
Sync-TCP: A New Approach to High Speed

Congestion Control

Xiuchao Wu, Mun Choon Chan, A. L. Ananda and Chetan Ganjihal

School of Computing, National University of Singapore

Computing 1, #13 Computing Drive, Singapore 117417

Email:{wuxiucha, chanmc, ananda, chetan}@comp.nus.edu.sg

Abstract—As bandwidth in the Internet continues to grow,
there will be more and more long fat network pipes with
abundant residual bandwidth. At the same time, there is also
a gradual and steady increase in the deployment of Internet
endpoints equipped with different variants of high speed TCP.

In this work, we first illustrate drawbacks associated with
two widely deployed high speed TCP variants, namely: Cubic
TCP and Compound TCP. We show that even with common
and reasonable settings, problems can arise. Next, we present
Synchronized TCP (Sync-TCP), a new delay-based high speed
congestion control (HSCC) algorithm. The approach taken by
Sync-TCP is novel in the following ways. First, Sync-TCP
exploits synchronization. The key insight of Sync-TCP is that if
competing flows could detect the same congestion signal through
queue delay, these flows can coordinate their congestion control
behaviors. Second, using only the basic mechanism, Sync-TCP
will yield to legacy TCP when congestion is detected. Hence,
Sync-TCP is designed to not hurt applications using legacy TCP
or interactive applications.

We performed extensive simulation and some testbed evalu-
ations to show that Sync-TCP achieves its design goals and it
performs better than existing HSCC approaches including Fast
TCP, Compound TCP and Cubic TCP, especially in the trade-off
between throughput and friendliness.

I. INTRODUCTION

As bandwidth in the Internet continues to grow, there will

be more and more long fat network pipes with abundant

residual bandwidth. For example, expected capacity of the

forthcoming Trans-Pacific Express is 5.12 Tbps, and FTTx

(Fiber To The Home, Building, etc.) has been widely deployed

in some countries. Recent bandwidth measurement statistics

(http://www.speedtest.net/) show that the average download

speeds in Europe and North America exceed 5Mbps. The av-

erage download speed for the top 6 countries already exceeds

10Mbps. In some countries, for example, Singapore, the goal

is to provide up to 1Gbps broadband access by 2015.

However, it is well known that, TCP, the de-facto standard

transport protocol of the Internet, cannot work well on long

fat network pipe where the bandwidth-delay product (BDP)

is large [1]. Due to the loss based AIMD (additive increase

and multiplicative decrease) algorithm, legacy TCP versions

(TCP Reno, TCP Newreno, TCP SACK, etc.) cannot send

data fast enough. In order to address this problem, many

high speed congestion control (HSCC) algorithms, such as

Highspeed TCP [1], Cubic TCP [2], H-TCP [3], Fast TCP [4],

TCP Illinois [5] and Compound TCP (CTCP) [6], have been

proposed in recent years to better utilize the abundant residual

bandwidth and provide higher throughput to end users.

While many of these proposals remain only as research

prototypes, a small number of them have been gradually and

steadily deployed on some widely available operating systems.

In particular, consider the case of CTCP and Cubic TCP. CTCP

is distributed with computers running on Windows Server 2008

and Windows Vista. Though disabled by default, CTCP can

be easily enabled. As an indication of how widely available

CTCP is, statistics show that 17% of all clients that visit the

www.w3schools.com website used Windows Vista. For the case

of Cubic TCP, it is the default configuration for Fedora 9 and

Ubuntu 8.10 distributions. As of March 2009, there are more

than 4 million unique IP addresses that have connected to

download Fedora (9 and 10). The number of Ubuntu users

would be large as well. Hence, it is clear that CTCP and

Cubic TCP are sufficiently widely deployed and ready to fully

exploit the growing availability in network bandwidth as more

bandwidth becomes available. While this may be good news

for the users of these HSCC algorithms, it is clear that the

impact of using these HSCC algorithms on users of interactive

traffic and legacy TCP should be urgently and thoroughly

investigated.

In this work, we first identify issues that associate with the

existing and widely distributed high speed TCP variants like

CTCP and Cubic TCP. We show that even with common and

reasonable settings, problems with efficiency and friendliness

arise. Next, we present Synchronized TCP (Sync-TCP), a new

delay-based HSCC algorithm.

The approach taken by Sync-TCP is novel in the follow-

ing ways. First, Sync-TCP exploits synchronization. The key

insight of Sync-TCP is that if competing flows could detect

the same congestion signal through queue delay, these flows

can coordinate their congestion control behaviors and drive

the network to operate around the desired point. This is in

contrast to the classic view that synchronization leads to bad

performance since it is caused by traffic overload and com-

peting flows simultaneously reduce their sending rate (blindly)

by half [7]. Second, using only the basic mechanism, Sync-

TCP will yield to legacy TCP when congestion is detected.

Therefore, Sync-TCP is designed to not hurt applications using

legacy TCP and interactive traffic since it backoffs earlier. We

argue that a more conservative HSCC is a fair and appropriate

behavior since a HSCC TCP variant has already been allowed

to utilize the excessive bandwidth. One can also think of Sync-

TCP as operating as a best-effort service among the best effort

services. When there is no or limited excessive bandwidth,

Sync-TCP may also switch to legacy TCP to avoid starvation.

Sync-TCP is designed such that with high probability, com-

peting flows can detect the same congestion signals through

queue delay. Each Sync-TCP client uses an adaptive queue-

delay-based congestion window decrease rule, and a RTT-

independent congestion window increase rule designed to

drive the network to operate around the knee [8] and to

distribute the residual bandwidth fairly, independent of the

number of flows in the bottleneck link and RTT heterogene-

ity among competing flows. When the network is operating

around the knee, network throughput is high, queue delay is

short, and packet drop rate is minimum. Hence, Sync-TCP is

designed to be friendly not only to long-lived TCP flows in the

metric of throughput, but also to the interactive applications

in the metrics of delay and jitter.

We performed extensive evaluations using NS-2 simulations

and some testbed evaluations. The results show that Sync-TCP

achieves its design goals and performs better than existing

HSCC approaches including Fast TCP, CTCP and Cubic TCP.

This paper is organized as follows. Section II introduces

related work. The details of CTCP and Cubic TCP are then

presented in section III. Some of their shortcomings are also

highlighted. Section IV presents the details of Sync-TCP, and

its deployment issues are discussed in section V. Simulation

and testbed evaluation results are presented and analyzed

in section VI and VII, respectively. Finally, conclusion is

presented in section VIII.

II. RELATED WORK

Scalable TCP [9], a loss based MIMD (Multiplicative In-

crease and Multiplicative Decrease) congestion control algo-

rithm, is one of the earliest HSCC proposal for networks with

large BDP. Since then, a lot of other HSCC algorithms have

been proposed. Highspeed TCP [1] adopts some new window

increase and decrease functions with the aim to converge

quickly and avoid large burst of segment loss. Bic-TCP [10]

adopts a concave cwnd growth function for improving RTT

fairness and reducing the number of packets dropped in one

congestion event. Cubic TCP [2], an offspring of Bic-TCP,

improves RTT fairness further by using a RTT-independent

concave cwnd growth function. In order to reduce packet loss

rate suffered by cross traffic, TCP Illinois [5] slows down

window increase rate when queue delay is increased. This

technique is also adopted by Sync-TCP. H-TCP [3] adopts

an adaptive AIMD algorithm for improving convergence and

fairness. For improving RTT fairness, its additive increase

factor is designed as a function of the clock time. Such a

technique is also used in Sync-TCP.

All the above proposals decrease cwnd only when segment

loss is detected. Hence, the network tends to operate at the

high utilization level and the cross traffic will unavoidably

experience long queue delay. Based on this consideration, a

number of delay-based HSCC algorithms are also proposed.

However, these algorithms have a number of drawbacks as

well. Fast TCP [4] does not work well when there are many

competing flows since each flow tries to maintain a large

number of packets in the queue of the bottleneck link. In the

metrics of friendliness, CTCP [6] may be worse than Fast

TCP as it needs to act as loss-based TCP for ensuring that

its throughput is not less than the legacy TCP. Delay-based

AIMD [11] tries to drive the network to operate around the

knee independent of the number of competing flows. However,

it does not address the issue of accurate delay measurement.

In delay-based HSCC algorithms, estimation of the RTPD

(Round Trip Propagation Delay) is always a key issue. Such

measurements are often complicated by in-flight packets in

the network, rerouting, and the arrival and departure of flows.

Sync-TCP is designed to address the issue of accurate queue

delay measurement, flow scalability, RTT heterogeneity, and

variations in cross traffic conditions.

In addition, there are also some non-high-speed delay-based

congestion control algorithms, such as TCP Nice [12] and

TCP-LP [13] that are proposed for low-priority background

transfers. Sync-TCP is similar to these proposals in that Sync-

TCP is designed to be ”lower priority” than the legacy loss-

based TCP. Similar to TCP Vegas [14], as these proposals in-

crease cwnd by at most one segment per round trip time, they

are not suitable for bandwidth-greedy and elastic applications

that run on long fat network pipes of the Internet.

Finally, some mechanisms, such as XCP [15] and VCP [16]

that need supports from intermediate routers, have also been

proposed for long fat network pipes. Sync-TCP is an end-to-

end congestion control algorithm and does not assume and/or

require network support.

III. BACKGROUND AND MOTIVATIONS

Compound TCP (CTCP) and Cubic TCP are two HSCC

algorithms that have been widely deployed. In this section,

we briefly describe their behaviors to provide background

information for evaluations and discussions in later sections.

With a fairly common settings that mimics a SOHO (Small

Office and Home Office) environment, the effects of the

incremental deployment of CTCP and Cubic TCP are studied,

and their limitations are pointed out.

A. Compound TCP [6]

CTCP runs two congestion control algorithms concurrently:

the legacy TCP’s AIMD algorithm and a delay-based HSCC

algorithm. The sending rate of CTCP is determined by win
which is the sum of cwnd and dwnd. cwnd follows the legacy

TCP, and dwnd is adjusted based on the delay-based HSCC

algorithm. CTCP ensures that its throughput is never less than

the legacy TCP by making dwnd no less than 0.

4 = (threxpected − thractual) ∗ brtt

= (
win

brtt
−

win

srtt
) ∗ brtt =

win ∗ (srtt − brtt)

srtt
= thractual ∗ (srtt − brtt) = thractual ∗ qd (1)

In its delay-based HSCC algorithm, CTCP measures one

RTT sample per millisecond (ms). At the end of each round

trip time, 4 is calculated according to equation 1, which is

widely used by delay-based congestion control algorithms. In

this equation, brtt is the minimum of all RTT samples, and

srtt is the arithmetic average of RTT samples measured in

the current round trip time. Based on 4 and a global constant

(γ), dwnd is adjusted according to equation 2.

dwndi+1 =











dwndi + (α ∗ wink
i − 1)+ 4 < γ,

(dwndi − ζ ∗ 4)+ 4 ≥ γ,

(wini ∗ (1 − β) − cwnd/2)+ loss.

(2)

Here, (·)+ is defined as max(· , 0). β is a constant

and is now set to 1/2 so that CTCP will reduce sending

rate by half when segment loss is detected. α and k are

also constants whose values are selected so that when 4
is less than γ, CTCP increases win in a manner similar to

Highspeed TCP [1]. When congestion is detected through

queue delay, the reduction of dwnd is related to 4, which is

a little larger than γ. Hence, its delay-based HSCC algorithm

is similar to a MIAD (Multiplicative Increase and Additive

Decrease) algorithm and competing flows cannot converge

quickly. Furthermore, considering that competing CTCP flows

may act like legacy TCP at different times, their convergence

behaviors can be very complex.

The number of packets that each CTCP flow tries to

maintain in the queue of the bottleneck link fluctuates between

φ and γ (φ < γ). Here, φ is determined by ζ, and φ
decreases with the increase of ζ. However, even when ζ > 1,
CTCP still cannot ensure that the queue of the bottleneck link

can be emptied. According to equation 1, flows with higher

throughput will detect congestion before flows with lower

throughput. Although this method can speed up convergence,

competing flows will not detect congestion simultaneously.

Hence, competing flows cannot reduce dwnd simultaneously,

and consequently the queue of the bottleneck link cannot be

emptied and new flows cannot estimate their RTPD correctly.

In CTCP, the threshold γ should not be too small. From

equation 1, when thractual is high and γ is small, the noise in

RTT samples can be mistaken as congestion signals, resulting

in unnecessary reduction of sending rate. On the other hand,

with a large γ, a small number of CTCP flows can cause

buffer-overflow before congestion could be detected through

queue delay. As the rate of dwnd increase is related to win
and can be very large on long fat network pipes, many packets

can be dropped in a congestion event and cross traffic will be

drastically affected.

B. Cubic TCP [2]

Cubic TCP is an offspring of the novel Bic-TCP [10]. With

the aim to improve RTT fairness, similar to H-TCP [3], the

window growth function of Cubic TCP is also designed to be

independent of RTT. Equation 3 shows the exact rule used by

Cubic TCP for updating its window size. Here, C is a scaling

factor, t is the elapsed time since the last window reduction,

β is a constant multiplicative decrease factor applied when

segment loss is detected, and Wmax is the window size just

before the last window reduction.

Wcubic = C(t − 3

√

Wmax ∗ β/C)3 + Wmax (3)

Hence, the closer Wcubic is to Wmax, the smaller its increase

step is. Ideally, the concavity of its window growth function

can effectively reduce the number of segments dropped in a

congestion event.

However, experimental evaluation had identified several

limitations of Cubic TCP, such as slow convergence and

prolonged unfairness [17]. Furthermore, Cubic TCP is funda-

mentally a loss-based HSCC algorithm, which probes network

resources aggressively to maintain short congestion epoch (the

time between two consecutive congestion events) on long fat

network pipes, and reduces sending rate only when segment

loss is detected. Hence, the network tends to operate at the

high utilization level and the cross traffic will unavoidably

experience long queue delay.

C. SOHO Environment Study

A SOHO setting is shown in figure 1. The access link

of the SOHO network is 20Mbps. DropTail is used by the

access router and queue size is set to 0.5BDP. Round trip

time between the users and hosts of the Internet is simulated as

220ms, and packet loss rate of the current Internet is simulated

as 10−4. The simulation time is 1040 seconds.

Fig. 1. SOHO Network

As for network traffic, one UDP flow is used to simulate

a salesman talking to a client through VoIP (Voice over IP).

Using the connection-based web traffic model [18], 10 web

transactions are generated per second to simulate employees

browsing the Internet. These traffics exist throughout the

simulation and they are used to collect user experience of VoIP

and web surfing.

Five long-lived flows are used to simulate downloading

activities. In the beginning, all long-lived flows are driven by

legacy TCP with small buffer (64KB). This is the situation

before HSCC algorithms are deployed. We then let 1, 2, 3 or

4 flows adopt a HSCC algorithm with the aim to study the

effect of this HSCC algorithm’s incremental deployment. All

of the five long-lived flows start at the 20th second and they

end at the 1020th second.

The simulation results are plotted in figure 2. As link

utilization ratio of the access link is close to 1 in all cases,

we only plot the response time of HTTP transactions whose

response size is 16KB, the throughput of a FTP flow driven

by legacy TCP with a 64KB socket buffer, and one way delay

WWW 16KB-Trans. Response Time (s) VoIP One-Way Delay Average (ms) FTP Throughput (Mbps)

 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

0 1 2 3 4

with CUBIC
with CTCP
with FAST
with SYNC

 120

 140

 160

 180

 200

 220

0 1 2 3 4

with CUBIC
with CTCP
with FAST
with SYNC

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 1 2 3 4

with CUBIC
with CTCP
with FAST
with SYNC

Fig. 2. User Experience of Cross Traffic Applications With the Incremental Deployment of HSCC Algorithms in a SOHO Environment

experienced by VoIP packets. Based on these results, we can

see that:

• Cubic TCP is too aggressive. Even when it is adopted by

only 1 flow, it significantly reduces throughput of legacy

FTP flow (30%) and substantially increases the delay

suffered by VoIP packets (56%). When more flows adopt

Cubic TCP, the situation becomes even worse. When 4

flows adopt Cubic TCP, HTTP response time for a 16KB

download increases by 33%.

• Although CTCP performs like TCP in this SOHO net-

work with a 20Mbps bandwidth, when there are only

1 CTCP flow, user experience of VoIP, web surfing,

and Legacy FTP still degrade by 32%, 20% and 13.3%

respectively.

• Fast TCP [4], another influential HSCC algorithm, per-

forms even much worse than CTCP and Cubic TCP. Al-

though Fast TCP is a delay-based HSCC algorithm, each

Fast TCP flow tries to maintain a large number of packets

in the queue of the bottleneck link. Hence, competing

Fast TCP flows cannot detect congestion through queue

delay before buffer overflow occurs, many segments are

dropped, and cross traffics are hurt. When 4 flows adopt

Fast TCP, user experience of VoIP, web surfing, and

Legacy FTP degrades by 60%, 93% and 80% respectively.

• Our proposal, Sync-TCP, performs the best with mini-

mum impact on VoIP, web and FTP applications. The

results indicate that the incremental deployment of Sync-

TCP will not hurt other applications. As we will shown

later in sections VI and VII, Sync-TCP can keep this

friendliness to cross traffic and utilize the excess band-

width efficiently in most of the scenarios evaluated.

IV. DESIGN OF SYNC-TCP

Synchronized TCP (Sync-TCP) is fundamentally a delay-

based HSCC scheme that tries to drive long fat network

pipes of the Internet to operate around the knee of the

delay-throughput curve [8]. Sync-TCP is firstly designed such

that competing flows can detect the same congestion signals

through queue delay. While the term synchronize is used to

describe how competing flows should detect a congestion

signal through queue delay, all Sync-TCP needs is a consistent

view. Hence, Sync-TCP only needs the congested state to last

for a sufficiently long period so that competing flows have

high probability of detecting the same congestion state.

According to simple analysis [19] and a stochastic matrix

model [20], AIMD algorithms can ensure that competing flows

could converge quickly and share network resources fairly

in synchronized communication networks. Considering that

Sync-TCP has already been designed to make queue delay

to be a highly synchronized congestion signal, it is reasonable

for Sync-TCP to adopt an AIMD algorithm. The details of

Sync-TCP are presented as follows.

A. Queue Delay Measurement and Congestion Detection

1) RTT Sampling: To save system resources in high speed

networks, instead of sampling on each ACK, Sync-TCP only

measures RTT once per Tsample. Pacing is also adopted so that

a sender can sample queue delay evenly and avoid the large

RTT noise caused by Delayed ACK [21]. The granularity of

pacing timer (Tpace) should be smaller than Tsample, and both

of them should be much smaller than round trip time of a long

fat network pipe.

With an event-based pacing scheme [22], the overhead of

TCP pacing can be reduced significantly. According to our

implementation in FreeBSD and third party’s implementation

in Linux [4], CPU processing overhead only increases slightly

when Tpace is several millisecond.

2) srtt, brtt, and brttepoch Updating: The exponentially

smoothed average of RTT samples, srtt, is updated based on

equation 4 for filtering out the noise.

srtti+1 = (1 −
Tsample

Twin

) ∗ srtti +
Tsample

Twin

∗ rtti (4)

Here, Twin is a global constant so that competing flows could

have a consistent view of network state independent of their

RTPD values. For each RTT sample, brtt and brttepoch are

also updated based on the following equations.

brtt = min(brtt, rtti), brttepoch = min(brttepoch, rtti)

In Sync-TCP, brtt is the estimation of RTPD and is set to

the minimum of all RTT samples. As for brttepoch, it is the

minimum of RTT samples observed in the current congestion

epoch. In Sync-TCP, congestion epoch is defined as the period

between two consecutive cwnd reductions. When cwnd is

reduced, brttepoch will be used to judge whether previous

cwnd reduction is large enough to empty the queue of the

bottleneck link.

3) Congestion Detection: Sync-TCP calculates qd (the dif-

ference between srtt and brtt) and compares it with Thqd, a

global constant. If qd > Thqd, Sync-TCP detects a congestion

signal through queue delay. Section IV-E will discuss how the

value of Thqd should be selected.

Note that since Sync-TCP determines network state per RTT

sample and pacing is adopted, the interval between the nearest

points that competing flows determine network state should

not be much larger than Tsample. Hence, competing flows has

the potential of detecting congestion at almost the same time.

B. Synchronization of Congestion Detection

A key feature of Sync-TCP that enables synchronization of

congestion detection is the delayed decrease after congestion

detection and the delayed increase after cwnd reduction.

After a congestion signal is detected through queue delay,

instead of reducing cwnd immediately, cwnd is freezed for

a short period (Twait) before it is reduced. In this waiting

period, RTT is sampled, brtt & brttepoch & srtt are updated,
but queue delay based congestion detection is not carried out.

This delayed cwnd reduction is introduced for two reasons.

First, queue delay is a delayed network feedback. With this

delayed cwnd reduction, end hosts can reduce cwnd based

on the real queue delay caused by the freezed cwnd. Second,
by keeping network load constant and high for a period, it is

unlikely that competing flows will miss this congestion signal.

Similarly, after cwnd is reduced, instead of increasing cwnd
immediately, Sync-TCP will also freeze the just reduced cwnd
for Twait so that the bottleneck link could have some time

to empty packets previously buffered in its queue. In this

emptying period, the behaviors of Sync-TCP are identical to

the behaviors in the above waiting period. This period is

introduced so that competing flows can have a more accurate

measure of brtt. Due to the following queue-delay-based

cwnd decrease rule, these emptying periods will not lead to

much lower link utilization ratio as there are still sufficient

packets in the network.

C. Adaptive Queue-delay-based cwnd Decrease Rule

When cwnd is to be reduced due to queue delay mea-

surement, Sync-TCP calculates β, the multiplicative decrease
factor, based on equation 5. Here, srttreduce is the value

of srtt when cwnd is reduced and qdreduce equals to the

difference between srttreduce and brtt. Lower and upper

bounds are also used for safety.

β = 1 −
λ ∗ qdreduce

srttreduce

, 0.125 ≤ β ≤ 0.95 (5)

In order to adapt to variations in cross traffic conditions,

β needs to be adaptive so that the queue of the bottleneck

link can be emptied periodically. More discussions about this

issue can be found in [23]. To achieve this purpose, λ is first

initialized to a small constant (1.25), and its value is adjusted

as follows.

When cwnd is reduced, Sync-TCP first calculates the dif-

ference between brttepoch and brtt. If the difference is larger
than Themptied, it indicates that β calculated with the current

λ cannot empty the queue of the bottleneck link. Hence, λ is

increased by one. This large increase step is used to ensure

that the queue can be emptied in a short time. If the difference

is less than Themptied, it indicates that the current λ is large

enough and it might need to be decreased. Since we cannot

deduce how much the current λ is larger than its optimal value,

λ is reset to 1.25. The value of Themptied is a function of how

much error is expected in the delay measurement due to the

noise in RTT samples. In this work, Themptied is set to 2ms.

After cwnd is reduced, brttepoch is set to a huge value for

tracking the minimal RTT sample that will be observed in the

following congestion epoch.

For safety, Sync-TCP will also reduce cwnd when segment

loss is detected. In order to avoid under-utilizing lossy and fast

links, unlike Fast TCP and CTCP that reduce sending rate by

half, β is also calculated based on equation 5. However, as

segment loss may be a signal of severe network congestion,

the maximum of β is reduced to 0.875 and cwnd is reduced

immediately without delay.

D. RTT-Independent cwnd Increase Rule

In Sync-TCP, the additive cwnd increase rule is designed

with the following considerations. First, to work well on long

fat network pipes, α (the additive increase factor) should in-

crease with the elapse of time. The reason is that if congestion

is not detected after an extended period of time, there are

either very few competing flows or there are substantial excess

bandwidth, and cwnd should be increased more quickly.

Second, to distribute bandwidth fairly among competing flows

independent of their RTPD values, α should be calculated by a

RTT-independent function. Furthermore, instead of increasing

cwnd by α segments per round trip time, it should be increased

by α per fixed-length period so that all competing flows will

increase cwnd by the same amount of segments in the same

period. A general form of how α should be increased can be

written as follow:

α = a0 + a1 ∗ t + ai ∗ ti, (i ≥ 2).

Here, t is the clock-time elapsed since cwnd started increasing,
in the unit of second. α is first increased slowly (through the

constant and linear term t) for safety. With the elapse of time,

α increases very faster depending on the values of ai and i. A
similar form has been adopted by H-TCP [3], where a0, a1, i
and ai are set to 1, 10, 2, and 1

4
respectively.

In our work, Sync-TCP increases cwnd by α segment per

Twin, and α is calculated based on equation 6.

α = max((1 + t +
t4

32
) ∗

Thqd − qd

Thqd

, 1) (6)

Hence, a0, a1, i and ai are set to 1, 1, 4, and
1

32
respectively in

Sync-TCP. In order to probe the network bandwidth quickly,

the higher order term t4 is used and by setting a4 to 1

32
, the

higher order term dominates over the linear term t when t
increases beyond 2.4s. Note that the exact coefficients and

power of these terms are not crucial for the correctness but

do affect the aggressiveness of cwnd increase and the speed

of convergence. The current values are selected based on

simulation results under various scenarios.

With the consideration that queue delay is a delayed net-

work feedback,
Thqd−qd

Thqd
is used here to slow down the

increase of α as qd approaches Thqd such that the maximal

queue delay will not be much larger than Thqd.

E. Parameter Selection Guidelines

There are only a small number of parameters that play

key roles in the Sync-TCP. The other parameters can be

deduced based on these global parameters and/or host-specific

configuration.
1) Thqd : Congestion detection is based on Thqd and its

value reflects the amount of buffering desired at the bottleneck

link (independent of the number of competing flows). There

are two considerations for choosing Thqd. First, if qdmax

is the largest queue delay that cross traffic applications can

tolerate, Thqd should be less than qdmax since queue delay

is a delayed network feedback. Second, Thqd should also be

large enough to avoid regarding the noise in RTT samples as

the signal of network congestion.

Considering that average one-way jitter experienced by the

high quality VoIP is targeted at less than 30ms and VoIP

packets may pass through multiple congested links, qdmax is

set to 20ms and Thqd is currently set to 12ms.
2) Twin: Another global variable of Sync-TCP is Twin. As

shown in equation 4, when the sender updates srtt, Twin is

used so that competing flows could have a consistent view

of network state independent of their RTPD values. Twin

must be large enough so that enough samples are considered,

the noise in RTT samples can be filtered out, and srtt can

correctly reflect queue dynamics in the last Twin period. On

the other hand, if Twin is too large, response to changes in

queue dynamics will be affected.

The value of Twin is determined in the following way. First,

as Tsample determines the amount of processing and memory

overhead required, we assume that a value of 10ms can be

supported by most endpoints without imposing excessive load.

Next, a sample size of at least 10 within a window of Twin

is assumed to be needed. Hence, the value of Twin is set to

100ms, so that there are at least 10 samples, with at least one

sample every 10ms.
3) Twait: This global variable is used for synchronizing

congestion signal and reducing cwnd based on the real queue

delay caused by the frozen cwnd. In order for Sync-TCP to

function correctly, Twait must be long enough so that all Sync-

TCP endpoints detect this synchronization signal.

For this to be the case with high probability, Twait should be

larger than RTTmax +κ∗Twin. Here, RTTmax is the longest

RTT experienced by all Sync-TCP flows and κ is a small

number (no less than 1). This is needed so that all endpoints

will detect the congestion signal with sufficient confidence.

With the consideration of the possible maximal length of a

network path in a territorial network and the light speed in

wire, Twait is currently set to 500ms.

Among the three global variables, Thqd must be followed

by all senders. As for Twin and Twait, Sync-TCP still can work

if the senders adopt slightly different values, but the fairness

among their flows will be affected.

F. State Transition in Sync-TCP

Based on the above description, Sync-TCP can be summa-

rized by the state transition diagram shown in figure 3. In all

states of Sync-TCP (Probing, Waiting, and Emptying), RTT is

sampled per Tsample, and for each RTT sample, srtt & brtt
& brttepoch are updated. cwnd is increased and queue-delay-

based congestion detection is carried out only in the Probing-

state. When Sync-TCP leaves theWaiting-state or segment loss

is detected in any state, cwnd is reduced and brttepoch is set

to a huge value in order to track the smallest RTT sample to

be observed in the following congestion epoch.

 Sync-TCP!TCP!

cwnd > !Th!t2s!

Emptying

Probing!

Waiting!

 reduce !cwnd!

cwnd < !Th!s2t!

segment loss is detected!

congestion is detected!

through queue delay!

T!wait! has passed!

T!wait! has passed!

yes!

no!

Fig. 3. State Transition Diagram of Sync-TCP

V. DISCUSSION

As shown in figure 3, an addition feature of Sync-TCP is

that a flow may switch between Sync-TCP and legacy TCP.

This design is made based on the following considerations. As

for parameter selection guidelines for the switching thresholds

(Tht2s and Tht2s), please refer to the report [23].

When a flow begins to transmit, it does not know the size of

its network pipe. Hence, the legacy TCP mode should be used

first and Sync-TCP is activated only when the flow believes

that it is on a long fat network pipe and there is sufficient

excessive capacity. As a delay-based congestion control, the

throughput of a Sync-TCP flow should be high so that there

are enough RTT samples to measure queue delay correctly.

Hence, when throughput is too low, Sync-TCP should also

switch back to the legacy TCP. In addition, switching back to

TCP is also helpful to solve the following deployment issues.

A. Coexisting with Loss-Based Flows

Taking into account how Sync-TCP detects congestion and

handles segment loss, it should be obvious that when the

network utilization is high because of the increased legacy

TCP applications and interactive applications, Sync-TCP flows

may be starved and per-flow throughput becomes low. In

this scenario, letting flows of bandwidth-greedy and elastic

applications act as legacy TCP is fairer and provides more

incentives to adopt Sync-TCP.

We have investigated the issues of coexisting with TCP

flows that are well tuned for high speed data transmission.

When the load of cross traffic fluctuates with time, Sync-

TCP can acquire comparable bandwidth even when packet

error rate is very low. The reason is that when the load of

cross traffic is reduced, Sync-TCP can acquire the suddenly

increased bandwidth more quickly.

As for the coexistence with loss-based HSCC algorithms,

Sync-TCP will acquire much less bandwidth since it responds

to the earlier congestion signal, queue delay. Standardization

and/or queue management mechanisms, such as ZL-RED [24]

that catches and punishes loss-based flows, should be adopted

for solving these issues.

B. Multiple Congested Links

Since Sync-TCP detects congestion by comparing queue

delay with a constant, when a Sync-TCP flow passes through

multiple congested links (MCL), it can be starved by other

flows which only pass through one of these congested links.

We argue that it is reasonable since the flow that passes

through multiple congested links consumes more network re-

sources for transmitting the same amount of data. Furthermore,

when a flow passes through multiple congested links and the

throughput becomes very low, it will switch back to TCP. As

a result, the flow will not be totally starved.

C. Handling Rerouting

In Sync-TCP, brtt is set to the minimum of all RTT samples.

However, if RTPD is increased due to the change of network

path, RTPD cannot be correctly estimated, and when cwnd is

reduced, λ will always be increased and β will be very small.

In the case that there are other competing flows, this flow

will be starved and it will switch back to TCP. When switching

to TCP, Sync-TCP will set brtt to a huge value so that

this flow can correctly learn the increased RTPD. If there is

no other competing flows or all flows experience rerouting

simultaneously, this flow may not switch back to TCP since β
has a lower bound. But its sending rate will keep fluctuating

and the bottleneck link can be slightly under-utilized. Hence,

if λ is huge (> 20) and brttepoch is still larger than brtt,
Sync-TCP will set brtt to brttepoch and λ is reset to 1.25.

In the following two sections, we evaluate Sync-TCP

through both simulation and testbed evaluation. In the simu-

lation, we can experiment with more high speed TCP variants

and more variations in traffic load, in particular, a much larger

number of HSCC and cross traffic flows. On the other hand, we

have a more realistic environment in the testbed evaluation, but

the availability of high speed TCP variants and the scalability

of the traffic load are much lower.

VI. SIMULATION RESULTS

In the simulation, Sync-TCP has been implemented in the

framework of NS-2 TCP-Linux [25] so that we can compare it

with HSCC algorithms that have been implemented in Linux,

such as Cubic TCP. The leaky-bucket-based TCP pacing

algorithm proposed in [22] is implemented for Sync-TCP and

Fast TCP. CTCP and Fast TCP are also implemented according

to their initial proposals, and their parameters are set to default

values. In the simulation, Sync-TCP is evaluated and compared

with Cubic TCP, CTCP, and Fast TCP. The legacy TCP

implemented in Linux is also compared under the assumption

that socket buffer is large enough and window scale option is

enabled for supporting high speed data transmission.

R1

D!0

D!n-2

R2

D!n-1

(!bw , delay, per)!

(!droptail, qsize)!

...

D!1

S!0

S!n-2

S!n-1

...

S!1

.

.

Fig. 4. Dumbbell Network Topology

The simulation topology used is the dumbbell network

configuration shown in figure 4. The link between R1 and R2
is the simulated bottleneck whose bandwidth is 1Gbps and

DropTail is used by the routers. Side links that connect Si to

R1 or connect Di to R2 are all highly reliable and fast enough
so that R1 ↔ R2 is the only bottleneck. In all experiments,

the flows from Si to Di are the flows to be investigated.

Nodes in the two ”clouds” are responsible for generating

background traffic. The propagation delays to the router R1 (or

R2) follow an uniform distribution whose range is [5ms,25ms].

According to the connection-based web traffic model [18], the

two clouds generate 3200 (800) HTTP sessions per second

in the forward (reverse) path. For collecting user experience

of the cross traffic applications, there are also several VoIP

flows and several legacy FTP flows which are driven by

the legacy TCP and are configured with small socket buffer

(64KB). These background traffic consumes about 300Mbps

(100Mbps) in the forward (reverse) path. Unless stated oth-

erwise, this background traffic is generated in all simulations

presented in this section.

A. Synchronization of Congestion Signals

In order to understand how well competing Sync-TCP

flows observe a consistent view of network state and detect

congestion simultaneously through queue delay, we record the

following information in the simulation log files. For each

queue-delay-based congestion signal, we record the time that

this signal is first detected by a flow. We then count the

number of flows that also detect congestion through queue

delay within the following Twait period. If this number equals

to the number of current active flows, this congestion signal is

considered to be detected by all competing Sync-TCP flows.

We recorded observations over a total simulation time of

about 9 hours from various experiments. In total, 5853 con-

gestion signals are detected by Sync-TCP flows through queue

delay and 5651 (96.6%) of these signals are detected by all

competing Sync-TCP flows. In some of these experiments, the

number of competing Sync-TCP flows are large (e.g. 40, 64,

or 256) and their RTPD values differ significantly. 202 (3.4%)

of the congestion signals are not detected by all competing

Sync-TCP flows because some flows have just experienced

segment loss and are in the Emptying state, in which queue-

delay-based congestion detection is not carried out. However,

note that in such cases, the number of Sync-TCP flows that

Packet Loss Rate Queue Delay and Jitter (ms) Short Term Fairness

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

 0
 10
 20
 30
 40
 50
 60

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

Fig. 5. Scalability with Flow Number

WWW 4KB-Trans. Response Time (s) VoIP One-Way Delay Average (ms) FTP Throughput (Mbps)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

 70

 80

 90

 100

 110

 120

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

 0

 1

 2

 3

 4

 5

 6

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

Fig. 6. Scalability with Flow Number: User Experience of Cross Traffic Applications

miss the congestion signal is small since packet loss rate is

low when the delay-based Sync-TCP is adopted.

B. Flow Number Scalability

In this experiment, the goal is to evaluate how well these

proposals perform with increasing number of flows. Dumbbell

topology shown in figure 4 is used, and the arrival and depar-

ture of competing flows follow the block scenario shown in fig-

ure 7. The bottleneck link is configured as delay(propagation
delay)=50ms, per(packet error rate)=10−6, and qsize(queue
size)=0.5BDP. Propagation delay of the side links are all set

to 5ms. The number of HSCC flows, N , is then set to 1,

4, 16, 64, and 256. In order to minimize the startup effect,

performance measurements are taken only after 100s.

Background Traffic!

...!
N flows!

20! 1020! 1040!

Fig. 7. Block Scenario: the Arrival and Departure Sequence of Flows

Figure 5 shows packet loss rate and queue delay at the

bottleneck link. As the link utilization ratios are close to

1 in all cases except for TCP, the results are not shown.

The results show that Sync-TCP can drive the network to

operate around the knee, where loss and delay is small,

independent of the number of competing flows. As a result,

cross traffic applications will not be hurt. Figure 6 shows

the user experience of the VoIP, web surfing, and legacy

FTP traffic. With 64 flows running other HSCC algorithms,

compared to Sync-TCP, the response time for web transactions

and one way delay for VoIP traffic are at least 25% longer,

and the throughput for legacy FTP traffic is at least 30%

lower. The differences increase when the number of flows

increases to 256. This result clearly demonstrates Sync-TCP’s

unique property of using only excessive bandwidth and having

minimal impact on cross traffic. Figure 5 also shows short-term

fairness index, which is the average of Jain’s fairness indexes

calculated in one-second intervals. The result shows that only

Sync-TCP can provide fairness over small intervals over the

entire range.

We also evaluated the case of 1024 flows. In this case,

per-flow throughput becomes very low and Sync-TCP is not

enabled. If there is no switching and Sync-TCP is always

enabled, Sync-TCP can keep its friendliness to cross traffic

even when N = 1024.
Scalability of Sync-TCP with respect to propagation delay,

queue size, and packet error rate have been evaluated too.

Sync-TCP performs very well in all cases except when queue

size is very small, such that the maximum queue delay is much

less than Thqd, which is now set to 12ms. In this case, Sync-

TCP cannot detect congestion through queue delay,
Thqd−qd

Thqd

cannot effectively reduce α when buffer overflow approaches,

and many segments are dropped in each congestion event. It

may be worthwhile to let a flow switch between Sync-TCP

and Cubic TCP based on whether it can observe queue delay

that is larger than Thqd.

C. RTT Fairness

Dumbbell topology and block scenario are also used here. N
is set to 2. As for the bottleneck link, delay=20ms, per=10−6,

and qsize=0.5BDP. Propagation delay of side links are set to

different values so that RTPD of flow 0 is always 60ms and

RTPD of flow 1 is 60, 120, 240, 360, or 480ms in different

experiments.

 1

 10

 1 2 3 4 5 6 7 8 9 10

T
h
r.

 o
f
fl
o
w

 0

 /

 T

h
r.

 o
f
fl
o
w

 1

RTPD of flow 1 / RTPD of flow 0

TCP
CUBIC
CTCP
FAST
SYNC

Fig. 8. RTT Fairness

Figure 8 shows the throughput ratio (Thr0
Thr1

) against the RTPD

ratio (RTPD1

RTPD0

). It indicates that Sync-TCP performs the best in

the metric of RTT fairness. Sync-TCP is able to distribute

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

(a) TCP: throughput trajectories (Mbps)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

(b) TCP: queue dynamics (Bytes)

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

(c) CUBIC: throughput trajectories (Mbps)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

(d) CUBIC: queue dynamics (Bytes)

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

(e) CTCP: throughput trajectories (Mbps)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

(f) CTCP: queue dynamics (Bytes)

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

(g) FAST: throughput trajectories (Mbps)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

(h) FAST: queue dynamics (Bytes)

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

(i) SYNC: throughput trajectories (Mbps)

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

(j) SYNC: queue dynamics (Bytes)

Fig. 9. Dynamic Scenario: throughput trajectories of flow 0, 10, 20, 30 (left) and queue dynamics of the bottleneck link (right)

bandwidth quite fairly between the two competing flows even

when their RTPDs differ significantly. As for CTCP, it uses

slow start of TCP, and when the first congestive segment

loss occurs, the sending rate of flow 1 is very small (due

to its long round trip time). After that, the two CTCP flows

converge very slowly due to its MIAD-like delay-based HSCC

algorithm of CTCP, and flow 1 keeps receiving much less

throughput. Results are similarly bad for Cubic TCP, and Fast

TCP performs even worse.

D. Dynamic Scenario

In the following experiments, dumbbell topology is used,

and the bottleneck link is configured as delay=50ms,
per=10−6, and qsize=0.5BDP. Flow arrival and departure

sequences shown in figure 10 are used for evaluating these

proposals. In this scenario, there are 40 flows that are active

over different periods and have different RTT values.

Figure 9 shows throughput trajectories of several HSCC

flows that belong to different groups. The results indicate

that, only Sync-TCP flows can quickly converge to the new

bandwidth allocation equilibrium when flows arrive or leave.

In equilibrium, Sync-TCP flows receive the same throughput

irrespectively of the values of their RTPD.

10 X 120 ms!

10 X 400 ms!

20! 4020! 4040!

10 X 200 ms!
10 X 300 ms!

520! 1020! 1520! 3520!3020!2520!

Background Traffic!

Fig. 10. Flows Arrival and Departure Sequence of Dynamic Scenario

Figure 9 also shows queue dynamics of the bottleneck link.

The plots for link utilization ratio are close to 1 in all cases

except for TCP and are not shown here. The results show

that Sync-TCP is the only one that can maintain low queuing

delay and high link utilization independent of the number of

competing flows, the values of their RTPD, and the arrival and

departure of flows.

Apart from the above simulations, many experiments, which

use different parameter values (bw, per, delay, qsize, N),

different flow arrival and departure sequences, and different

cross traffic loads, have also been carried out. They are

not presented here due to the similarity of these results. In

addition, we also evaluated the impact of rerouting. When

RTPD is increased due to rerouting, only Sync-TCP flows can

converge to the fair and efficient point again.

VII. TESTBED EVALUATION RESULTS

In order to evaluate Sync-TCP in more realistic environ-

ments, Sync-TCP has been implemented in FreeBSD 7.1,

and a high speed network testbed has also been set up. In

this section, we first introduce configuration of the testbed.

Experiment results are then presented and analyzed.

A. High Speed Network Testbed

Figure 11 illustrates the topology and configuration of our

high speed network testbed. A HP Procurve 2900 switch,

which is configured with two VLANs (Virtual LAN), is used

to connect all computers. Three high end Dell PowerEdge

T300 servers (SENDER, EMULATOR, and SINK), which are

equipped with Myricom 10Gbps ethernet cards, are connected

to the HP Procurve’s four 10Gbps ports.

Fig. 11. High Speed Network Testbed

SENDER is installed with FreeBSD 7.1, Fedora 9, and

Windows Vista so that we can compare CTCP on Windows

Vista, Cubic TCP on Linux, and Sync-TCP on FreeBSD. Iperf

[26] is used by SENDER and SINK to generate long-lived

flows and collect statistics. In order to emulate the networks

to be studied, EMULATOR is installed with FreeBSD and

Dummynet [27], and the FreeBSD kernel is rebuilt with

a higher scheduling frequency for emulating a high speed

network accurately. DropTail is emulated by EMULATOR in

all experiments. As for SINK, FreeBSD and Dummynet are

installed. The Dummynet on SINK is used to emulate flows

with different RTPDs.

Four lower end computers are connected to 1Gbps ports.

They use D-ITG [28] to collect user experience of VoIP. Iperf

is also used to emulate legacy FTP flows with a small socket

buffer (64KB). These computers are also used to generate large

amount of bursty traffic for emulating web-like traffic.

When setting up the following experiments, we make sure

that there is enough memory for all flows and that the CPU is

not the bottleneck. Hence, the number of flows per machine

does not exceed 30, and the emulated bandwidth is not higher

than 1Gbps even though the link rate is 10Gbps.

B. Synchronization of Congestion Signal

To verify whether Sync-TCP flows can detect congestion

correctly in a testbed setting, three Sync-TCP flows with

different RTPDs (90ms, 100ms, and 110ms, respectively)

are established between SENDER and SINK. EMULATOR

emulates a bottleneck link whose bw=500Mbps, delay=25ms,

per=10−6, and qsize=0.5BDP. Web-like background traffic

consumes about 40Mbps, and there are also a VoIP flow and

a legacy FTP flow.

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 10 20 30 40 50 60 70 80 90

S
y
n

c
-T

C
P

 S
e

n
d

e
r

S
ta

te

Time (second)

flow 0
flow 1
flow 2

Fig. 12. Synchronization of Congestion Detection through Queue Delay

The length of this experiment is about 90 seconds. Figure

12 plots the changes of the three competing Sync-TCP flows’

state with the time. ”0” is used to represent Probing state,

”1” is used to represent Waiting and Emptying states, and

one pulse represents that a flow detects one congestion signal.

Figure 12 indicates that except at the 15th and 42th seconds, all

flows detect the same congestion signals. When background

traffic is bursty and packet corruption is emulated, a small

amount of congestion misses is expected. According to log

data at EMULATOR, the queue of the bottleneck link is indeed

emptied periodically, allowing accurate delay measurements.

C. Flow Number Scalability

In this set of experiments, the bottleneck link configuration

is bw=500Mbps, delay=25ms, per=10−6, and qsize=0.5BDP.
Web-like background traffic consumes about 100Mbps, and

there are one legacy FTP flow and one VoIP flow. The number

of HSCC flows (N) is set to 2, 6, 10, 16, and 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 6 10 16 20

L
in

k
 U

ti
liz

a
ti
o
n
 R

a
ti
o

Flow Number

CUBIC
SYNC
CTCP

(a) Utilization Ratio of the Bottleneck Link

 55

 60

 65

 70

 75

 80

 85

 90

2 6 10 16 20

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

Flow Number

CUBIC
SYNC
CTCP

(b) Average Delay Experienced by VoIP Packets

Fig. 13. Scalability with Flow Number (Testbed Evaluation)

The duration of each experiment is 600 seconds. Figure 13

plots utilization ratio of the bottleneck link and user experience

of VoIP. Link utilization observed is lower than 1 due to Iperf

measurement, header overhead, and Dummynet inaccuracy

when emulating high speed networks. Based on these plots, we

find that when N is small (2 or 6), CTCP cannot fully utilize

the bottleneck link. A possible reason is that when per-flow

throughput is high, CTCP is more likely to regard the noise in

RTT samples as congestion signal. When N is large, CTCP

can utilize the bottleneck link efficiently, but VoIP packets

suffer longer delay too. Cubic TCP can efficiently utilize the

bottleneck link in all cases. However, VoIP packets also suffer

longer delay, and performance degrades when N increases.

As for Sync-TCP, it can efficiently utilize the bottleneck link

and keep the friendliness to cross traffic independent of the

number of competing flows.

While the results are not shown here, we observed that when

Cubic TCP is used, throughput of the legacy FTP flow drops

by about 50%, compared to the case where either Sync-TCP

or CTCP is used.

D. Effects of Buffer Sizes

In this set of experiments, we vary the amount of buffer

available on the router. The bottleneck link is emulated as

bw=1Gbps, delay=25ms, per=10−6, and qsize varies from

0.1BDP to 2.0BDP. 30 flows, which are driven by CTCP, Cu-

bic TCP, or Sync-TCP, are established between SENDER and

SINK. As for background traffic, web-like traffic consumes

about 200Mbps and there are also a VoIP flow and 30 legacy

FTP flows. Each experiment runs for 600 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.25 0.5 1.0 2.0

L
in

k
 U

ti
liz

a
ti
o
n
 R

a
ti
o

Queue Size (BDP)

CUBIC
SYNC
CTCP

(a) Utilization Ratio of the Bottleneck Link

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

0.1 0.25 0.5 1.0 2.0

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

Queue Size (BDP)

CUBIC
SYNC
CTCP

(b) Average Delay Experienced by VoIP Packets

Fig. 14. Effects of Different Buffer Sizes (Testbed Evaluation)

Figure 14(a) plots the utilization ratio of the bottleneck link.

It indicates that Sync-TCP will cause slightly lower utilization

ratio when the queue size is smaller than the value expected

by Sync-TCP (bw ∗ 12ms). Please note that this value is

independent of flow number.

Figure 14(b) plots the average delay experienced by VoIP

packets, when queue size varies. It indicates that when queue

size is large, the deployment of CTCP and Cubic TCP can

severely degrade user experience of VoIP.

E. Dynamic Scenario

In this set of experiments, we evaluate whether Sync-TCP

can work well with changes in HSCC flows and cross traffic.

The bottleneck link is emulated as bw=1Gbps, delay=25ms,
per=10−6, and qsize=0.5BDP. Figure 15 shows the timing of
traffic generation for this experiment.

1 !VoIP!+ 1 Quake + 10 legacy FTP + 160M Web!-!like Traffic!

10 HSCC TCP Flows!

50!

10 HSCC TCP Flows!

1 !VoIP!+ 1 Quake + 10 legacy FTP + 130M Web!-!like Traffic!

100! 150! 450! 500! 550! 600!

Fig. 15. Flow Arrive and Leave Sequence

Results from D-ITG and Iperf show that all three TCP

variants can fully utilize the bottleneck link. Table I shows

the VoIP user experience (delay and packet loss rate) when

different HSCC TCP variants are adopted. It can be seen that

Cubic TCP has the highest delay and loss rate, followed by

CTCP and finally Sync-TCP. Another way to interpret the

delay measurement is to translate this delay into normalized

average buffer occupancy. For example, for Sync-TCP, nor-

malized average buffer occupancy is 61ms−RTPD
MaximumQueuingDelay

= 44%, where RTPD = 50ms and Maximum Queueing Delay

is 25ms since queue size is set to 0.5BDP. This value can be

more than 100% since there is imprecision in the scheduling

interval and there can be buffering elsewhere. Interpreted this

way, the impact of Cubic TCP and CTCP on VoIP traffic can

be very significant if large buffer is used.

VoIP Packets Cubic TCP CTCP Sync-TCP

Average Delay (ms) 86 75 61

Normalized Buffer Occupancy 144% 100% 44%

Packet Loss Rate 0.0075 0.0061 0.0031

TABLE I

VOIP USER EXPERIENCE

Figure 16 shows that Sync-TCP flows starting at different

times can converge to the equilibrium point quickly, about 10s

in this case. As for Cubic-TCP and CTCP, their results are

much worse. In many cases, these HSCC flows cannot con-

verge to a steady state within the duration of the experiment,

600 seconds.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450 500 550

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (second)

Sync-TCP Flow 1
Sync-TCP Flow 11

Fig. 16. Throughput Trajectory of Two Sync-TCP Flows

F. Summary of Testbed Evaluations

For each of the above described experiments, we calculate

the tuple consisting of (1) the ratio of wasted bandwidth (1

- link utilization ratio) and (2) the normalized average buffer

occupancy. These tuples are plotted in figure 17, each point

corresponding to a testbed experiment. For a HSCC algorithm,

the ideal performance is that there is no wasted bandwidth

and the buffering occupancy is minimum. Hence, the ideal

performance is indicated by the position (0,0). Points closer

to this location have better performance since they achieve

good tradeoff between efficiency and friendliness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 B

u
ff

e
r

O
c
c
u

p
a

n
c
y

1 - Link Utilization Ratio

CUBIC
CTCP
SYNC

Fig. 17. Tradeoff Between Efficiency and Friendliness

From Figure 17, Cubic TCP always achieves very good

efficiency. However, the cross traffic also always experience

long queue delay and possible high packet loss rate. Hence,

Cubic TCP achieves high efficiency at the cost of hurting cross

traffic (web surfing, VoIP, etc.). As for CTCP, there is quite a

lot of variation in efficiency. When CTCP performs good in

efficiency, buffer occupancy also becomes high.

Figure 17 shows that Sync-TCP achieves the best tradeoff

between efficiency and friendliness. Its performance is more

reliable in terms of providing good link utilization while

making sure that average delay is also low.

VIII. CONCLUSION

In this paper, Sync-TCP, a new delay-based high speed

congestion control algorithm, is proposed for speeding up

bandwidth-greedy and elastic applications on long fat network

pipes of the Internet, while not hurting the cross traffic appli-

cations, especially the interactive ones. Sync-TCP is designed

to drive these network pipes to operate around the knee

and distribute the residual bandwidth fairly among competing

flows even when the number of competing flows vary and their

RTPDs differ significantly.

Extensive simulations and preliminary testbed evaluations

indicate that Sync-TCP does achieve its design goals. In the

next step, more testbed evaluations and live experiments in the

Internet will be carried out for evaluating Sync-TCP further.

ACKNOWLEDGEMENTS

This work is supported in part by University Research

Committee, National University of Singapore under grant T1

251RES0702. The authors would like to thank Prof. Thomas

La Porta (the shepherd) and the anonymous reviewers for their

insightful comments.

REFERENCES

[1] S. Floyd, “Highspeed tcp for large congestion windows,” RFC 3649,
Dec. 2003.

[2] I. Rhee and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”
in PFLDnet Workshop, 2005.

[3] D. Leith, R. Shorten, and Y. Lee, “H-tcp: A framework for congestion
control in high-speed and long-distance networks,” in PFLDnet Work-
shop, 2005.

[4] C. Jin, D. X. Wei, and S. H. Low, “Fast tcp: motivation, architecture,
algorithms, performance,” in INFOCOM, 2004.

[5] S. Liu, T. Basar, and R. Srikant, “Tcp-illinois: A loss and delay-based
congestion control algorithm for high-speed networks,” in ValueTools,
2006.

[6] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound tcp approach
for high-speed and long distance networks,” in INFOCOM, 2006.

[7] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of tcp pacing,” in INFOCOM, 2000.

[8] R. Jain, “A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,” Computer Communication
Review, vol. 19, pp. 56–71, Oct. 1989.

[9] T. Kelly, “Scalable tcp: improving performance in highspeed wide area
networks,” Computer Communication Review, vol. 33, pp. 83–91, 2003.

[10] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast long distance networks,” in INFOCOM, 2004.

[11] D.Leith, R.Shorten, G.McCullagh, J.Heffner, L.Dunn, and F.Baker,
“Delay-based aimd congestion control,” in PFLDnet Workshop, 2007.

[12] A. Venkataramani, R. Kokku, and M. Dahlin, “Tcp nice: A mechanism
for background transfers,” in OSDI, 2002.

[13] A. Kuzmanovic and E. W. Knightly, “Tcp-lp: A distributed algorithm
for low priority data transfer,” in INFOCOM, 2003.

[14] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM,
1994.

[15] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control
for future high bandwidth-delay product environments,” in SIGCOMM,
2002.

[16] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit
is enough,” in SIGCOMM, 2005.

[17] D. Leith, R.N.Shorten, and G.McCullagh, “Experimental evaluation of
cubic-tcp,” in PFLDnet Workshop, 2007.

[18] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and M. Weigle,
“Stochastic models for generating synthetic http source traffic,” in
INFOCOM, 2004.

[19] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems archive, vol. 7, June 1989.

[20] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of tcp-
like congestion control: asymptotic results,” IEEE/ACM Transaction on
Networking, vol. 14, June 2006.

[21] D. D. Clark, “Window and acknowledgement stratedgy in tcp,” RFC
813, July 1982.

[22] J. Kulik, R. Coulter, D. Rockwell, and C. Partridge, “A simulation study
of paced tcp,” CR-2000-209416, NASA, Tech. Rep., Jan. 2000.

[23] X. Wu, “Safely speeding up bandwidth-greedy and elastic applications of
the internet,” Technical Report, School of Computing, National Univer-
sity of Singapore, 2009, available online at http://cir.nus.edu.sg/synctcp/.

[24] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement
of fairness between tcp reno and vegas for deployment of tcp vegas to
the internet,” in ICNP, 2000.

[25] D. X. Wei and P. Cao, “Ns-2 tcp-linux: An ns-2 tcp implementation
with congestion control algorithms from linux,” in ACM ValueTools -
Workshop of NS-2, 2006.

[26] “Iperf,” http://dast.nlanr.net/Projects/Iperf/.
[27] L. Rizzo, “Dummynet: a simple approach to the evaluation of network

protocols,” Computer Communication Review, vol. 27, no. 1, pp. 31–41,
1997.

[28] A. Botta, A. Dainotti, and A. Pescap, “Multi-protocol and multi-platform
traffic generation and measurement,” in INFOCOM 2007 (DEMO),
2007.

