
Loop Invariant Synthesis in a Combined Domain

Shengchao Qin1, Guanhua He2, Chenguang Luo2?, and Wei-Ngan Chin3

1 Teesside University, Middlesbrough, TS1 3BA, UK
2 Durham University, Durham, DH1 3LE, UK

3 National University of Singapore

Abstract. Automated verification of memory safety and functional cor-
rectness for heap-manipulating programs has been a challenging task,
especially when dealing with complex data structures with strong invari-
ants involving both shape and numerical properties. Existing verification
systems usually rely on users to supply annotations, which can be tedious
and error-prone and can significantly restrict the scalability of the ver-
ification system. In this paper, we reduce the need of user annotations
by automatically inferring loop invariants over an abstract domain with
both separation and numerical information. Our loop invariant synthe-
sis is conducted automatically by a fixpoint iteration process, equipped
with newly designed abstraction mechanism, and join and widening op-
erators. Initial experiments have confirmed that we can synthesise loop
invariants with non-trivial constraints.

1 Introduction

Although research on software verification has a long and distinguished history
dating back to the 1960’s, it remains a challenging problem to automatically
verify heap manipulating programs written in mainstream imperative languages.
This is in part due to the shared mutable data structures lying in programs,
and the need to track various program properties, such as structural numerical
information (length and height) and relational numerical information (sortedness
and binary search tree properties).

Since the emergence of separation logic [14, 25], dramatic advances have been
made in automated software verification, e.g. the Smallfoot tool [1] for the veri-
fication on pointer safety (i.e. shape properties asserting that pointers cannot go
wrong), the verification on termination [2], the verification for object-oriented
programs [6, 22], and Dafny [18] and Hip/Sleek [5, 20, 21] for more general prop-
erties (both structural and numerical ones) for heap-manipulating programs.

These verification systems generally require users to provide specifications
for each method as well as invariants for each loop, which is both tedious and
error-prone. This also affects their scalability, as there can be many methods in
a program and each method may still contain several while loops.

To conquer this problem, separation logic based shape analysis techniques
are brought in, e.g., the SpaceInvader tool [3, 9, 27]. As a further step of Small-
foot, it automatically infers method specifications and loop invariants for pointer

? Now with Citigroup Inc.

2 S. Qin, G. He, C. Luo, and W.-N. Chin

safety in the shape domain. Other works such as THOR [19] incorporate simple
numerical information into the shape domain to allow automated synthesis of
properties like list length. Their success proves the necessity and feasibility for
shape analysis to help automate the verification process.

However, the prior analyses focus mainly on relatively simple properties, such
as pointer safety for lists and list length information. It is difficult to apply them
in the presence of more sophisticated program properties, such as:

– More flexible user-defined data structures, such as trees;

– Relational numerical properties, like sortedness and binary search property.

These properties can be part of the full functional correctness of heap-manipulating
programs. The (aforementioned) Hip/Sleek tool aims to verify such properties
and it allows users to define their own shape predicates to express their desired
level of correctness.

In this paper, we make the first stride to improve the level of automation
for Hip/Sleek-like verification systems by discovering loop invariants automat-
ically over the combined shape and numerical domain. This proves to be a chal-
lenging problem especially since we aim towards full functional correctness that
Hip/Sleek targets at. Our approach is based on the framework of abstract in-
terpretation [7] with fixpoint computation. It makes the following contributions
in summary:

– We propose a loop invariant synthesis with novel operations for abstraction,
join and widening over a combined shape and numerical domain.

– We demonstrate that our analysis is sound w.r.t. concrete program semantics
and always terminates.

– We have integrated our solution with Hip/Sleek and conducted some initial
experiments. The experimental results confirm the viability of our solution
and show that we can effectively eliminate the need for user-provision of loop
invariants which were previously necessary in verification.

We shall next illustrate our approach informally via an example before pre-
senting the formal details.

2 The Approach

Before giving an illustrative example for the analysis, we will first introduce our
specification mechanism which follows the Hip/Sleek system.

2.1 Separation Logic and User-defined Predicates

Separation logic [14, 25] extends Hoare logic to support reasoning about shared
mutable data structures. It adds two more connectives to classical logic: separa-
tion conjunction ∗ and spatial implication −∗. The formula p1 ∗ p2 asserts that
two heaps described by the formulae p1 and p2 are domain-disjoint, while p1−∗ p2
asserts that if the current heap is extended with a disjoint heap described by

Loop Invariant Synthesis in a Combined Domain 3

the formula p1, then the formula p2 holds in the extended heap. In this paper
we only use separation conjunction.

Similar to the Hip/Sleek system, we allow user-defined inductive predicates
to specify both separation and numerical properties. For example, with a data
structure definition for a node in a list data node { int val; node next; }, we
can define a predicate for a list as

root::ll〈n〉 ≡ (root=null∧n=0)∨(∃v, q, m · root::node〈v, q〉∗q::ll〈m〉∧n=m+1)

The parameter root for the predicate ll is the root pointer referring to the list.
Its length is denoted by n. A uniform notation p::c〈v1, .., vk〉 is used for either a
singleton heap or a predicate. If c is a data node with fields f1, .., fk, the notation
represents a singleton heap, p 7→c[f1:v1, .., fk:vk], e.g. the root::node〈v, q〉 above.
If c is a predicate name, then the data structure pointed to by p has the shape
c with parameters v1, .., vk, e.g., the q::ll〈m〉 above.

We can also define a list segment as follows:

ls〈p, n〉 ≡ (root=p ∧ n=0) ∨ (root::node〈 , q〉 ∗ q::ls〈p, m〉 ∧ n=m+1)

where we use the following shortened notation: (i) default root parameter in
LHS may be omitted, (ii) unbound variables, such as q and m, are implicitly
existentially quantified, and (iii) the underscore denotes an existentially quan-
tified anonymous variable.

If the user wants to verify a sorting algorithm, they can incorporate sorted-
ness property into the above predicates as follows:

sll〈n, mn, mx〉 ≡ (root::node〈mn, null〉 ∧ n=1 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sll〈n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

sls〈p, n, mn, mx〉 ≡ (root::node〈mn, p〉 ∧ n=1 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sls〈p, n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

where mn and mx denote resp. the min and max values stored in the sorted list.
Such user-supplied predicates can be used to specify loop invariants and method
pre/post-specifications.

2.2 Illustrative Example

We now illustrate via an example our loop invariant synthesis process. The
method ins sort (Figure 1) sorts a linked list with the insertion sort algorithm.
It is implemented with two nested while loops. The outer loop traverses the
whole list x, takes out each node from it (line 7), and inserts that node into
another already sorted list r (which is empty initially before the sorting). This
insertion process makes use of the inner while loop in lines 9-11 to look for a
proper position in the already sorted list for the new node to be inserted. The
actual insertion takes place at lines 12-14.

To verify this program, we need to synthesise appropriate loop invariants for
both while loops. Our analysis follows a standard fixpoint iteration process. It

4 S. Qin, G. He, C. Luo, and W.-N. Chin

0 data node { int val;

node next; }

1 node ins_sort(node x)

2 requires x::ll〈n〉
3 ensures res::sll〈n, mn, mx〉
4 {int v;

5 node r,cur,srt,prv=null;

6 while (x != null) {

7 cur=x; x=x.next; v=cur.val;

8 srt=r; prv=null;

9 while (srt != null &&

srt.val <= v) {

10 prv=srt; srt=srt.next;

11 }

12 cur.next=srt;

13 if (prv != null) prv.next=cur;

14 else r=cur;

15 }

16 return r;

17 }

Fig. 1. Insertion sort for linked list.

starts with the (abstract) program state immediately before the while loop (i.e.,
the initial state) and symbolically executes the loop body for several iterations,
until the obtained states converge to a fixpoint, which is the loop invariant.1 At
the start of each iteration, the obtained state from the previous iteration is joined
with the initial state. In addition to this join operator, we have also defined an
abstraction function and a widening operator both of which will help the fixpoint
iteration to converge. The join and widening operators are specifically designed
to handle both shape and numerical information.

As for our example, due to the presence of nested loops, each iteration of the
analysis for the outer loop actually infers a loop invariant for the inner loop. We
shall now illustrate how we synthesise a loop invariant for the inner loop.

Suppose that in one iteration for the outer loop, the state at line 9 becomes

r::sll〈nr, a, b〉 ∗ cur::node〈v, x〉 ∗ x::ll〈nx〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n

Note that since the inner loop does not mutate the heap part referred to by
cur and x (i.e., cur::node〈v, x〉 ∗x::ll〈nx〉), we can ignore it during the invariant
synthesis and add it back to the program state using the frame rule of separation
logic [25]. Therefore, the initial state for loop invariant synthesis becomes

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n (1)

From this state, symbolically executing the loop body once yields the state:

r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=r ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr

(2)

which says that pointer srt moves towards the tail of the list for one node. Then
we join it with the initial state (1) to obtain

(r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+nx+1=n)∨
(r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧

prv=r ∧ a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr)
(3)

The second iteration over the loop body starts with (3) and exhibits (also) the
case that srt runs two nodes towards tail, while prv goes one node. Its result is
then joined with pre-state (1) to become the current state:

1 The fixpoint iteration converges if one more iteration still yields the same result.

Loop Invariant Synthesis in a Combined Domain 5

(3) ∨ r::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr

(4)

Executing the loop body a third time returns a post-state where three nodes are
passed by srt, and two by prv, as below:

(4) ∨ r::node〈a, r0〉 ∗ r0::node〈c1, prv〉 ∗ prv::node〈c2, srt〉 ∗
srt::sll〈ns, c3, b〉 ∧ a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr

where we have an auxiliary logical variable r0. Following this trend, it is pre-
dictable that every iteration hereafter will introduce an additional logical vari-
able (referring to a list node). If we indulge in such increase in the subsequent
iterations, the analysis will never terminate. Our abstraction process prevents
this from happening by eliminating such logical variables as follows:

(4) ∨ r::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr ∧ n1=2

Note that the heap part r::node〈a, r0〉∗r0::node〈c1, prv〉 is abstracted as a sorted
list segment r::sls〈prv, n1, a, c1〉 with n1 denoting the length of the segment and
n1=2 added into the state. This abstraction process ensures that our analysis
does not allow the shape to increase infinitely.

The fourth iteration responds with a post-state where four nodes are passed
by srt, and three by prv. Therefore an abstraction is performed to remove the
logical pointer variables. As a simplification of the presentation, we denote σ
as r::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗ srt::sll〈ns,c3,b〉 ∧ a≤c1≤c2≤c3 ∧
c2≤v ∧ nr+1=n−nx, and the abstracted result (after the fourth iteration) is

(4) ∨ (σ ∧ ns+3=nr ∧ n1=2) ∨ (σ ∧ ns+4=nr ∧ n1=3)

for which we have an observation that the last two disjunctions share the same
shape part (as in σ). This disjunction will be transferred to the numerical do-
main, as follows:

(4) ∨ (σ ∧ (ns+3=nr ∧ n1=2 ∨ ns+4=nr ∧ n1=3))

This simplifies the abstraction further. After that, our widening operation com-
pares the current state with the previous one, to look for the same (numerical)
constraints that both states imply, and to replace those numerical constraints
in the current state with the ones discovered by widening. This operation even-
tually ensures termination of our analysis. As for the example, some constraints
among ns, nr and n1 can be found to make the widened post-state become:

(4) ∨ (σ ∧ ns+n1=nr−1 ∧ n1≥2) (5)

One more iteration of symbolic execution will produce the same result as (5),
suggesting that it is already the fixpoint (and hence the loop invariant):

r::sll〈nr, a, b〉 ∧ srt=r ∧ prv=null ∧ nr+1=n−nx ∨
r::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=r ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr ∨

r::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr ∨

r::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+n1=nr−1 ∧ n1≥2

6 S. Qin, G. He, C. Luo, and W.-N. Chin

Note that although it is possible to further join the third disjunctive branch with
the fourth, our analysis does not do so as it tries to keep the result as precise as
possible by eliminating only auxiliary pointer variables.

With the frame part cur::node〈v, x〉 ∗ x::ll〈nx〉 added back, the analysis for
the outer loop continues. Eventually, the following loop invariant is discovered
for the outer loop:

(x::ll〈nx〉 ∧ r=null ∧ nx=n) ∨ (r::node〈a, null〉 ∗ x::ll〈nx〉 ∧ n=nx+1) ∨
(r::sll〈nr, a, b〉 ∗ x::ll〈nx〉 ∧ n=nx+nr ∧ nr≥2)

which allows us to verify the whole method successfully using e.g. Hip/Sleek.

3 Language and Abstract Domain

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 2. The program Prog written in this language consists of dec-
larations tdecl, which can either be data type declarations datat (e.g. node in
Section 2), or predicate definitions spred (e.g. ll, ls, sll, sls in Section 2.1), as
well as method declarations meth. The definitions for spred and mspec are given
later in Figure 3. Without loss of expressiveness, we use an expression-oriented
language. So the body of a method (e) is an expression formed by standard
commands of an imperative language. Note that d and d[v] represent resp. heap-
insensitive and heap sensitive commands. The language allows both call-by-value
and call-by-reference method parameters (separated with a semicolon ;).

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if v then e1 else e2 | while v {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 2. A Core (C-like) Imperative Language.

Our specification language (in Figure 3) allows (user-defined) shape predi-
cates spred to specify both shape and numerical properties. Note that spred are
constructed with disjunctive constraints Φ and numerical formulae π. We require
that the predicates be well-formed [21].

A conjunctive abstract program state, σ, is composed of a heap (shape) part
κ and a numerical part π, where π consists of γ and φ as aliasing and numerical
information, respectively. We use SH to denote the set of such conjunctive states.
During the symbolic execution, the abstract program state at each program point
will be a disjunction of σ’s, denoted by ∆ (and its set is recognised as PSH). An
abstract state ∆ can be normalised to the Φ form.

Using entailment [21], we define a partial order over these abstract states:

∆ � ∆′ =df ∆
′ ` ∆ ∗ R

Loop Invariant Synthesis in a Combined Domain 7

spred ::= root::c〈v∗〉 ≡ Φ Φ ::=
∨
σ∗ σ ::= ∃v∗·κ∧π

mspec ::= requires Φpr ensures Φpo

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | true | γ1∧γ2
φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 3. The Specification Language.

where R is the (computed) residue part. And we also have an induced lattice
over these states as the base of fixpoint calculation for loop invariants.

The memory model of our specification formula is similar to the model given
for separation logic [25], except that we have extensions to handle user-defined
shape predicates and related numerical properties. In our analysis, all the vari-
ables except the program ones are logical variables. We denote a program vari-
able’s initial value as unprimed and its current value as primed [21].

4 Analysis Algorithm

Our proposed analysis algorithm is given in Figure 4.

Fixpoint Computation in Combined Domain
Input: T , ∆pre, while b {e}, n ;
Local: i := 0; ∆i := false; ∆′i := false;
1 repeat

2 i := i+ 1;

3 ∆i := widen†(∆i−1, join
†(∆pre,∆

′
i−1));

4 ∆′i := abs†(|[e]|T (∆i ∧ b));
5 if ∆′i = false ∨ cp no(∆′i) > n
· then return fail end if

6 until ∆′i = ∆′i−1;

7 return ∆′i

Fig. 4. Main analysis algorithm.

The algorithm takes four input parameters: T as the program environment
with all the method specifications in the program (for potential method calls
in loop body), ∆pre as the precondition of the loop’s (symbolic) execution, the
while loop itself while b {e}, and the number of upper bound of shared logical
variables we keep during the analysis n.

Our analysis is based on abstract interpretation [7] with specifically designed
operations (abs, join and widen) over this combined domain.2 At the beginning,
we initialise the iteration variable (i) and two states to begin with (∆i and ∆′i).
The false’s here as initial values denote the top element of our defined lattice

2 Note that our analysis uses lifted versions of these operations (indicated by †), which
will be explained in more details in Section 4.2.

8 S. Qin, G. He, C. Luo, and W.-N. Chin

as well as our starting point of the fixpoint iteration. Among the two states here,
the unprimed version ∆i denotes the initial state before the ith execution of the
loop body, and the primed one ∆′i represents the result state after. Each iteration
starts at line 1. Firstly we join together the precondition of the loop with the
result state ∆′i−1 obtained in the previous iteration, and widen it against the
initial state ∆i−1 of the previous iteration (line 3). Then we symbolically execute
the loop body with the abstract semantics in Section 4.1 (line 4), and apply the
abstraction operation to the obtained abstract state. If the symbolic execution
cannot continue due to a program bug, or if we find our abstraction cannot
keep the number of shared logical variables/cutpoints (counted by cp no) within
a specified bound (n), then a failure is reported (line 5). Otherwise we judge
whether a fixpoint is already reached by comparing the current abstract state
with the previous one (line 6). The fixpoint ∆′i is returned as the loop invariant.

We will elaborate the key techniques of our analysis in what follows: the ab-
stract semantics, the abstraction function, and the join and widening operators.

4.1 Abstract Semantics

The abstract semantics is used to execute the loop body symbolically to obtain
its post-state during the loop invariant synthesis. Its type is defined as

|[e]| : AllSpec→ PSH → PSH

where AllSpec contains all the specifications of all methods (extracted from the
program Prog). For some expression e, given its precondition, the semantics will
calculate the postcondition.

The foundation of the semantics is the basic transition functions from a
conjunctive abstract state to a conjunctive or disjunctive abstract state below:

rearr(x) : SH→ PSH[x] Rearrangement

exec(d[x]) : AllSpec→ SH[x]→ SH Heap-sensitive execution

exec(d) : AllSpec→ SH→ SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element
has x exposed as the head of a data node (x::c〈v∗〉), and PSH[x] contains all
the (disjunctive) abstract states, each of which is composed by such conjunctive
states. Here rearr(x) rearranges the symbolic heap so that the cell referred to by
x is exposed for access by heap sensitive commands d[x] via the second transi-
tion function exec(d[x]). The third function defined for other (heap insensitive)
commands d does not require such exposure of x.

isdatat(c) σ ` x::c〈v∗〉 ∗ σ′

rearr(x)σ =df σ

isspred(c) σ ` x::c〈u∗〉 ∗ σ′ root::c〈v∗〉≡Φ
rearr(x)σ =df σ

′ ∗ [x/root, u∗/v∗]Φ

The test isdatat(c) returns true only if c is a data node and isspred(c) returns
true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w,
or free(x)) assumes that the rearrangement rearr(x) has been done in prior:

Loop Invariant Synthesis in a Combined Domain 9

isdatat(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi)(T)σ =df σ
′ ∗ x::c〈v1, .., vn〉 ∧ res=vi

isdatat(c) σ ` x::c〈v1, .., vn〉 ∗ σ′

exec(x.fi := w)(T)σ =df σ
′ ∗ x::c〈v1, .., vi−1, w, vi+1, .., vn〉

isdatat(c) σ ` x::c〈u∗〉 ∗ σ′

exec(free(x))(T)σ =df σ
′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T)σ =df σ ∧ res=k exec(x)(T)σ =df σ ∧ res=x

isdatat(c)

exec(new c(v∗))(T)σ =df σ ∗ res::c〈v∗〉
t mn ((ti ui)

m
i=1; (t′i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′i/ui]
m
i=1 ◦ [y′i/vi]

n
i=1 σ ` ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x′i/u

′
i]
m
i=1 ◦ [y′i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T)σ =df (ρlσ
′) ∗ (ρoΦpo)

Note that the first three rules deal with constant (k), variable (x) and data node
creation (new c(v∗)), respectively, while the last rule handles method invocation.
In the last rule, the call site is ensured to meet the precondition ofmn, as signified
by σ ` ρΦpr ∗ σ′. In this case, the execution succeeds and the post-state of the
method call involves mn’s postcondition as signified by ρol ◦ ρoΦpo.

A lifting function † is defined to lift rearr’s domain to PSH:

rearr†(x)
∨
σi =df

∨
(rearr(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T)
∨
σi =df

∨
(exec(d)(T)σi)

Based on the transition functions above, we can define the abstract semantics
for a program command e as follows:

|[d[x]]|T∆ =df exec†(d[x])(T) ◦ rearr†(x)∆

|[d]|T∆ =df exec†(d)(T)∆

|[e1; e2]|T∆ =df |[e2]|T ◦ |[e1]|T∆
|[x := e]|T∆ =df [x′/x, r′/res](|[e]|T∆) ∧ x=r′ fresh logical x′, r′

|[if v then e1 else e2]|T∆ =df (|[e1]|T (v∧∆)) ∨ (|[e2]|T (¬v∧∆))

which form the foundation for us to analyse the loop body.

4.2 Abstraction, Join and Widening

This section describes our specifically designed abstraction, join and widening
operations employed in our loop invariant synthesis process.

Abstraction function. During the symbolic execution, we may be confronted
with many “concrete” shapes in postconditions of the loop body. As an example

10 S. Qin, G. He, C. Luo, and W.-N. Chin

of list traversal, the list may contain one node, or two nodes, or even more nodes
in the list, which the analysis cannot enumerate infinitely. The abstraction func-
tion deals with those situations by abstracting the (potentially infinite) concrete
situations into more abstract shapes. Our rationale is to keep only program vari-
ables and shared cutpoints; all other logical variables will be abstracted away.
As an instance, the first state below can be further abstracted (as shown), while
the second one cannot:

abs(x::node〈 , z0〉 ∗ z0::node〈 , null〉) = x::ll〈n〉 ∧ n=2

abs(x::node〈 , z0〉 ∗ y::node〈 , z0〉 ∗ z0::node〈 , null〉) = -
(6)

where both x and y are program variables, and z0 is an existentially quantified
logical variable. In the second case z0 is a shared cutpoint referenced by both x

and y, and thus the state is not changed. As illustrated, the abstraction transi-
tion function abs eliminates unimportant cutpoints (during analysis) to ensure
termination. Its type is defined as follows:

abs : SH→ SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it
as another conjunctive state σ′. Below are its rules.

abs(σ ∧ x0=e) =df σ[e/x0] abs(σ ∧ e=x0) =df σ[e/x0]

x0 /∈ Reach(σ)

abs(x0::c〈v∗〉 ∗ σ) =df σ ∗ true

isdatat(c1) c2〈u∗2〉 ≡ Φ
p::c1〈v∗1〉 ∗ σ1 ` p::c2〈v∗2〉 ∗ σ2 Reach(p::c2〈v∗2〉 ∗ σ2) ∩ {v∗1} = ∅

abs(p::c1〈v∗1〉 ∗ σ1) =df p::c2〈v∗2〉 ∗ σ2
The first two rules eliminate logical variables (x0) by replacing them with their
equivalent expressions (e). The third rule is used to eliminate any garbage (heap
part led by a logical variable x0 unreachable from the other part of the heap)
that may exist in the heap. As x0 is already unreachable from, and not usable
by, the program variables, it is safe to treat it as garbage true, for example the
x0 in x::node〈 , null〉 ∗ x0::node〈 , null〉 where only x is a program variable.

The last rule of abs plays the most significant role which intends to eliminate
shape formulae led by logical variables (all variables in v∗1). It tries to fold data
nodes up to a predicate node. It confirms that c1 is a data node definition and
c2 is a predicate. Meanwhile it also ensures that the latter is a sound abstraction
of the former by entailment checking, and the logical parameters of c1 are not
reachable from other part of the heap (so that the abstraction does not lose
necessary information). The function Reach is defined as follows:

Reach(σ) =df

⋃
v∈fv(σ)

ReachVar(κ∧π, v) where σ ::= ∃u∗·κ∧π

returning all variables which are reachable from free variables in the abstract
state σ. The function ReachVar(κ ∧ π, v) returns the minimal set of variables
satisfying the relationship below:

Loop Invariant Synthesis in a Combined Domain 11

{v} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ ∧ π, v) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |
∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉 ∗ κ1)} ⊆ ReachVar(κ∧π, v)

That is, it is composed of aliases of v and variables reachable from v. As in the
previous example: abs(x::node〈 , z0〉 ∗ z0::node〈 , null〉) x::ll〈n0〉 ∧ n0=2.

During the analysis, we apply the above abstraction rules (following the
given order) onto the current abstract state exhaustively until it stabilises. Such
convergence is confirmed because the abstract shape domain is finite due to the
bounded numbers of variables and predicates, as discussed later.

Finally the lifting function is overloaded for abs to lift both its domain and
range to disjunctive abstract states PSH:

abs†
∨
σi =df

∨
abs(σi)

which allows it to be used in the analysis.

Join operator. The operator join is applied over two conjunctive abstract
states, trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in

if κ1 ` κ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (joinπ(π1, π2))
else if κ2 ` κ1 ∗ true then ∃x∗1, x∗2 · κ1 ∧ (joinπ(π1, π2))
else σ1 ∨ σ2

where the rename function prevents naming clashes among logical variables of
σ1 and σ2, by renaming logical variables of same name in the two states with
fresh names. For example it will renew x0’s name in both states ∃x0 · x0=0 and
∃x0 · x0=1 to make them ∃x0 · x0=0 and ∃x1 · x1=1. After this procedure it
judges whether σ2 is an abstraction of σ1, or the other way round. If either case
holds, it regards the shape of the weaker state as the shape of the joined states,
and performs joining for numerical formulae with joinπ(π1, π2), the convex hull
operator over numerical domain [23]. Otherwise it keeps a disjunction of the two
states (as it would be unsound to join their shapes together in this case). Then
we lift this operator for abstract state ∆ as follows:

join†(∆1, ∆2) =df match ∆1, ∆2 with (
∨
i σ

1
i), (

∨
j σ

2
j) in

∨
i,j join(σ1

i , σ
2
j)

which essentially joins all pairs of disjunctions from the two abstract states, and
makes a disjunction of them.

Widening operator. The finiteness of the shape domain is confirmed by the
abstraction function. To ensure the termination of the whole analysis, we still
need to guarantee the convergence over the numerical domain. This task is ac-
complished by the widening operator.

The widening operator widen(σ1, σ2) is defined as

widen(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ
′
2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in

if κ1 ` κ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (widenπ(π1, π2))
else σ1 ∨ σ2

12 S. Qin, G. He, C. Luo, and W.-N. Chin

where the rename function has the same effect as above. Generally this operator
is analogous to join; the only difference is that we expect the second operand
σ2 is weaker than the first σ1, such that the widening reflects the trend of
such weakening from σ1 to σ2. In this case it applies the widening operation
widenπ(π1, π2) over the numerical domain [23]. Therefore, based on the widening
over conjunctive abstract states, we lift the operator over (disjunctive) abstract
states:

widen†(∆1, ∆2) =df match ∆1, ∆2 with (
∨
i σ

1
i), (

∨
j σ

2
j) in

∨
i,j widen(σ1

i , σ
2
j)

which is similar as its counterpart of the join operator. These three operations
provides termination guarantee while preserving soundness, as the following ex-
ample demonstrates.

Example 1 (Abstraction, join and widening). Assume we have two abstract states,
∆0 = x::node〈 , x0〉 ∗ x0::node〈 , null〉 and ∆1 = x::node〈 , x0〉 ∗ x0::node〈 , x1〉 ∗
x1::node〈 , null〉. We would like to discover a sound approximation for both
states. Firstly we perform abstractions on both to obtain two abstract states, say,
∆′0 = x::ll〈n0〉∧n0=2 and ∆′1 = x::ll〈n0〉∧n0=3. Then these two are joined to-
gether according to shape similarity to be ∆′′1 = x::ll〈n0〉∧(n0=2∨n0=3), which
transfers disjunction to numerical domain. Finally the joined state is widened
based on the first state ∆′0, yielding a state x::ll〈n0〉 ∧ n0≥2. It is a sound ab-
straction of both ∆0 and ∆1, and finishes the analysis with one more iteration.

Soundness and termination. The soundness of our analysis is ensured by the
soundness of the following: the entailment prover [21], the abstract semantics
(w.r.t. concrete semantics), the abstraction operation over shapes, and the join
and widening operators.

Theorem 1 (Soundness). Our analysis is sound due to soundness of entail-
ment checking, abstract semantics, operations of abstraction, join and widening.

The proof for entailment checking is by structural induction [21]; for abstract
semantics is by induction over program constructors; for abstraction follows di-
rectly the first two; and for join and widening is based on entailment checking
and soundness of corresponding numerical operators.

For the termination aspect, we have the result:

Theorem 2 (Termination). The iteration of our fixpoint computation will
terminate in finite steps for finite input of program and specification.

The proof is based on two facts: the finiteness over the shape domain provided
by our restriction on cutpoints, and the termination over the numerical domain
guaranteed by our widening operator. The first can be proved by claiming the
finiteness of all possible abstract states only with the shape information: recall-
ing our analysis algorithm where we set an upper bound n for shared cutpoints
(logical variables) we keep in track of, we know that the program and logical vari-
ables preserved in our analysis are finite. Meanwhile all possible shape predicates
are limited; therefore all the shape-only abstract states are finite. The second
is proved in the abstract interpretation frameworks for numerical domains [23].
These two facts guarantee the convergence of our analysis.

Loop Invariant Synthesis in a Combined Domain 13

5 Experiments and Evaluation

We have implemented a prototype system for evaluation purpose. The prototype
system was built in Objective Caml. We used Sleek [21] as the solver for en-
tailment checking over the heap domain, and Omega constraint solver [24] and
Fixcalc solver [23] for join and widening operations in the numerical domain.
Our test platform was an Intel Core 2 CPU 2.66GHz system with 8Gb RAM.

Program Function Time

create Creates a list with given length parameter 0.452

ins sort Inner loop of Fig. 1 0.824

ins sort Outer loop of Fig. 1 4.372

delete Disposes a list 0.720

traverse Traverses a list 0.636

append Appends two lists 0.312

partition Auxiliary operation used by Quick-sort 1.497

merge Merges two sorted lists to be one sorted list 1.972

split
Divides a list into two sublists with
length difference of at most one

0.354

select Selects the smallest node of a list 0.692

select sort Outer loop of selection sort 4.892

tree insert Inserts a node into a binary search tree 1.364

tree search Finds a node in a binary search tree 1.294

Fig. 5. Selected Experimental Results.

Figure 5 describes the programs with which we performed experiments. The
first column denotes the names of the programs. The second column states the
programs’ functionalities. The last column exhibits the time in second taken
by our analysis. As can be seen from their functions, these programs involve
recursive data structures such as (sorted) linked lists and binary (search) trees,
and employ loops to manipulate these data structures (and some of them even
have nested loops). Our target is to verify these programs with the help of our
analysis over the loops they invoke, such that user annotations for while loops
can be avoided. Our experiments have confirmed that Hip/Sleek can verify all
these programs successfully when supplied with loop invariants discovered by our
analysis. According to our experience, these experiments just require the bound
of shared cutpoints be a reasonably small number, say no more than twice of
the number of program variables.

We have two main observations from our experimental results. The first is
that we can handle many data structures with rich program properties they
bear. To analyse these loops, we need to deal with both the list and list segment
predicates to capture the linked list data structure, as well as their sorted version
for the sorting algorithms. We can also handle tree-like predicates such as binary
trees and binary search trees. Meanwhile these predicates also come along with
many properties such as the length of the list and size/height of the tree, and the

14 S. Qin, G. He, C. Luo, and W.-N. Chin

minimum/maximum value of a sorted list/binary search tree. Based on them,
our analysis is capable of expressing the invariants of these properties in terms
of the constraints over the predicates’ parameters.

Beyond the number of predicates and properties we can process, another
observation on our analysis is that we can process them rather precisely. For
example the list creation program creates a list with the same length as user
input, and list traverse does not change list’s length. Besides these, some loops
provide critical invariants for the method running them to function correctly.
For example, the quicksort algorithm partitions a list into three parts, where
two are lists and the third just one node, whose value is exactly in the middle
of that of the two other lists (partition in the table). We use a list bound
predicate to indicate that fact which is successfully inferred by our analysis. We
can also infer that the first loop of a mergesort (split in the table) can divide
the list into two whose length difference is at most one, which is unimportant
for the algorithm’s functional correctness but essential for its performance. For
tree insert, we have the result that the tree’s height is increased at most one,
and the minimum/maximum value of the new binary search tree will be exactly
the inserted value, if that value is out of the value bounds of the original tree.
Such invariants are sufficiently precise to prove the functional correctness of all
these programs with the given predicates.

6 Related Work and Conclusion

Related works. For heap-manipulating programs with any form of recursion
(be it loop or recursive method call), dramatic advances have been made in
synthesising their invariants/specifications. The local shape analysis [9] infers
loop invariants for list-processing programs, followed by the SpaceInvader tool
to infer full method specifications over the separation domain, so as to verify
pointer safety for larger industrial codes [3, 27]. The SLAyer tool [10] implements
an inter-procedural analysis for programs with shape information. To deal with
also size information (such as number of nodes in lists/trees), THOR [19] derives
a numerical program from the original heap-processing one in a sound way,
such that the size information can be obtained with a traditional loop invariant
synthesis. A similar approach [11] combines a set domain (for shape) with its
cardinality domain (for corresponding numerical information) in a more general
framework. Compared with these works, our approach can handle data structures
with stronger invariants such as sortedness and binary search property, which
have not been addressed in the previous works.

One more work to be mentioned is the relational inductive shape analysis [4].
It employs inductive checkers to express both shape and numerical information.
Our approach has four advantages over theirs: firstly, we try to keep as many as
possible shared cutpoints (logical variables) during the analysis (within a preset
bound), whereas they do not preserve such cutpoints (which is witnessed by their
joining rules over the shape domain). Therefore our analysis is essentially more
precise than theirs, e.g. in the second scenario of (6) described in Section 4.2.

Loop Invariant Synthesis in a Combined Domain 15

Meanwhile, our approach can deal with data structures with loops in them (say
cyclic linked-lists), whereas they do not have a mechanism to handle it. An
example in point is the state x::ls〈m, y〉∗y::ls〈y, n〉∧n>0 involving both a shared
cutpoint y and a circled list y::ls〈y, n〉 ∧ n>0, neither of which can be handled
by their work (while ours is capable of that). Another advantage of our approach
over theirs is that they only demonstrate how to analyse a program with one
particular shape, such as their examples analysing programs which manipulate
binary search trees and red-black trees without changing the variety of shape in
the heap. Comparatively, we allow different predicates to appear in the analysis
of one program, like in our motivating example (thanks to our more flexible
abstraction operation). Lastly, their work is mainly from a theory perspective
as they do not employ numerical reasoners to solve the relational constraints
in their implementation; on the contrary, we discharge all the numerical and
relational constraints with automated reasoners [23, 24].

There are also many other approaches that can synthesise shape-related
program invariants than those based on separation logic. The shape analysis
framework TVLA [26] is based on three-valued logic. It is capable of handling
complicated data structures and properties, such as sortedness. Guo et al. [12]
reported a global shape analysis that discover inductive structural shape invari-
ants from the code. Kuncak et al. [16] developed a role system to express and
track referencing relationships among objects, where an object’s role (type) de-
pends on, and changes according to, the mutation of its referencing. Hackett and
Rugina [13] can deal with AVL-trees but is customised to handle only tree-like
structures with height property. Compared with these works, separation logic
based approach benefits from the frame rule and hence supports local reasoning.

Classical abstract interpretation [7] and its applications such as automated
assertion discovery [8, 15, 17] mainly focus on finding numerical program proper-
ties. Compared with their works, ours is also founded on the abstract interpre-
tation framework but tries to discover loop invariants with both separation and
numerical information. Meanwhile, we can also utilise their techniques of join
and widening to reason about the numerical domain, as we did for the work [23].

Concluding Remarks. We have reported an analysis which allows us to synthe-
sise sound and useful loop invariants over a combined separation and numerical
domain. The key components of our analysis include novel operations for ab-
straction, join and widening in the combined domain. We have built a prototype
system and the initial experimental results are encouraging.

Acknowledgement. This work was supported by EPSRC Projects EP/G042322/1
and EP/E021948/1 and MoE Tier-2 Project R-252-000-444-112. We thank Florin
Craciun for his precious comments.

References

1. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO, 2005.

2. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. In 18th CAV, 2006.

16 S. Qin, G. He, C. Luo, and W.-N. Chin

3. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In 36th POPL, January 2009.

4. B. Chang and X. Rival. Relational inductive shape analysis. In POPL, 2008.
5. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape,

size and bag properties. In 12th ICECCS, 2007.
6. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Enhancing modular oo verifi-

cation with separation logic. In POPL, January 2008.
7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
8. P. Cousot and R. Cousot. On abstraction in software verification. In CAV, 2002.
9. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation

logic. In TACAS, 2006.
10. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-

rated heap abstractions. In SAS, 2006.
11. S. Gulwani, T. Lev-Ami, and M. Sagiv. A Combination Framework for Tracking

Partition Sizes. In POPL, 2009.
12. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion

synthesis. In PLDI, 2007.
13. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In

POPL, 2005.
14. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.

In POPL, 2001.
15. L. Kovács and T. Jebelean. An algorithm for automated generation of invariants

for loops with conditionals. In SYNASC (Symbolic and Numeric Algorithms for
Scientific Computing), 2005.

16. V. Kuncak, P. Lam, and M. Rinard. Role analysis. In POPL, 2002.
17. K. R. M. Leino and F. Logozzo. Loop invariants on demand. In APLAS, 2005.
18. K. R. M. Leino. Dafny: an automatic program verifier for functional correctness.

To appear at LPAR-16, 2010.
19. S. Magill, M. Tsai, P. Lee, and Y. Tsay. Thor: A tool for reasoning about shape

and arithmetic. In CAV, 2008.
20. H. H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. In

20th CAV, 2008.
21. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape

and size properties via separation logic. In 8th VMCAI, 2007.
22. M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In

POPL, 2008.
23. C. Popeea and W.-N. Chin. Inferring disjunctive postconditions. In Proceedings

of 11th Asian Computing Science Conference, 2006.
24. P. Pugh. The Omega Test: a fast and practical integer programming algorithm for

dependence analysis. In Communications of the ACM, 1992.
25. J. Reynolds. Separation logic: a logic for shared mutable data structures. In 17th

LICS, 2002.
26. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems, 24(3):217–298, 2002.
27. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.

Scalable shape analysis for systems code. In 20th CAV, 2008.

