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ABSTRACT

Wireless link losses result in poor TCP throughput since
losses are perceived as congestion by TCP, resulting in source
throttling. In order to mitigate this effect, 3G wireless link
designers have augmented their system with extensive local
retransmission mechanisms. In addition, in order to increase
throughput, intelligent channel state based scheduling have
also been introduced. While these mechanisms have reduced
the impact of losses on TCP throughput and improved the
channel utilization, these gains have come at the expense
of increased delay and rate variability. In this paper, we
comprehensively evaluate the impact of variable rate and
variable delay on long-lived TCP performance. We propose
a model to explain and predict TCP’s throughput over a link
with variable rate and/or delay. We also propose a network-
based solution called Ack Regulator that mitigates the effect
of variable rate and/or delay without significantly increasing
the round trip time, while improving TCP performance by
up to 40%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms

Algorithms, Performance, Design
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1. INTRODUCTION

Third generation wide-area wireless networks are currently
being deployed in the United States in the form of 3G1X
technology [10] with speeds up to 144Kbps. Data-only en-
hancements to 3G1X have already been standardized in the
3G1X-EVDO standard (also called High Data Rate or HDR)
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with speeds up to 2Mbps [6]. UMTS [24] is the third gener-
ation wireless technology in Europe and Asia with deploy-
ments planned this year. As these 3G networks provide per-
vasive internet access, good performance of TCP over these
wireless links will be critical for end user satisfaction.

While the performance of TCP has been studied exten-
sively over wireless links [3, 4, 15, 20], most attention has
been paid to the impact of wireless channel losses on TCP.
Losses are perceived as congestion by TCP, resulting in
source throttling and very low net throughput.

In order to mitigate the effects of losses, 3G wireless link
designers have augmented their system with extensive lo-
cal retransmission mechanisms. For example, link layer re-
transmission protocols such as RLP and RLC are used in
3G1X [22] and UMTS [21], respectively. These mechanisms
ensure packet loss probability of less than 1% on the wireless
link, thereby mitigating the adverse impact of loss on TCP.
‘While these mechanisms mitigate losses, they also increase
delay variability. For example, as we shall see in Section 3,
ping latencies vary between 179ms to over 1 second in a
3G1X system.

In addition, in order to increase throughput, intelligent
channel state based scheduling have also been introduced.
Channel state based scheduling [7] refers to scheduling tech-
niques which take the quality of wireless channel into ac-
count while scheduling data packets of different users at the
base station. The intuition behind this approach is that
since the channel quality varies asynchronously with time
due to fading, it is preferable to give priority to a user with
better channel quality at each scheduling epoch. While
strict priority could lead to starvation of users with infe-
rior channel quality, a scheduling algorithm such as propor-
tional fair [6] can provide long-term fairness among different
users. However, while channel-state based scheduling im-
proves overall throughput, it also increases rate variability.

Thus, while the impact of losses on TCP throughput have
been significantly reduced by local link layer mechanisms
and higher raw throughput achieved by channel-state based
scheduling mechanisms, these gains have come at the ex-
pense of increased delay and rate variability. This rate and
delay variability translates to bursty ack arrivals (also called
ack compression) at the TCP source. Since TCP uses ack
clocking to probe for more bandwidth, bursty ack arrival
leads to release of a burst of packets from the TCP source.
When this burst arrives at a link with variable rate or de-
lay, it could result in multiple packet losses. These multiple
losses significantly degrade TCPs throughput.

In this paper, we make three main contributions. First,



we comprehensively evaluate the impact of variable rate and
variable delay on long-lived TCP performance. Second, we
propose a model to explain and predict TCP’s throughput
over a link with variable rate and/or delay. Third, we pro-
pose a network-based solution called Ack Regulator that mit-
igates the effect of variable rate and/or delay without sig-
nificantly increasing the round trip time, thereby improving
TCP performance.

The remaining sections are organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we present the
motivation for our work using traces from a 3G1X system.
In Section 4, we describe a model for computing the through-
put of a long-lived TCP flow over links with variable rate
and variable delay. We then present a simple network-based
solution, called Ack Regulator, to mitigate the effect of vari-
able rate/delay in Section 5. In Section 6, we present exten-
sive simulation results that compare TCP performance with
and without Ack Regulator, highlighting the performance
gains using the Ack Regulator when TCP is subjected to
variable rate and delay. Finally, in Section 7, we present
our conclusions.

2. RELATED WORK

In this section, we review prior work on improving TCP
performance over wireless networks. Related work on the
modeling of TCP performance is presented in Section 4.

A lot of prior work has focused on avoiding the case of
a TCP source misinterpreting packet losses in the wireless
link as congestion signals. In [4], a snoop agent is introduced
inside the network to perform duplicate ack suppression and
local retransmissions on the wireless link to enhance TCP
performance. In [3], the TCP connection is split into two
separate connections, one over the fixed network and the
second over the wireless link. The second connection can
recover from losses quickly, resulting in better throughput.
Link-layer enhancements for reducing wireless link losses in-
cluding retransmission and forward error correction have
been proposed in [20]. Link layer retransmission is now part
of both the CDMA2000 and UMTS standards [10, 24]. In
order to handle disconnections (a case of long-lived loss),
M-TCP has been proposed [8]. The idea is to send the last
ack with a zero-sized receiver window so that the sender can
be in persist mode during the disconnection. Link failures
are also common in Ad Hoc networks and techniques to im-
prove TCP performance in the presence of link failures have
been proposed in [11]. Note that none of these approaches
address specifically the impact of delay and rate variation
on TCP, which is the focus of this paper.

Several generic TCP enhancements with special applica-
bility to wireless links are detailed in [12, 13]. These in-
clude enabling the Time Stamp option, use of large win-
dow size and window scale option, disabling Van Jacobson
header compression, and the use of Selective Acknowledg-
ments (Sack). Large window size and window scaling are
necessary because of the large delay of wireless link while
Sack could help TCP recover from multiple losses without
the expensive timeout recovery mechanism.

Another issue with large delay variation in wireless links
is spurious timeouts where TCP unnecessarily retransmits
a packet (and lowers its congestion window to a minimum)
after a timeout, when the packet is merely delayed. In [13],
the authors refer to rate variability due to periodic allo-
cation and de-allocation of high-speed channels in 3G net-

works as Bandwidth Oscillation. Bandwidth Oscillation can
also lead to spurious timeouts in TCP because as the rate
changes from high to low, the rtt value increases and a low
Retransmission Timeout (RTO) value causes a spurious re-
transmission and unnecessarily forces TCP into slow start.
In [15], the authors conduct experiments of TCP over GSM
circuit channels and show that spurious timeouts are ex-
tremely rare. However, 3G wireless links can have larger
variations than GSM due to processing delays and rate vari-
ations due to channel state based scheduling. Given the
increased variability on 3G packet channels, the use of TCP
time stamp option for finer tracking of TCP round trip times
and possibly the use of Eifel retransmission timer [16] in-
stead of the conventional TCP timer can help avoid spurious
timeouts.

As mentioned earlier, the effect of delay and rate variabil-
ity is ack compression and this results in increased bursti-
ness at the source. Ack compression can also be caused
by bidirectional flows over regular wired networks or single
flow over networks with large asymmetry. This phenomenon
has been studied and several techniques have been proposed
to tackle the burstiness of ack compression. In order to
tackle burstiness, the authors in [18] propose several schemes
that withholds acks such that there is no packet loss at the
bottleneck router, resulting in full throughput. However,
the round trip time is unbounded and can be very large.
In [23], the authors implement an ack pacing technique at
the bottleneck router to reduce burstiness and ensure fair-
ness among different flows. In the case of asymmetric chan-
nels, solutions proposed [5] include ack congestion control
and ack filtering (dropping of acks), reducing source bursti-
ness by sender adaptation and giving priority to acks when
scheduling inside the network. However, the magnitude of
asymmetry in 3G networks is not large enough and can be
tolerated by TCP without ack congestion control or ack fil-
tering according to [12].

Note that, in our case, ack compression occurs because
of link variation and not due to asymmetry or bidirectional
flows. Thus, we require a solution that specifically adapts
to link variation. Moreover, the node at the edge of the 3G
wireless access network is very likely to be the bottleneck
router (given rates of 144Kbps to 2Mbps on the wireless
link) and is the element that is exposed to varying delays and
service rates. Thus, this node is the ideal place to regulate
the acks in order to improve TCP performance. This is
discussed in more detail in the next section.

3. MOTIVATION

| (RLP/RLC) Link Layer Retransmission ‘

‘ |
M g )

o o

o

RNC
RNC: Radio Network Controller MD:  Mobile Device
PDSN: Packet Data Service Node BS: Base Station

SGSN: Serving GPRS Service Node HA: Home Agent
GGSN: Gateway GPRS Service Node

Figure 1: 3G network architecture

A simplified architecture of a 3G wireless network is shown
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Figure 2: CDF of Ping Latencies

in Figure 1. The base stations are connected to a node called
the Radio Network Controller (RNC). The RNC performs
CDMA specific functions such as soft handoffs, encryption,
power control etc. It also performs link layer retransmission
using RLP(RLC) in 3G1X(UMTS) system. In the 3G1X
system, the RNC is connected to a PDSN using a GRE tun-
nel (one form of IP in IP tunnel) and the PDSN terminates
PPP with the mobile device. If Mobile IP service is enabled,
the PDSN also acts as a Foreign Agent and connects to a
Home Agent. In the UMTS system, the RNC is connected
to a SGSN using a GTP tunnel (another form of IP in IP
tunnel); the SGSN is connected to a GGSN, again through
a GTP tunnel. Note that the tunneling between the vari-
ous nodes allows for these nodes to be connected directly or
through IP/ATM networks.

In this architecture, the RNC receives a PPP/IP packet
through the GRE/GTP tunnel from the PDSN/SGSN. The
RNC fragments this packet into a number of radio frames
and then performs transmission and local retransmission of
these radio frames using the RLP(RLC) protocol. The base
station (BS) receives the radio frames from the RNC and
then schedules the transmission of the radio frames on the
wireless link using a scheduling algorithm that takes the
wireless channel state into account. The mobile device re-
ceives the radio frames and if it discovers loss of radio frames,
it requests local retransmission using the RLP(RLC) proto-
col. Note that, in order to implement RLP(RLC), the RNC
needs to keep a per-user queue of radio frames. The RNC
can typically scale up to tens of base stations and thousands
of active users.

In order to illustrate the variability seen in a 3G system,
we obtained some traces from a 3G1X system. The system
consisted of an integrated BS/RNC, a server connected to
the RNC using a 10Mbps Ethernet and a mobile device con-
nected to the BS using a 3G1X link with 144Kbps downlink
in infinite burst mode and 8Kbps uplink. The infinite burst
mode implies that the rate is fixed and so the system only
had delay variability.

Figure 2 plots the cumulative distribution function (cdf)
of ping latencies from a set of 1000 pings from the server to
the mobile device (with no observed loss). While about 75%
of the latency values are below 200ms, the latency values go
all the way to over 1s with about 3% of the values higher
than 500ms.

In the second experiment, a TCP source at the server us-
ing Sack with timestamp option transferred a 2MB file to
the mobile device. The MTU was 1500 bytes with user data
size of 1448 bytes. The buffer at the RNC was larger than
the TCP window size'. and thus, the transfer resulted in
no TCP packet loss and a maximal throughput of about

!We did not have control over the buffer size at the RNC in
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135Kb/s. The transmission time at the bottleneck link is
1.448 % 8/135 = 86ms. If the wireless link delay were con-
stant, the TCP acks arriving at the source would be evenly
spaced with a duration of 172ms because of the delayed ack
feature of TCP (every 2 packets are acked rather than every
packet). Figure 3(a) plots the cdf of TCP ack inter-arrival
time (time between two consecutive acks) at the server. As
can be seen, there is significant ack compression with over
10% of the acks arriving within 50ms of the previous ack.
Note that the ack packet size is 52 bytes (40 + timestamp)
and ack transmission time on the uplink is 52 % 8/8=52ms;
an interack spacing of less then 52ms is a result of uplink
delay variation.

Note that the delay variability and the resulting ack com-
pression did not cause any throughput degradation in our
system. This was due to the fact that the buffering in the
system was greater than the TCP window size resulting in
no buffer overflow loss. Figure 3(b) depicts the TCP round
trip time (rtt) values over time. Since the buffer at the RNC
is able to accommodate the whole TCP window, the rtt in-
creases to over 3s representing a case of over 30 packets in
the buffer at the RNC (30 = 0.086 = 2.5s). Given an aver-
age ping latency of 215ms and a transmission time of 86ms
for a 1500 byte packet, the bandwidth delay product of the
link is approximately (0.215 + 0.86) % 135=5K B or about 3
packets. Thus, the system had a buffer of over 10 times the
bandwidth delay product. Given that we had only one TCP
flow in the system, a buffer of over 64KB is not a problem.
But, if every TCP flow is allocated a buffer of 64KB, the
buffer requirements at the RNC would be very expensive,
since the RNC supports thousands of active users.

Even discounting the cost of large buffers, the inflated rtt
value due to the excessive buffering has several negative con-
sequences as identified in [15]. First, an inflated rtt implies
a large retransmission timeout value (rto). In the case of
multiple packet losses (either on the wireless link or in a
router elsewhere in the network), a timeout-based recovery
would cause excessive delay, especially if exponential backoff
gets invoked. Second, if the timestamp option is not used,
the rtt sampling rate is reduced and this can cause spurious
timeouts. Third, there is a higher probability that the data
in the queue becomes obsolete (for e.g., due to user aborting
the transmission), but the queue will still have to be drained
resulting in wasted bandwidth.

Thus, while excessive buffering at the RNC can absorb
the variability of the wireless links without causing TCP
throughput degradation, it has significant negative side ef-
fects, making it an undesirable solution.

our system.



4. MODEL

In this section, we model the performance of a single long-
lived TCP flow over a network with a single bottleneck server
that exhibits rate variation based on a given general distri-
bution and a single wireless link attached to the bottleneck
server that exhibits delay variation based on another given
distribution.

We use a general distribution of rate and delay values for
the discussion in this section since we would like to capture
the inherent variation in rate and delay that is a character-
istic of the 3G wireless data environment. Given that the
wireless standards are constantly evolving, the actual rate
and delay distribution will vary from one standard or imple-
mentation to another and is outside the scope of this paper.
Later, in Section 6, we will evaluate TCP performance over
a specific wireless link, the 3G1X-EVDO (HDR) system, us-
ing simulation.

We would like to model TCP performance in the case of
variable rate and delay for two reasons. One, we would like
to understand the dynamics so that we can design an ap-
propriate mechanism to improve TCP performance. Two,
we would like to have a more accurate model that specifi-
cally takes the burstiness caused by ack compression due to
rate/delay variability into account.

TCP performance modeling has been extensively studied
in the literature [1, 2, 9, 14, 17, 19]. Most of these mod-
els assume constant delay and service rate at the bottleneck
router and calculate TCP throughput in terms of packet loss
probability and round trip time. In [19], the authors model
TCP performance assuming deterministic time between con-
gestion events [1]. In [17], the authors improve the through-
put prediction of [19] assuming exponential time between
congestion events (loss indications as Poisson). In our case,
ack compressions and link variation causes bursty losses and
the deterministic or Poisson loss models are not likely to be
as accurate. In [9], the authors model an UMTS wireless
network by extending the model from [19] and inflating the
rtt value to account for the average additional delay incurred
on the wireless link. However, we believe this will not result
in an accurate model because 1) the rtt value in [19] is al-
ready an end-to-end measured value and 2) the loss process
is much more bursty than the deterministic loss assumption
in [19]. In [2], the authors observe that mean values are
not sufficient to predict the throughput when routers have
varying bandwidth and show that increasing variance for the
same mean service rate decreases TCP throughput. How-
ever, the approach is numerical, and provides little intuition
in the case of delay variance.

Our approach starts with the model in [14] which de-
scribes how TCP functions in an “ideal” environment with
constant round trip time, constant service rate and suffers
loss only through buffer overflow. A brief summary of the
result from [14] is presented here before we proceed to our
model, which can be seen as an extension. We chose to ex-
tend the model in [14] since it makes no assumption about
the nature of loss event process (which is highly bursty in
our case) and explicitly accounts for link delay and service
rate (which are variable in our case). For simplicity, we will
only discuss the analysis of TCP Reno. TCP Sack can be
analyzed similarly. We also assume that the sender is not
limited by the maximum receiver window; simple modifica-
tions can be made to the analysis for handling this case.

Figure 4(a) shows how the TCP congestion window varies
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Figure 4: TCP Congestion Window Evolution over time

in a constant rate and delay setting. The initial phase where
TCP tries to probe for available bandwidth is the Slow Start
phase. After slow start, TCP goes to Congestion avoid-
ance phase. In the case of long-lived TCP flow, one can
focus only on the congestion avoidance phase. Let p be the
constant service rate, 7 the constant propagation delay, T
the minimum round trip time (7 + 1/p) and B the buffer
size. The congestion window follows a regular saw-tooth
pattern, going from Wy to Winae, where Wo = Winee /2 and
Winae = pu7 + B + 1. Due to the regularity of each of the
saw-tooth, consider one such saw-tooth. Within a single
saw-tooth, the congestion avoidance phase is divided into
two epochs. In the first epoch, say epoch A, the congestion
window increases from Wy to pT', in time t4 with number
of packets sent n4. In the second epoch, say epoch B, the
congestion window increases from puT to Wiz, in time tp
with number of packets sent ng. TCP throughput (ignoring
slow start) is simply given by (na + ng)/(ta + tB) where

ta = T(uT —Wo) (1)
na = (Wota+1t3/(2T))/T (2)
ts = (Wiao — (0T)%)/(2p) (3)
ng = puts (4)

This model, while very accurate for constant g and T,
breaks down when the constant propagation and service rate
assumptions are not valid. Figure 4(b) shows how the con-
gestion window becomes much more irregular when there
is substantial variation in the wireless link delay. This is
because the delay variation and ack compression result in
multiple packet losses.

There are three main differences in the TCP congestion
window behavior under variable rate/delay from the tra-
ditional saw-tooth behavior. First, while the traditional
saw-tooth behavior always results in one packet loss due
to buffer overflow, we have possibilities for multiple packet
losses due to link variation. To account for this, we aug-
ment our model with parameters pl,p2, p3 representing re-
spectively the conditional probability of a single packet loss,
double packet loss, and three or more packet losses. Note
that, pl + p2 + p3 = 1 by this definition. Second, while
the loss in the traditional saw-tooth model always occurs
when window size reaches Wmae = p7+ B+ 1, in our model
losses can occur at different values of window size, since p
and 7 are now both variables instead of constants. We cap-

ture this by a parameter W=, /Ef\;IW,%mmi/N, that is the

square root of the second moment of the W, ., values of each
cycle. The reason we do this instead of obtaining a simple
mean of Wiy,q, values is because throughput is related to
Wy quadratically (since it is the area under the curve in the
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Figure 5: Congestion Window with multiple losses

congestion window graph). Third, due to the fact that we
have multiple packet losses in our model, we need to consider
timeouts and slow starts in our throughput calculation. We
represent the timeout duration by the T; parameter which
represents the average timeout value, similar to the timeout
parameter in [19].

‘We now model the highly variable congestion window be-
havior of a TCP source under rate/delay variation. We first
use Wy instead of Wpa,. We approximate 7 (the propa-
gation delay) by 7, the average link delay in the presence
of delay variability. We replace p (the service rate) by f,
the average service rate in the presence of rate variability.
Thus, T becomes T = (# + 1 / ji). Now consider three
different congestion window patterns: with probability pl,
single loss followed by congestion avoidance, with probabil-
ity p2, double loss followed by congestion avoidance, and
with probability p3, triple loss and timeout followed by slow
start and congestion avoidance?.

First, consider the single loss event in the congestion avoid-
ance phase. This is the classic saw-tooth pattern with two
epochs as identified in [14]. Lets call these Al and Bl
epochs. In epoch Al, window size grows from Wo; to ﬂ’f
in time, ta1, with number of packets transmitted, nai. In
epoch Bl1, window size grows from T to Wy in time, ¢B1,
with number of packets transmitted, ngi. Thus, with proba-
bility p1, na1+np1 packets are transmitted in time ta1 +tp1
where

Wor = (int)Wy/2 (5)
tar = T(AT — Wor) (6)
nar = (Wortar +ta:/(2T))/T (7)
tm = (Wf—(@D)")/(2p) )
nB1 = [tB1 (9)

Next, consider the two loss event. An example of this
event is shown in Figure 5(a). The trace is obtained us-
ing ns-2 simulation described in Section 6. In this case,
after the first fast retransmit (around 130s), the source re-
ceives another set of duplicate acks to trigger the second
fast retransmit (around 131s). This fixes the two losses and
the congestion window starts growing from Woz. The sec-
ond retransmit is triggered by the new set of duplicate acks
in response to the first retransmission. Thus, the duration
between the first and second fast retransmit is the time re-
quired for the first retransmission to reach the receiver (with
a full buffer) plus the time for the duplicate ack to return

2We assume that three or more packet losses result in a
timeout; this is almost always true if the source is TCP
reno.

to the sender. In other words, this duration can be approx-
imated by the average link delay with a full buffer, T +
B/p=tr. We have three epochs now, epoch tg (time 130-
131s)with one retransmission and zero new packet, epoch
A2 (131-137s) with window size growing from Wy to T’
in time, t42, with number of packets transmitted, na2, and
epoch B1 (137-143s) as before. Thus, with probability p2,
na2+np1 packets are transmitted in time tr +t a2 +tB1 where

Wor = (int)Wor/2 (10)
trn = T+B/j (11)
tas = T(pT — Woz) (12)
naz = (Wostaz +tay/(2T))/T (13)

Finally, consider the three loss event. An example of this
event is shown in Figure 5(b). In this case, after the first fast
retransmit, we receive another set of duplicate acks to trig-
ger the second fast retransmit. This does not fix the three
losses and TCP times out. Thus, we now have five epochs:
first is the retransmission epoch (100-101s) with time ¢tz and
zero new packet, second is the timeout epoch (101-103s) with
time Ty and zero new packet, third is the slow start epoch
(103-106s) where the window grows exponentially up to pre-
vious ssthresh value of Wog in time ts; (Eqn. 15) with number
of packets transmitted ns, (Eqn. 16)%, fourth is epoch A3
(106-111s) where the window size grows from Wos to AT in
time ta3(Eqn. 17) with number of packets transmitted nas
(Eqn. 18), and fifth is epoch B1 (111-118s) as before. Thus,
with probability p3, n.s +nas+np1 packets are transmitted
in time tr +10+tss +t a2+t B1 where

Wos = (int)Wo2/2 (14)
tss = Tloga(Wos) (15)
nss = Wos/T (16)
tas = T(AT — Wos) (17)
nas = (Wostas +ths/(21))/T (18)

Given that the different types of packet loss events are in-
dependent and using p1+p2+p3=1, the average TCP through-
put can now be approximated by a weighted combination of
the three types of loss events to be

p3* (nss + nas) +p2 *naz + pl * na1 +np:
p3#* (tr+To +tss +ta3) +p2 % (tr +taz) + pl xtar +tm1
(19)

If any of t. are less than 0, those respective epochs do not
occur and we can use the above equation while setting the
respective n., t« to zero.

In this paper, we infer parameters such as pl, p2, p3, Wy,
and Tp from the traces. Models such as [19] also infer the
loss probability, round trip time, and timeout durations from
traces.

Table 1 lists the various parameters used by the different
models for simulations with rate and delay variability. We
use a packet size of 1000 bytes, a buffer of 10 which repre-
sents the product of the average bandwidth times average
delay and we ensure that the source is not window limited.
TD and TO denote the number of loss events that are of
the triple duplicate and timeout type respectively and these

3using analysis similar to [14] and assuming adequate buffer
so that there is no loss in slow start.



Item | Rate(Kb/s) | Delay(ms) | pkts | TD | TO | Tp rtt pl p2 Wy T |4
1 200 400 89713 | 401 | 1 1.76 | 616.2 | 0.998 | 0.000 | 22.00 | 440 | 25.0
2 200 380+e(20) 83426 | 498 | 1 1.71 | 579.3 | 0.639 | 0.357 | 21.38 | 442 | 25.0
3 200 350+e(50) | 78827 | 489 | 12 | 1.79 | 595.8 | 0.599 | 0.367 | 21.24 | 461 | 25.0
4 200 300+¢(100) | 58348 | 496 | 114 | 1.92 | 606.0 | 0.339 | 0.279 | 18.95 | 517 | 25.0
5 u(200,20) 400 82180 | 504 | 1 1.75 | 578.1 | 0.535 | 0.460 | 21.61 | 400 | 24.74
6 u(200,50) 400 74840 | 517 | 29 1.80 | 579.9 | 0.510 | 0.403 | 20.52 | 400 | 23.34
7 u(200,75) 400 62674 | 516 | 81 1.86 | 585.9 | 0.398 | 0.348 | 19.05 | 400 | 20.93
8 u(200,50) 350+e(50) 70489 | 507 | 43 1.81 | 595.7 | 0.496 | 0.377 | 20.15 | 459 | 23.34
9 u(200,75) 300+¢(100) | 53357 | 497 | 93 | 2.03 | 635.7 | 0.404 | 0.298 | 17.78 | 511 | 20.93
Table 1: Simulation and Model parameters

Item | Simulator Goodput | Model 1 [19] (accu.) | Model 2 [17] (accu.) | Model 3[Eqn. 19] (accu.)

1 199.8 228.5(0.86) 201.9(0.99) 199.8(1.0)

2 185.4 208.0(0.88) 186.0(1.0) 186.0(1.0)

3 175.1 195.5(0.88) 177.2(0.99) 180.9(0.97)

4 129.4 145.3(0.88) 153.7(0.81) 137.0(0.94)

5 182.5 205.2(0.88) 184.6(0.99) 181.3(0.99)

6 166.2 186.0(0.88) 174.6(0.95) 165.2(0.99)

7 139.2 158.4(0.86) 163.4(0.83) 137.2(0.99)

8 156.5 174.6(0.88) 166.5(0.94) 160.2(0.97)

9 118.4 134.0(0.87) 142.6(0.80) 125.0(0.94)

Table 2: Simulation and Model throughput values

values are used by models in [19] and [17]. The simulation
is run for 3600 seconds. We simulate delay and rate vari-
ability with exponential and uniform distributions respec-
tively (u(a,b) in the table represents uniform distribution
with mean a and standard deviation b while e(a) represents
an exponential distribution with mean a). The details of the
simulation are presented in Section 6.

Table 2 compares the throughput of simulation of differ-
ent distributions for rate and delay variability at the server
and the throughput predicted by the exact equation of the
model in [19], the Poisson model in [17] and by equation 19.
The accuracy of the prediction, defined as 1 minus the ratio
of the difference between the model and simulation through-
put value over the simulation throughput value, is listed in
the parenthesis. As the last column shows, the match be-
tween our model and simulation is extremely accurate when
the delay/rate variation is small and the match is still well
over 90% even when the variation is large. The Poisson loss
model used in [17] performs very well when the variabil-
ity is low but, understandably, does not predict well when
variability increases. The deterministic loss model seems to
consistently overestimate the throughput.

From Table 1, one can clearly see the impact of delay and
rate variability. As the variability increases, the probability
of double loss, p2, and three or more losses, p3=(1-p2-pl),
start increasing while the goodput of the TCP flow starts
decreasing. For example, comparing case 1 to case 4, pl
decreases from 0.998 to 0.339 while p3 increases. Increases
in p2 and p3 come about because when the product Tf
decreases, a pipe that used to accommodate more packets
suddenly becomes smaller causing additional packet losses.
Given that nai1/ta1 > naz/(tr +ta2) > (nss + nas)/(tr +
To+tss+1ta3), any solution that improves TCP performance
must reduce the occurrence of multiple packet losses, p2 and
p3. We present a solution that tries to achieve this in the
next section.

5. ACK REGULATOR

In this section, we present our network-based solution
for improving TCP performance in the presence of varying
bandwidth and delay. The solution is designed for improv-
ing the performance of TCP flows towards the mobile host
(for downloading-type applications) since links like HDR are
designed for such applications. The solution is implemented
at the wireless edge, specifically at the RNC, at the layer
just above RLP/RLC. Note that, in order to implement the
standard-based RLP/RLC, the RNC already needs to main-
tain a per-user queue. Our solution requires a per-TCP-flow
queue, which should not result in significant additional over-
head given the low bandwidth nature of the wireless envi-
ronment. We also assume that the data and ack packets go
through the same RNC; this is true in the case of 3G net-
works where the TCP flow is anchored at the RNC because
of the presence of soft handoff and RLP.

We desire a solution that is simple to implement and re-
mains robust across different implementations of TCP. To
this end, we focus only on the congestion avoidance phase
of TCP and aim to achieve the classic saw-tooth congestion
window behavior even in the presence of varying rates and
delays by controlling the buffer overflow process in the bot-
tleneck link. We also assume for this discussion that every
packet is acknowledged (the discussion can be easily mod-
ified to account for delayed acks where single ack packets
acknowledge multiple data packets).

Our solution is called the Ack Regulator since it regulates
the flow of acks back to the TCP source. The intuition be-
hind the regulation algorithm is to avoid any buffer overflow
loss until the congestion window at the TCP source reaches
a pre-determined threshold and beyond that, allow only a
single buffer overflow loss. This ensures that the TCP source
operates mainly in the congestion avoidance phase with con-
gestion window exhibiting the classic saw-tooth behavior.
Before we present our solution, we describe two variables
that will aid in the presentation of our solution.
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Figure 6: Ack Regulator Implementation

ConservativeMode: Mode of operation during which
each time an ack is sent back towards the TCP source,
there is buffer space for at least two data packets from
the source.

Note that if TCP operates in the congestion avoidance
phase, there would be no buffer overflow loss as long as the
algorithm operates in conservative mode. This follows from
the fact that, during congestion avoidance phase, TCP in-
creases its window size by at most one on reception of an
ack. This implies that on reception of an ack, TCP source
sends either one packet (no window increase) or two packets
(window increase). Therefore, if there is space for at least
two packets in the buffer at the time of an ack being sent
back, there can be no packet loss.

AckReleaseCount: The sum of total number of acks
sent back towards the source and the total number of
data packets from the source in transit towards the
RNC due to previous acks released, assuming TCP
source window is constant.

AckReleaseCount represents the number of packets that
can be expected to arrive in the buffer at the RNC assuming
that the source window size remains constant. Thus, buffer
space equal to AckReleaseCount must be reserved whenever
a new ack is sent back to the source if buffer overflow is to
be avoided.

On Enque of Ack/Deque of data packet:
1. AcksSent=0;
2. BufferAvail=QueueLim-QueueLength;
3. BufferAvail-=(AckReleaseCount+ConservativeMode);
4. if (BufferAvail>=1)
5. if (AckSeqNoLast-AckSeqNoFirst<BufferAvail)
5.1 AcksSent+=(AckSeqNoLast-AckSeqNoFirst);
5.2 AckSegNoFirst=AckSeqNoLast;
else
5.3 AckSeqNoFirst+=Buffer Avail;
5.4 AcksSent+=BufferAvail;
5.5 Send acks up to AckSeqNoF'irst;

Figure 7: Ack Regulator processing at the RNC

Figure 6 shows the data and ack flow and the queue vari-
ables involved in the Ack Regulator algorithm, which is pre-
sented in Figure 7. We assume for now that the AckRe-
leaseCount and ConservativeMode variables are as defined
earlier. We later discuss how these variables are updated.
The Ack Regulator algorithm runs on every transmission of

a data packet (deque) and every arrival of an ack packet
(enque). The instantaneous buffer availability in the data
queue is maintained by the BufferAvail variable (line 2).
BufferAvail is then reduced by the AckReleaseCount and
the ConservativeMode variables (line 3).

Depending on the value of the ConservativeMode variable
(1 or 0), the algorithm operates in two modes, a conserva-
tive mode or a non-conservative, respectively. In the con-
servative mode, an extra buffer space is reserved in the data
queue to ensure that there is no loss even if TCP conges-
tion window is increased by 1, while, in the non-conservative
mode, a single packet loss occurs if TCP increases its conges-
tion window by 1. Now, after taking AckReleaseCount and
ConservativeMode variables into account, if there is at least
one buffer space available (line 4) and, if the number of acks
present in the ack queue (AckSeqNoLast - AckSeqNoFirst) is
lesser than BufferAvail, all those acks are sent to the source
(lines 5.1,5.2); otherwise only BufferAvail number of acks
are sent to the source (lines 5.3,5.4).

Note that the actual transmission of acks (line 5.5) is not
presented here. The transmission of AcksSent acks can be
performed one ack at a time or acks can be bunched together
due to the cumulative nature of TCP acks. However, care
must be taken to preserve the duplicate acks since the TCP
source relies on the number of duplicate acks to adjust its
congestion window. Also, whenever three or more duplicate
acks are sent back, it is important that one extra buffer space
be reserved to account for the fast retransmission algorithm.
Additional buffer reservations of two packets to account for
the Limited Transmit algorithm [12] can also be provided
for, if necessary.

1. Initialize ConservativeMode=1; o = 2
2. On Enque of ack packet:
if ((DataSegNoLast-AckSeqNoFirst)>a*QueueLim)
ConservativeMode=0;
3. On Enque and Drop of data packet:
Conservative Mode=1;
4. On Enque/Deque of data packet:
if (((DataSegNoLast-AckSeqNoFirst)<a*QueueLim/2)
OR (DataQueueLength==0))
ConservativeMode=1;

Figure 8: ConservativeMode updates

We now present the algorithm (Figure 8) for updating the
ConservativeMode variable which controls the switching of
the Ack Regulator algorithm between the conservative and
the non-conservative modes. The algorithm starts in con-
servative mode (line 1). Whenever a targeted TCP window
size is reached (in this case, 2*QueueLim) , the algorithm
is switched into non-conservative mode (line 2). TCP Win-
dow Size is approximated here by the difference between the
largest sequence number in the data queue and the sequence
number in the ack queue. This is a reasonable approxima-
tion in our case since the wireless link is likely the bottle-
neck and most (if not all) of the queuing is done at the RNC.
When operating in the non-conservative mode, no additional
buffer space is reserved. This implies that there will be sin-
gle loss the next time the TCP source increases it window
size. At the detection of the packet loss, the algorithm again
switches back to the conservative mode (line 3). This en-
sures that losses are of the single loss variety as long as the
estimate of AckReleaseCount is conservative. Line 4 in the



algorithm results in a switch back into conservative mode
whenever the data queue length goes to zero or whenever
the TCP window size is halved. This handles the case when
TCP reacts to losses elsewhere in the network and the Ack
Regulator can go back to being conservative. Note that,
if the TCP source is ECN capable, instead of switching to
non-conservative mode, the Ack Regulator can simply mark
the ECN bit to signal the source to reduce its congestion
window, resulting in no packet loss.

1.Initialize AckReleaseCount=0;

2. On Enque of Ack/Deque of data packet:
(after processing in Fig 7)
AckReleaseCount+=AcksSent;

3. On Enque of data packet:
if (AckReleaseCount>0)

AckReleaseCount—;

4. On Deque of data packet:

if (DataQueueLength==0)
AckReleaseCount=0;

Figure 9: AckReleaseCount updates

We finally present the algorithm for updating the Ack-
ReleaseCount variable in Figure 9. Since AckReleaseCount
estimates the expected number of data packets that are ar-
riving and reserves buffer space for them, it is important to
get an accurate estimate. An overestimate of AckReleaseC-
ount would result in unnecessary reservation of buffers that
won't be occupied, while an underestimate of AckReleaseC-
ount can lead to buffer overflow loss(es) even in conservative
mode due to inadequate reservation.

With the knowledge of the exact version of the TCP source
and the round trip time from the RNC to the source, it is
possible to compute an exact estimate of AckReleaseCount.
However, since we would like to be agnostic to TCP version
as far as possible and also be robust against varying round
trip times on the wired network, our algorithm tries to main-
tain a conservative estimate of AckReleaseCount. Whenever
we send acks back to the source, we update AckReleaseC-
ount by that many acks (line 2). Likewise, whenever a data
packet arrives into the RNC from the source, we decrement
the variable while ensuring that it does not go below zero
(line 3).

While maintaining a non-negative AckReleaseCount in
this manner avoids underestimation, it also can result in
unbounded growth of AckReleaseCount leading to signifi-
cant overestimation as errors accumulate. For example, we
increase AckReleaseCount whenever we send acks back to
the source; however, if TCP is reducing its window size due
to loss, we cannot expect any data packets in response to
the acks being released. Thus, over time, AckReleaseCount
can grow in an unbounded manner. In order to avoid this
scenario, we reset AckReleaseCount to zero (line 4) when-
ever the data queue is empty. Thus, while this reset oper-
ation is necessary for synchronizing the real and estimated
AckReleaseCount after a loss, it is not a conservative mech-
anism in general since a AckReleaseCount of zero implies
that no buffer space is currently reserved for any incoming
data packets that are unaccounted for. However, by doing
the reset only when the data queue is empty, we signifi-
cantly reduce the chance of the unaccounted data packets
causing a buffer overflow loss. We discuss the impact of this
estimation algorithm of AckReleaseCount in Section 6.6.
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Figure 10: Simulation Topology

Finally, we assume that there is enough buffer space for
the ack packets in the RNC. The maximum number of ack
packets is the maximum window size achieved by the TCP
flow (a*QueueLim in our algorithm). Ack packets do not
have to be buffered as is, since storing the sequence num-
bers is sufficient (however, care should be taken to preserve
duplicate ack sequence numbers as is). Thus, memory re-
quirement for ack storage is very minimal.

6. SIMULATION RESULTS

In this section, we present detailed simulation results com-
paring the performance of TCP Reno and TCP Sack, in the
presence and absence of the Ack Regulator. First, we study
the effect of variable bandwidth and variable delay using
different distributions on the throughput of a single long-
lived TCP flow. Next, we present a model for 3G1X-EVDO
(HDR) system (which exhibits both variable rate and vari-
able delay), and evaluate the performance of a single TCP
flow in the HDR environment. Then, we present the perfor-
mance of multiple TCP flows sharing a single HDR wireless
link. Finally, we briefly discuss the impact of different pa-
rameters affecting the behavior of Ack Regulator.

All simulations are performed using ns-2. The simulation
topology used is shown in Figure 10. S;,¢ = 1..n corresponds
to the set of TCP source nodes sending packets to a set of
the TCP sink nodes M;,i¢ = 1..n. Each set of S;, M; nodes
form a TCP pair. The RNC is connected to the M; nodes
through a V (virtual) node for simulation purposes. L, the
bandwidth between S; and the RNC, is set to 100Mb/s and
D is set to 1ms except in cases where D is explicitly varied.
The forward wireless channel is simulated as having rate F'R
and delay F'D, and the reverse wireless channel has rate RR
and delay RD.

Each simulation run lasts for 3600s (1hr) unless otherwise
specified and all simulations use packet size of 1IKB. TCP
maximum window size is set to 500KB. Using such a large
window size ensures that TCP is never window limited in
all experiments except in cases where the window size is
explicitly varied.

6.1 Variable Delay

In this section, the effect of delay variation is illustrated by
varying F' D, the forward link delay. Without modification,
the use of a random link delay in the simulation will result
in out-of-order packets since packet transmitted later with
lower delay can overtake packets transmitted earlier with
higher delay. However, since delay variability in our model
is caused by factors that will not result in packet reordering
(e.g. processing time variation) and RLP delivers packet in
sequence, the simulation code is modified such that packets
cannot reach the next hop until the packet transmitted ear-
lier has arrived. This modification applies to all simulations
with variable link delay.

Figure 11(a) shows throughput for a single TCP flow (n =
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1) for FR = 200Kb/s and RR = 64Kb/s. FD has an ex-
ponential distribution with a mean that varies from 20ms
to 100ms, and RD = 400ms - mean(F'D) so that average
FD+RD is maintained at 400ms. The buffer size on the
bottleneck link for each run is set to 10, the product of
the mean throughput of (200Kb/s or 25pkt/s) and mean
link delay (0.4s). This product will be referred to as the
bandwidth-delay product (BDP) in later sections. Addi-
tional delay distributions like uniform, normal, lognormal,
and Poisson were also experimented with. Since the results
are similar, only plots for an exponential delay distribution
are shown.

As expected, when the delay variation increases, through-
put decreases for both TCP Reno and TCP Sack. By in-
creasing the delay variance from 20 to 100, throughput of
TCP Reno decreases by 30% and TCP Sack decreases by
19%. On the other hand, TCP Reno and TCP Sack flows
which are Ack Regulated are much more robust and its
throughput decreases by only 8%. Relatively to one an-
other, Ack Regulator performs up to 43% better than TCP
Reno and 19% better than TCP Sack. Another interesting
result is that Ack Regulator delivers the same throughput ir-
respective of whether the TCP source is Reno or Sack. This
is understandable given the fact that the Ack Regulator tries
to ensure that only single buffer overflow loss occurs and in
this regime, Reno and Sack are known to behave similarly.
This property of Ack Regulator is extremely useful since for
a flow to use TCP Sack, both the sender and receiver needs
to be upgraded. Given that there are still significant num-
ber of web servers that have not yet been upgraded to TCP
Sack [28], deployment of Ack Regulator would ensure excel-
lent performance irrespective of the TCP version running.

Figure 11(b) shows how throughput varies with buffer size
with the same set of parameters except for F'D, which is now
fixed with a mean of 50ms (exponentially distributed). Even
with a very small buffer of 5 packets (0.5 BDP), Ack Reg-
ulator is able to maintain a throughput of over 80% of the
maximum throughput of 200Kb/s. Thus, Ack Regulator de-
livers robust throughput performance across different buffer
sizes. This property is very important in a varying rate and
delay environment of a wireless system, since it is difficult to
size the system with an optimal buffer size, given that the
BDP also varies with time. For a buffer of 4 packets, the
improvement over TCP Reno and Sack is about 50% and
24% respectively. As buffer size increases, the throughput
difference decreases. With buffer size close to 20 packets
(2 BDP), TCP Sack performs close to Ack Regulated flows,
while improvement over TCP Reno is about 4%.

Finally, in Table 3, we list parameter values from the sim-

Item Rate, | TD | TO | pl p2 | p3 Wy
Kb/s

Reno 129 496 | 114 | 0.34 | 0.3 | 0.38 | 19

Reno+AR | 184 302 | 8 0.98 | 0.0 | 0.02 | 24

Sack 160 434 | 4 0.99 | 0.0 | 0.01 | 19

Sack+AR | 184 302 | 8 0.97 | 0.0 | 0.03 | 24

Table 3: Parameters from simulation for variance=100
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ulation for delay variance of 100. First, consider Reno and
Reno with Ack Regulator (first two rows). It is clear that
Ack Regulator is able to significantly reduce the conditional
probability of multiple losses p2 and p3 as well as absolute
number of loss events (I'D and T'O) resulting in substan-
tial gains over Reno. Next, consider Sack and Sack with
Ack Regulator (last two rows). In this case, we can see that
Sack is very effective in eliminating most of the timeout oc-
currences. However, Ack Regulator is still able to reduce
the absolute number of loss events by allowing the conges-
tion window to grow to higher values (24 vs 19), resulting
in throughput gains.

6.2 Variable Bandwidth

In this section, we vary the link bandwidth, FR. Fig-
ure 12(a) shows throughput for a single TCP flow. FR is
uniformly distributed with a mean of 200 Kb/s and the vari-
ance is varied from 20 to 75. FD = 200ms, RR = 64Kb/s
and RD = 200ms. The buffer size on the bottleneck link
for each run is 10. Again, we have experimented with other
bandwidth distributions, but, due to lack of space, only uni-
form distribution is shown. Note that, with variable rate,
the maximum throughput achievable is different from the
mean rate. For uniform distribution, a simple closed form
formula for the throughput is simply 1/fab 1/zdx = 1/(lnb-
Ina) where b is the maximum rate and a is the minimum
rate.

When the rate variance increases, throughput of TCP
Reno decreases as expected. Compared to TCP Reno, Ack
Regulator improves the throughput by up to 15%. How-
ever, TCP Sack performs very well and has almost the same
throughput as Ack Regulated flows. Based on the calcula-
tions for maximum throughput discussed before, it can be
shown that all flows except Reno achieve maximum through-
put. This shows that if rate variation is not large enough,
TCP Sack is able to handle the variability. However, for
very large rate variations (e.g. rate with lognormal distri-
bution and a large variance), the performance of TCP Sack
is worse than when Ack Regulator is present.

Figure 12(b) shows how the throughput varies with buffer
size. Note that with a lower throughput, bandwidth delay
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product is smaller than 10 packets. Again, Ack Regulated
TCP flows perform particularly well when the buffer size is
small. With buffer size of 5, the improvement over TCP
Sack is 40%.

6.3 Variable Delay and Bandwidth

In this section, we vary both the bandwidth and delay of
the wireless link. F'R is uniformly distributed with a mean of
200 Kb/s and variance of 50, DR is exponentially distributed
with a mean of 50ms, RR = 64Kb/s and RD = 350ms. The
maximum achievable throughput is 186.7 Kb/s. The BDP
is therefore about 9 packets.

Figure 13(a) shows the throughput for a single TCP flow
with the buffer size ranging from 7 to 20. The combination
of variable rate and delay has a large negative impact on the
performance of TCP Reno and it is only able to achieve 70%
to 80% of the bandwidth of Ack Regulated flows when the
buffer size is 6 packets. Even with a buffer size of 18 packets,
the throughput difference is more than 5%. Throughput of
TCP Sack is about 5% to 10% lower than Ack Regulator,
until the buffer size reaches 18 packets (about 2 BDP).

One of the cost of using the Ack Regulator is the increase
in average round trip time (rtt). The average rtt values for
all 4 types of flows are shown in 13(b) for different buffer
sizes. TCP Reno has the lowest rtt followed by TCP Sack
and the rate of rtt increase with buffer size is comparable.
With Ack Regulator, rtt increase is comparable with unreg-
ulated flows for buffer size less than 9 (1 BDP). For larger
buffer sizes, since Ack Regulator uses @ = 2 times buffer
size to regulate the acks in conservative mode, rtt increases
faster with buffer size than regular TCP, where only the
data packet buffer size contributes to rtt. For example, with
buffer size of 9, Ack Regulated flows have a rtt 15% larger
and with buffer size of 18, the rtt is 48% larger compared
to TCP Sack. This effect can be controlled by varying the
a parameter of the Ack Regulator.

6.4 Simulation with High Data Rate

High Data Rate (HDR) [6] is a Qualcomm proposed CDMA
air interface standard (3G1x-EVDO) for supporting high
speed asymmetrical data services. One of the main ideas
behind HDR is the use of channel-state based scheduling
which transmits packets to the user with the best signal-to-
noise ratio. The actual rate available to the selected user
depends on the current signal-to-noise ratio experienced by
the user. The higher the ratio, the higher the rate avail-
able to the user. In addition, in order to provide some form
of fairness, a Proportional Fair scheduler is used which pro-
vides long-term fairness to flows from different users. We use
Qualcomm’s Proportional Fair scheduler in our simulation

Rate(Kb/s) | Prob. || Rate(Kb/s) | Prob.
38.4 0.033 || 614.4 0.172
76.8 0.015 || 921.6 0.145
102.6 0.043 || 1228.8 0.260
153.6 0.023 || 1843.2 0.042
204.8 0.060 || 2457.6 0.011
307.2 0.168

Table 4: HDR Data Rates for a one user system
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with an averaging window of 1000 time slots, where each
slot is 1.67 ms. While the HDR system results in higher raw
throughput, the rate and delay variation seen is substantial.

In this section, we model a simplified HDR environment
in ns-2, focusing on the layer 3 scheduling and packet frag-
mentation. The fading model for the wireless link used is
based on Jake’s Rayleigh fading channel model [25]. This
gives us the instantaneous signal-to-noise ratio. Using Table
2 in [6] which lists the rate achievable for a given signal-to-
noise ratio assuming a frame error rate of less than 1%, the
achievable bandwidth distribution (with one user) for our
simulation is shown in Table 4.

The simulation settings are as follows. F'R is a variable
that has a bandwidth distribution of Table 4, due to the vari-
ations of the fading conditions of the channel. Based on the
guidelines from [26], F'D is modeled as having a uniform dis-
tribution with mean 75ms and variance 30 and RD is mod-
eled as having a uniform distribution with mean 125ms and
variance 15. These are conservative estimates. We expect
delay variations in actual systems to be higher (for example,
note the ping latencies from our experiment in Section 3).
The uplink in a HDR system is circuit-based and RR is set
to be 64Kb/s.

Figure 14(a) shows how throughput for a single TCP flow
varies with buffer size. Assuming an average bandwidth of
600Kb/s and a link delay of 200ms, BDP is 15 packets.

Again, the performance of TCP Reno flows that are Ack
Regulated is significantly better than plain TCP Reno over
the range of buffer size experimented, with improvements
from 4% to 25%. TCP Sack flows also performs worse than
Ack Regulated flows up to buffer size of 20. The improve-
ment of Ack Regulator over TCP Sack ranges from 0.5% to
18%.

As mentioned earlier, one of the costs of using the Ack
Regulator is increase in average rtt. The average rtt for all
4 types of flows are shown in 14(b) with buffer size varying
from 5 to 40. The effect is similar to the rtt variation with
buffer size seen in Section 6.3.

6.5 Multiple TCP Flows

In this simulation, the number of flows (n) sharing the
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bottleneck link is increased to 4 and 8. Per-flow buffering is
provided for each TCP flow. For 4 flows, using mean rate of
200Kb/s, 1KB packet and rtt of 0.2s, BDP is 5 packets per
flow. For 8 flows, using mean rate of 120Kb/s, 1KB packet
and rtt of 0.2s, BDP is 3 packets per flow.

As the number of TCP flows increases, the expected rate
and delay variation seen by individual flows also increases.
Thus, even though the total throughout of the system in-
creases with more users due to channel-state based schedul-
ing, the improvement is reduced by the channel variability.

Figure 15(a) shows the throughput for 4 TCP flows. The
improvement of Ack Regulator over TCP Sack increases
compared to the single TCP case. For example, the gain
is 17% with per-flow buffer size of 5 (BDP). For Reno the
gain is even greater. With per-flow buffer size of 5, the im-
provement is 33%. Similar result can also be observed for
the case of 8 TCP flows as shown in Figure 15(b). For both
TCP Reno and Sack, the gain is about 31% and 29% re-
spectively for per-flow buffer size of 3. From the figure, it
can seen that, for TCP Sack and Reno to achieve close to
mazimum throughput without Ack Regulator, at least three
times the buffer requirements of Ack Regulator is necessary
(buffer requirements for acks in the Ack Regulator is neg-
ligible compared to the 1KB packet buffer since only the
sequence number needs to be stored for the acks). This not
only increases the cost of the RNC, which needs to support
thousands of active flows, it also has the undesirable side-
effects of large rtt’s that was noted in Section 3.

With multiple TCP flows, the issue of throughput fairness
naturally arises. One way to quantify how bandwidth is
shared among flows is to use the fairness index described in
[27]. This index is computed as the ratio of the square of the
total throughput to n times the square of the individual flow
throughput. If all flows get the same allocation, then the
fairness index is 1. As the differences in allocation increases,
fairness decreases. A scheme which allocates bandwidth to
only a few selected users has a fairness index near 0.

Computation of this index is performed for all multiple
flows simulation and the index is greater than 0.99 in all
cases. This result is expected since with per flow buffering,
and proportional fair scheduling, the long term throughput
of many TCP long-lived flows sharing the same link should
be fair.

6.6 Parameters affecting the performance of
Ack Regulator

Due to lack of space, we will only briefly present the results
of varying parameters such as wired network latency and a.
As the network latency is varied from 20ms to 100ms,
throughput decreases by 1.63% and 2.62% for Reno and

Reno with Ack Regulator flows, respectively. Most of the
decrease can be accounted for by the impact of increase
in latency on TCP throughput. The result shows that the
AckReleaseCount estimation algorithm is effective and hence
the Ack Regulator is able to reserve the appropriate amount
of buffer for expected packet arrivals even with substantial
wireline delay.

In another experiment, the parameter  in an Ack Regu-
lated TCP flow is varied from 1 to 4. When « is increased
from 1 to 3, the TCP flow is able to achieve its maximum
throughput at a smaller buffer size. As « increases, the
rtt also increases and when « is increased to 4, through-
put decreases for larger buffer sizes (> 15). The decrease
in throughput is caused by the accumulation of sufficiently
large amount of duplicate acks that are sent to the TCP
sender. A value of @ = 2 appears to be a good choice,
balancing throughput and rtt for reasonable buffer sizes.

6.7 Summary of Results and Discussion

In this section, we first summarize the results from the
simulation experiments and then briefly touch upon other
issues.

We first started with experiments using a wireless link
with variable delay. We showed that Ack Regulator delivers
performance up to 43% better than TCP Reno and 19%
better than TCP Sack when the buffer size was set to one
BDP. We then examined the impact of a wireless link with
variable rate. We saw that when the rate variance increases,
throughput of TCP Reno decreases as expected. Compared
to TCP Reno, Ack Regulator improves the throughput by
up to 15%. However, TCP Sack performs very well and has
almost the same throughput as Ack Regulated flows as long
as the rate variation is not extremely large.

We next considered the impact of a wireless link with
variable delay and variable rate. We found that this com-
bination had a large negative impact on the performance of
both TCP Reno and Sack (up to 22% and 10% improvement
respectively for Ack Regulated flows). We then considered
a specific wireless link standard called HDR which exhibits
both variable delay and variable rate. The results were as
expected, with Ack Regulator improving TCP Reno perfor-
mance by 5% to 33% and TCP Sack by 0.5% to 24%. We
then evaluated the impact of multiple TCP flows sharing
the HDR link. The gains of Ack Regulator over normal
TCP flows were even greater in this case (with 32% to 36%
improvements) when the buffer size is set to one BDP.

In general, we showed that Ack Regulator delivers the
same high throughput irrespective of whether the TCP flow
is Reno or Sack. We further showed that Ack Regulator de-
livers robust throughput performance across different buffer
sizes with the performance improvement of Ack Regulator
increasing as buffer size is reduced.

We only considered TCP flows towards the mobile host
(for downloading-type applications) since links like HDR, are
designed for such applications. In the case of TCP flows in
the other direction (from the mobile host), Ack Regulator
can be implemented, if necessary, at the mobile host to op-
timize the use of buffer on the wireless interface card.

Finally, Ack Regulator cannot be used if the flow uses
end-to-end IPSEC. This is also true for all performance en-
hancing proxies. However, we believe that proxies for perfor-
mance improvement are critical in current wireless networks.
In order to allow for these proxies without compromising



security, a split security model can be adopted where the
RNC, under the control of the network provider, becomes a
trusted element. In this model, a VPN approach to security
(say, using IPSEC) is used on the wireline network between
the RNC and the correspondent host and 3G authentication
and link-layer encryption mechanisms are used between the
RNC and mobile host. This allows the RNC to support
proxies such as the Ack Regulator to improve performance
without compromising security.

7. CONCLUSION

In this paper, we comprehensively evaluated the impact
of variable rate and variable delay on TCP performance.
We first proposed a model to explain and predict TCP’s
throughput over a link with variable rate and delay. Our
model was able to accurately (better than 90%) predict
throughput of TCP flows even in the case of large delay
and rate variation. Based on our TCP model, we proposed
a network based solution called Ack Regulator to mitigate
the effect of rate and delay variability. The performance of
Ack Regulator was evaluated extensively using both general
models for rate and delay variability as well as a simplified
model of a 3"¢ Generation high speed wireless data air inter-
face. Ack Regulator was able to improve the performance
of TCP Reno and TCP Sack by up to 40% without signif-
icantly increasingly the round trip time. We also showed
that Ack Regulator delivers the same high throughput irre-
spective of whether the TCP source is Reno or Sack. Fur-
thermore, Ack Regulator also delivered robust throughput
performance across different buffer sizes. Given the difficul-
ties in knowing in advance the achievable throughput and
delay (and hence the correct BDP value), a scheme, like
Ack Regulator, which works well for both large and small
buffers is essential. In summary, Ack Regulator is an effec-
tive network-based solution that significantly improves TCP
performance over wireless links with variable rate and delay.
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