of
thumb[22] is to draw a scree plot of the principal components
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Fig. 2. An Embedding Example with and without Scaling

and select the90 percentile – the firstk components that con-
tribute to90% of the total variance. The variance contribution
of the ith component is computed asσi/

∑n

j=1
σj , whereσi

is a diagonal entry in matrixS. In the example at Fig. 1(b),
the contributions of the first two components are both0.5.

We use simulation to examine the critical dimensionality
required. Nodes are deployed in a 2D and 3D area with a
side length of400m and the communication range is30m.
The number of nodes and landmarks are varied in different
scenarios. The distribution of principal components is dis-
played in the scree plot at Fig. 3. In Fig. 3(a), when all nodes
are placed on a plane, each of first two components in the
coordinates contributes to23% ∼ 25% of the total variance,
while each non-intrinsic component contributes less than7%.
In Fig. 3(b), when the intrinsic dimensionality becomes three,
each of the first three components contributes to12% ∼ 15%
of the variance, while each of the rest contributes less than
5%.

The90-percentile components are illustrated in Fig. 3(c) and
Fig. 3(d). When10% and1% of nodes are randomly selected
as the landmarks for the 2D and 3D networks,90% of the
total variance comes from the first20% of the components.
Given that the actual network topology has a limited degree of
freedom, the number of dominant components should remain
relatively stable.

Based on the above results, it would seem that the critical di-
mension needed is fairly large and the potential for dimension
reduction is limited. However, as our application is routing
(rather than say data analysis or image processing), the need
to include 90% of the total variance may be unnecessarily
high. In fact, if the deployment is in a 3D space, as little as
4 principal components may suffice in some deployments.

In practice, we can resort to empirical measurements to
assist in the dimension selection. As we will shown later
in Section IV-D, the critical dimensionality for connectivity-
based routing in 2D and 3D networks is only between 5 to 7
for uniformly random node placement, which is much smaller
than the 20 components required for90% variance coverage
in a network with 1000 nodes.

C. Routing with Fallback

Assuming a source nodeS with PCA coordinates
[s1, s2, . . . , sk] has a packet for destinationT at [t1, t2, . . . , tk].
NodeS will search among all itsm neighbors to find the next
hop that can minimize the distance toT . During the greedy
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Fig. 3. Distribution of Principal Components in 2D and 3D Networks

Algorithm 1 Routing Algorithm with Fall-back
1: Let p be the packet from srcS to dstT
2: p arrives at nodeP with m neighborsNi(i ∈ [1, m])
3: Dst T ’s coordinatesp.t = (t1, t2, . . . , tk) in k-dim space
4: Distance vector toT is p.dv = [d1, d2, . . . , dk]
5: // update the minimum distance toT
6: for i← 1, k do
7: if disti(P, T ) < p.dv[i] then
8: p.dv[i] = disti(P, T ) ⊲ updatedi to avoid loop
9: end if

10: end for
11: // search for the next hop
12: for i← k, 1 do ⊲ for each dimension
13: nexthop = null
14: for j ← 1, m do ⊲ for each neighbor
15: if disti(Nj , T ) < p.dv[i] then
16: p.dv[i] = disti(Nj , T ), nexthop = Nj

17: end if
18: end for
19: if nexthop 6= null then
20: returnnexthop ⊲ return the greedy neighbor
21: end if
22: end for
23: flood the packetp for distk(P, T ) hops. ⊲ local minimum reached

forwarding step, upon reaching a local minimum node, a fall-
back mechanism is activated as depicted in Algorithm. 1. For
each destinationT in a k-dimensional Euclidean space, the
packetp contains a distance vector[d1, d2, . . . , dk] to node
T , where di(i ∈ [1, k]) represents the minimum Euclidean
distance encountered from any visited node toT , computed
from the firsti components of their embedding coordinates. If
an intermediate nodeP has no such a neighbor that can bring
the packet closer toT by dk in thek-dimensional space,P will
search in the space of dimension (k-1) by examining distance
dk−1. The fall-back procedure continues until the next hop is
found or the current nodeP is a local minimum for alldi. If
the fallback mechanism fails, the scoped flooding will be used
as the last resort.

D. Implementation Issues

1) Data Structures: As shown in Fig. 4, each node main-
tains three data structures: the hopcount vectorlocal hv, the
list of neighborsnbrlist and the matrix containing the inter-
landmark distancehv matrix. local hv stores the hopcount
entries to all landmarks, whereparent id refers to the neighbor
with the minimum hopcount to that landmark.nbrlist contains
the neighbor records, in which thelast heard variable records
the time when a neighbor’s beacon is received. The PCA

coordinatesloc in a neighbor entry stores the 3D embedding
coordinates and the neighbor’s hopcount vector is stored in
hv. hv matrix keeps a record of the hopcount vectors for all
landmark nodes in multiple rows, where each row contains the
correspondinglandmark id, parent id and its distance to other
landmarks. The variableparent id identifies the neighbor from
which this landmark’s hopcount vector is received.

nbr_id: 2
last_heard: 4

hv: 54
loc(x,y,z): 12

# of entries: 20

Neighbor List (nbrlist)

hopcount: 2
parent_id: 2

landmark_id: 2

Hopcount Vector (hv)

# of entries: 9

# of rows: 9

parent_id: 2
landmark_id: 2

list of hopcounts(K=9): 36

1:<landmark_id, hopcount>,
2:<landmark_id, hopcount>,

K:<landmark_id, hopcount>
... ...

Landmark Hv Matrix (hv_matrix)

Fig. 4. Data structures in the nodes:nbrlist, local hv andhv matrix

2) Memory Requirements: The memory cost for the data
structures in Fig. 4 is estimated in Table I. The local hopcount
vector local hv has maximally 9 entries in the format of
[landmark id, hopcount, parentid], which consumes 54 bytes.
Each neighbor entry uses 2 bytes forid, 4 bytes forlast heard
timestamp and 12 bytes for PCA coordinates (x,y,z). The
hopcount vectorhv in the neighbor entry contains maximally 9
hopcount entries, each with a size of 6 bytes. The total number
of bytes required for each neighbor is thus 72 bytes. Given a
capacity of 20 neighbor entries, thenbrlist consumes 1440
bytes. The matrix of landmark hopcount vectorhv matrix has
9 rows, where each row contains alandmark id, a parent id
and 9 hopcount entries of format [landmarkid, hopcount].
The size ofhv matrix is 360 bytes. The total memory cost for
nbrlist, local hv and hv matrix is thus 1440+54+360 = 1854
bytes.

TABLE I
MEMORY COST(BYTES): 20 NEIGHBORS AND9 LANDMARKS

size of id, hopcount nbrlist local hv hv matrix total

2 Bytes 1440 54 360 1854
1 Byte 880 27 180 1087

In a network with less than 255 nodes, it is adequate to
use uint8_t type for node id and hopcount instead of
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uint16_t, which will reduce the total memory cost from
1854 bytes to 1087 bytes and also reduce the control packet
size during network initialization. This modification is applied
in the experiments.

3) Timer-based Operation: The operation of the nodes are
controlled by three timers: beacon timer,nbrlist refresh timer
and the landmark hv timer. The beacon timer allows each
node to periodically broadcast a beacon packet containing
its nodeid(id) and hopcount vector(hv). Once a beacon is
received from a neighbornbr, the node will either insert a
nbr entry tonbrlist if it is from a new neighbor or update the
nbr.last heard timestamp for an existing neighbor. For each
new landmark learned from that beacon, a new hopcount entry
will be created in the local hopcount vectorlocal hv. For all
entries inlocal hv whose parent isnbr, if the corresponding
landmark is not found innbr’s beacon, those invalid entries
will be erased. To avoid the count to infinity problem, a
clear entry message will be sent for each removed entry, such
that the stale landmark records in the child nodes will be
cleared accordingly. The details are presented in Algorithm 2.

Algorithm 2 Actions triggered by beacon timer
1: each node broadcasts beacon every 10s. a beacon fromnbr is received.
2: if nbr.id /∈ nbr list then ⊲ nbr is a new neighbor
3: addnbr to nbr list
4: else ⊲ update timestamp of an existing neighbor
5: updatenbr.last heard to the current time.
6: end if
7: for eachv ∈ nbr.hv do
8: if v.landmark id /∈ local hv then ⊲ nbr has a new landmark
9: insert [v.landmarkid, v.hopcount, nbr.id] to localhv

10: else if v.landmark id = w.landmark id and v.hopcount< w.hopcount
- 1, wherew ∈ local hv then ⊲ nbr has a lower hopcount

11: setw.parent id = nbr.id andw.hopcount = v.hopcount+1
12: end if
13: end for
14: for eachw ∈ local hv do ⊲ refreshlocal hv
15: if w.parent id = nbr.id then
16: if w.landmark id /∈ nbr.hv then ⊲ w is a stale entry
17: removew from local hv, forward clear entry msg.
18: else if w.landmark id = v.landmark id(v ∈ nbr.hv) then
19: w.hopcount = v.hopcount + 1
20: end if
21: end if
22: end for

The nbrlist refresh timer is used to detect the missing
neighbors due to link quality changes or hardware failure.
A neighbor nbr will be removed if its beacon has not been
received for 10 beacon intervals. For each local hopcount entry
v ∈ local hv, if v.parent id = nbr.id, v will be removed and
a clear entry messages will be sent. Similarly, for each row
r ∈ hv matrix, if r.parent id = nbr.id, r will be removed
from hv matrix.

The landmark nodes uselandmark hv timer to broadcast
the landmark hv message, which consists of the landmarkid
and local hv. All nodes receiving thelandmark hv message
will insert the landmark hopcount vector tohv matrix. In
order to reduce the network traffic, each node will only
forward thelandmark hv messages received from the parent
nodes inlocal hv. Oncehv matrix andlocal hv have obtained

compatible entries, each node will be able to calculate its
embedding coordinates independently.

IV. SIMULATION RESULTS

We first evaluate performance in simulation so results for
large network can be obtained. In Section V, evaluation on a
48 nodes MICAz testbed will be presented. In the rest of this
paper, we usePCA to denote the routing algorithm leveraging
the PCA coordinates. For simulation performance comparison,
we implemented Greedy, NoGeo, BVR, LCR and PCA inns-2
and a Java based simulator. The output of the Java simulator
is verified withns-2. Due to the limited scalability ofns-2, the
simulation results presented in this section are obtained from
the customized simulator. PCA employs theJama[23] library
to perform singular value decomposition.

TABLE II
SIMULATION PARAMETERS

Name Value

Deployment Space 2D: 400m×400m
3D: 400m×400m×400m

Number of Nodes 2D: 100∼ 2000, step = 100
3D: 1000∼ 20000, step = 1000

Topology 50 topos/density, uniform random
Radio Range 30m, unit disk model
Connections 100 connections/topo

Routing Beacons max = 10,candidates:10%(2D), 1%(3D)
Routing Protocols Greedy, NoGeo, BVR, LCR, PCA

Configuration of the simulation parameters are listed in
Table II. The simulation area is a square plane for 2D scenarios
and a cubic space for 3D scenarios with a side length of400m.
The number of nodes deployed varies from100 to 2000 for
2D scenarios and1000 to 20000 for 3D scenarios. With a
radio range of30m, the node density range is[1.77, 35.34].
For each node density, 50 random topologies are generated
and within each topology, 100 node pairs are chosen to be
the source and destination. For BVR, LCR and PCA,10%
and1% of the nodes are selected to be candidate beacons in
2D and 3D scenarios respectively. The maximum number of
routing beacons is set to10 as suggested in [5] and [3]. We
use the five protocols to route packets for each connection
and measure the packet delivery ratio, path stretch and the
average flooding range as the performance metrics. As the
results for 3D scenarios show similar trend as the 2D ones
with merely different magnitude, we will present the results
for 2D scenarios only.

A. Packet Delivery Ratio

In this work, packet delivery ratio is measured as the pro-
portion of packets that can be successfully delivered without
flooding. For PCA to be effective, the number of landmarks in
the distance matrix should be larger than the dimensionality of
the deployment space. In a sparse network with a node density
less than5, the number of landmarks in a connected compo-
nent is often below the threshold, leading to a performance
inferior to BVR. The PCA coordinates achieve higher packet
delivery ratio, as the node density grows above5.



6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

P
ac

ke
t D

el
iv

er
y 

R
at

io

Average Node Density

Packet Delivery Ratio vs Node Density - 2D

GREEDY
NOGEO

BVR
LCR
PCA

(a) Packet Delivery Ratio

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0  5  10  15  20  25  30  35  40

P
at

h 
S

tr
ec

th
 F

ac
to

r

Average Node Density

Path Stretch Factor vs Node Density - 2D

Greedy
NoGeo

BVR
LCR
PCA

(b) Path Stretch Factor

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40

A
ve

ra
ge

 F
lo

od
in

g 
R

an
ge

Average Node Density

Average Flooding Range vs Node Density - 2D

Greedy
NoGeo

BVR
LCR
PCA

(c) Average Flooding Range

Fig. 5. Routing Performance Comparison in 2D Space

At the medium node density range of5 ∼ 15, the packet
delivery ratio of PCA is73.3% ∼ 97.9%, significantly higher
than that of NoGeo and LCR. BVR employs a backtrack
procedure that diverts the packet to the closest beacon fromthe
local minimum position, obtaining a delivery ratio of69.1%
to 90.4%. At the highest node density of35, the delivery
ratios for NoGeo, LCR and BVR reach48.4%, 90.1% and
97.3, while PCA has the highest delivery ratio of99.9%,
nearly equivalent to the performance of greedy forwarding
with perfect position information.

B. Path Stretch Factor

Assuming the routing protocol generates a path ofhp hops
and the shortest path hashs hops, the path stretchλ is
computed asλ =

hp

hs
. The protocol with a lower path stretch

λ achieves shorter routing paths and lower delay.
The greedy protocol achieves the lowest path stretch in all

density ranges. The path stretch for PCA is comparable to that
of LCR at node densities less than8, lower than NoGeo and
BVR. As the node density increases above8, the path stretch
of NoGeo, BVR and PCA starts to stabilize, while LCR’s path
stretch gradually increases. The converged path stretch values
for NoGeo, LCR, BVR and PCA are 1.14, 1.09, 1.12 and
1.02. Thus, for high density 2D networks, the routing paths
discovered by PCA is7% ∼ 11% shorter than the rest.

C. Scoped Flooding Range

For NoGeo, BVR, LCR and PCA, the primary forwarding
procedure may fail to deliver a packet due to anomalies in
the coordinates, while scoped flooding can be invoked as
a recovery step. As the network traffic grows exponentially
during flooding, the protocol with a shorter flooding range
introduces less duplicate packets to the network.

PCA and BVR obtain the lowest flooding range among
all the evaluated protocols. At the node density around5.3,
the average flooding range for all protocols reaches the peak
as scoped flooding is frequently triggered. The maximum
flooding ranges for Greedy, NoGeo, LCR, BVR and PCA are
9.8, 11.5, 7.5, 2.1, and2.4. As the node density increases, all
protocols obtain higher delivery ratio and the flooding range
starts to decrease. The converged flooding range values for

NoGeo, LCR and BVR are4.25, 0.95, and 0.14, while the
flooding range of PCA approaches the minimum value of0.

D. Effects of Dimensionality

While utilizing more components in PCA coordinates pro-
vides better routing performance, it also brings higher demands
for processing time and memory space in the packet header.
Determining the critical dimensionality is important for ob-
taining a balance between routing performance and overhead.
We use empirical results to derive the critical dimensionality
value.

TABLE III
PERFORMANCE OFPCA AT CRITICAL DENSITY OF5

Metric 2D Networks

Dimensionality 2 3 5∗ 10 20
Delivery Ratio 52.6% 62.4% 70.5% 73.3% 73.5%

Path Stretch 1.04 1.03 1.03 1.02 1.02
Flooding Range 4.12 3.28 2.60 2.45 2.44

In general, when node density increases, the need for
higher dimension reduces (Results are not shown due to
space constraint). Therefore, the effect of dimension is more
crucial at lower node density. The routing performance of
PCA with node density 5.3 under various dimensionalities is
summarized in Table III. We choose to highlight node density
5.3 because this is the minimum node density required for any
geographical or connectivity based algorithm to work well.For
higher node density, equal or less components will be needed.

As shown in the table, routing performance gradually im-
proves as more dimensions or components are utilized. In
this 2D deployment, the incremental improvement diminishes
rapidly beyond a dimension of 5. As the components are sorted
in their significance order, the subsequent components in the
PCA coordinates will have even lower influence on routing
performance.

To summarize, for 2D networks, the performance of PCA
stabilizes once the dimensionality reaches5. For 3D networks,
the critical dimensionality is around7.

V. TESTBEDRESULTS

To explore the practicality of the dimension reduction
method for real sensor networks, we implemented the PCA
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Fig. 6. Deployment Floorplan of the Testbed(inter-floor links not shown). Landmarks: 2, 8, 18, 21, 28, 31, 36, 38, 45

algorithm on MICAz[24] motes with 4KB RAM running
TinyOS 2.0.2[25]. The singular value decomposition code
is adopted from [26]. The experiments were conducted on
a testbed deployed on two floors of an office building, as
demonstrated in Fig. 6. The parameter settings are listed in
Table IV.

TABLE IV
PARAMETER SETTINGS OF THETESTBED

Parameter Value

Network Size 48 MICAz nodes, 303 directional links
Num of Neighbors avg = 6.31, min = 2, max = 15

Transmission Power 31 (max, 0 dBm)
802.15.4 Channel 26 (default)

Number of Landmarks 9 (4 in basement, 5 in level-1)
Intrinsic Dimension 3 (25 in basement, 23 in level-1)

(a) z-003 at Basement (b) z-027, z-028 at Level-1

Fig. 7. Images of Nodes deployed in the Testbed

The testbed contains48 nodes and303 directional links. All
nodes transmit at the maximum power level of31. We deploy
nodes z-001 to z-025 at thebasement floor and nodes z-027
to z-049 at the floorlevel-1. Nine nodes were chosen as the
landmarks, four in the basement and five in level-1. Fig. 7
gives a snapshot of the deployment. The distribution of node
degree is displayed in Fig. 8(a), where the average number of
neighbors at each node is6.31.

Network initialization took five minutes for neighbor dis-
covery and hopcount propagation. Once the landmark hop-
count matrix and the hopcount vector are established, each
node computes its coordinates individually as described in
Section III-A. Only the first three components are used for
the embedding in order to reduce the overhead in the packet
header. The coordinates plotted in Fig. 8(b) show that nodes
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on different floors clearly form two clusters, implying thatthe
PCA coordinates can successfully retain the locality feature.

A. Distance Metric Comparison

To compare the Euclidean distance computed from the
hopcount vectors and the PCA coordinates, we calculate the
inter-node distances in both ways. For two nodesA and
B with hopcount vectors[a1, a2, . . . , an] and [b1, b2, . . . , bn],
the hopcount vector distancedhv is computed asdhv =
√

∑n

i=1
(ai − bi)2. The PCA distancedpca betweenA and

B is the Euclidean distance computed from their PCA coor-
dinates(xA, yA, zA) and(xB , yB , zB). We plot the difference
between these two distancesδ = dhv − dpca in Fig. 9, where
50% of the distances computed from the PCA coordinates
are within a deviation of0.25 from the corresponding full
hopcount vector distances.

-6

-4

-2

 0

 2

 4

 6

 8

 0  200  400  600  800  1000  1200

D
iff

er
en

ce
 in

 D
is

ta
nc

e:
 d

hv
 -

 d
pc

a

Index of For Node Pair i and j

Difference between HV and PCA Distances

Difference: dhv - dpca

(a) Difference:dhv − dpca

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.5  1  1.5  2  2.5  3

D
is

tr
ib

ut
io

n

Ratio = |dhv - dpca|/dhv

CDF of Difference Ratio between dhv and dpca

Difference Ratio

(b) CDF of Difference Ratio

Fig. 9. Comparison between Distances:dhv anddpca

We use theSpearman’s Rank Correlation metric to quantify
the effectiveness of using PCA coordinates to replace hopcount
vectors. Given two ranking listsX = [x1, x2, . . . , xn] and
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Y = [y1, y2, . . . , yn], the Spearman’s Rank Correlation Coeffi-
cientρ betweenX andY can be computed by Formula 4. The
value ofρ varies in the range of[−1, 1]. A higher coefficient
value indicates a higher consistency between the two lists.

ρ = 1 −
6
∑n

i=1
d2

i

n(n2 − 1)
, where di = xi − yi (4)

For each nodeNi, we compute its hopcount vector distance
dij to each nodeNj(j ∈ [1, n]) and form a distance vector
D = [di1, di2, . . . , din]. According to the distancedij , we
assign a rankrij(rij ∈ [1, n]) to nodeNj , such that ifdij <
dik, rij < rik. We useRi

hv = [ri1, ri2, . . . , rin] to denote
the ranking list of hopcount vectors at nodeNi. We compute
another ranking list with the PCA coordinates and name it
Ri

pca. For each nodeNi, the correlationρi betweenRi
hv and

Ri
pca is computed as in Equation 4.
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The correlation coefficient values at each node are depicted
in Fig. 10(a). The correlation lies in a range of[0.39, 0.91],
with an average equal to0.76 and a standard deviation of
0.017. As shown in Fig. 10(b),80% of the nodes have
a correlation above0.65, indicating that the node locality
characteristics estimated from the PCA coordinates is highly
consistent to that of the full hopcount vectors using all 9
landmarks.

For comparison, Fig. 10(b) shows the CDF of distance
correlation using 3 randomly chosen landmarks as is done
on LCR (data is averaged of 5 different data sets). It is clear
that with the same amount of overhead, the randomly chosen
landmarks significantly deviates from the geometry of the
original graph.

B. Routing Performance

To compare the routing performance, we employ greedy
forwarding to find a routing path between two nodes based on
dhv and dpca respectively. We measure the number of paths
discovered and the path lengthLhv andLpca. The path stretch
λ =

Lpca

Lhv
will imply the performance degradation by using the

lower dimensional coordinates instead of the full hopcount
vector for routing. The results are provided in Table. V.

With 48 nodes in the network, we can form 2256 pairs of
source and destination. Thedhv distance metric discovered
1048 paths and thedpca metric discovered 998 paths. Only
581 of the paths are common to both metrics. In terms of
packet delivery ratio,dpca found95.2% of the paths discovered

TABLE V
ROUTING PERFORMANCEEVALUATION OF dhv AND dpca

No. of Paths Path Length Path Stretch overdhv

dhv 581+467=1048 [1, 11], avg = 3.85 1
dpca 581+417=998 [1, 11], avg = 3.94 [0.17, 4], avg = 1.12

by dhv. The path length of applyingdhv and dpca varies in
the range of[1, 11], wheredhv has an average of3.85 hops.
The average path length ofdpca is 3.94, a slight increment of
2%. The path stretch ofdpca over dhv ranges from0.17 to
4; thus, either metric has found some paths shorter than the
ones discovered by the other. The overall path stretch factor
of dpca is 1.12, representing an average increment of just1.3
hops in the worst case.

The path lengths are displayed in Fig. 11(a) and the routes
discovered bydhv and dpca are marked in Fig. 11(b) and
Fig. 11(c). The route map ofdpca in Fig. 11(c) clearly indicates
that nodes from z-013 to z-020 form a cluster inaccessible
from the rest part of the network, causing most routing failures.
This is due to the lack of resolution in the input hopcount
vectors. It is possible to alleviate the problem by applyingpair-
wise transmission power control[27] to create a small scale
multihop topology in these nodes or introducing additional
landmark nodes in this cluster. Meanwhile, the route map of
dhv in Fig. 11(b) is less indicative for network performance
diagnosis.

C. Packet Overhead

The control overhead in the packets mainly comes from
the hopcount vectors or coordinates used to address the
destination. To use the full hopcount vector of the destination,
each packet must carry the hopcount entries to 9 landmarks.
Assuming that bothnodeid and hopcount are of uint_16
type, this constitutes36 bytes. Thedpca metric relies only on
the 3D embedded coordinates, which cost12 bytes – just one
third of that indhv. It can be further reduced to8 bytes, if all
nodes are placed on a plane. Although the PCA operation has
to maintain a hopcount matrix of sizen2(n is the number
of landmarks), the memory and computational overhead is
only required once during the initialization stage. The memory
space can be reclaimed once the procedure completes. There-
fore, the computational overhead of the PCA coordinates is
transient, while the storage and communication overhead of
applying full hopcount vectors is persistent throughout the
entire network lifetime.

In summary, using dimension reduction method, the routing
protocol can work with only 3 components, while maintaining
equivalent packet delivery performance with negligible path
stretch overhead.

VI. CONCLUSION

In this paper, we evaluated the technique of applying
dimension reduction method for connectivity-based routing.
By extracting the underlying dimension information from
the sampled connectivity graph, the resulted coordinates can
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Fig. 11. Distribution of paths discovered bydhv anddpca. A + at position(x, y) indicates a path is found from nodex to nodey.

significantly improve routing efficiency. We implemented the
PCA algorithm on MICAz nodes and conducted experiments
on a medium scale testbed. With a 3D embedding of 9
landmarks, the distance computed from the virtual coordinates
can closely approximate the distance computed by the full
hopcount vector. The experiment results show that the dimen-
sion reduction algorithm can effectively reduce the routing
overhead to make connectivity-based routing more applicable
for real sensor network deployments, without compromising
the routing performance significantly.

The current connectivity-based routing still leaves the fol-
lowing aspects for further investigation. A better distance
metric for Lipschitz embedding may exist, which is more
tolerant to local minimum conditions. An analytical approach
is more desirable than empirical methods for evaluating the
quality of various landmark sets. Embedding the network by
the hopcount distance may generate unstable coordinates, as
the hopcount vectors may vary due to the fluctuation of link
quality. Higher preference should be assigned to more reliable
links in order to reduce oscillation in the coordinates.
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