

Worksheet for Lab #1 Ex3: Packing

http://www.comp.nus.edu.sg/~cs1010/labs/2016s1/lab1/threeSimpleExercises.html

Task Statement

You are given a rectangle tray and an unlimited supply of slabs. An example of a 12×20 tray and an 8×3 slab are shown in Figure 1a below.

You are to find the **maximum number of slabs** that can be packed into the tray. The slabs may be packed in either one of the two orientations, as shown in Figure 1b above, but not in a mix of orientations.

The figures above show that the tray may be filled with 6 slabs arranged in one orientation, or 8 slabs arranged in the other orientation. Hence, the answer is 8.

Step 1What are the inputs and outputs? Are there intermediate results? Fill the table below with their variable names.

Inputs	Intermediate results	Outputs

Step 2

There are two orientations to consider. The logic for both should be quite similar. Let's focus on one orientation first. Write down your algorithm (pseudo-code) below for finding the number of slabs in one orientation. You may use additional variables if necessary.

Step 3

Walk through your algorithm in step 2 with the following 3 sets of test data and write down the result:

Test data	Values of variables	Result
12 20 8 3		
60 35 6 8		
100 100 20 20		

Step	4
------	---

Modify the algorithm in step 2 to find the number of slabs in the other orientatio	Modify the algorithm	in step 2 to find the	number of slabs in the	other orientation.
--	----------------------	-----------------------	------------------------	--------------------

Step 5

Walk through your algorithm in step 4 with the following 3 sets of test data and write down the result:

Test data	Values of variables	Result	
12 20 8 3			
60 35 6 8			
100 100 20 20			

Step 6

Combine your results in steps 3 and 5. Determine the final result.

Test data	Result of step 3	Result of step 5	Final result
12 20 8 3			
60 35 6 8			
100 100 20 20			