
UNIT 5

Top‐Down Design & Functions

http://www.comp.nus.edu.sg/~cs1010/

Unit 5: Top-Down Design & Functions
Top-Down Design & Functions Unit5 - 2NUS

Objectives:
 How to analyse, design, and implement a

program
 How to break a problem into sub-problems with

step-wise refinement
 How to create your own user-defined functions

Reference:
 Chapter 3 Top-Down Design with Functions

Unit 4: Top-Down Design & Functions (1/2)
Top-Down Design & Functions Unit5 - 3NUS

1. Problem Solving
2. Case Study: Top-Down Design

 Computing the weight of a batch of flat washers
 Incremental Refinement (some hierarchical chart)
 Top-down design (of program) with structure charts

3. Function Prototypes
4. Default Return Type
5. ‘return’ statement in main()

Unit 4: Top-Down Design & Functions (2/2)
Top-Down Design & Functions Unit5 - 4NUS

6. Writing Functions
7. Exercise #1: A Simple “Drawing” Program
8. Pass-By-Value and Scope Rules
9. Global Variables

Math Functions (1/2)
Top-Down Design & Functions Unit3 - 5NUS

 In C, there are many libraries offering functions for you
to use.

 Eg: scanf() and printf() – requires to include <stdio.h>
 In Exercise #5, for t2 you may use t*t, or the pow()

function in the math library: pow(t, 2)
 pow(x, y) //computes x raised to the power of y

 To use math functions, you need to
 Include <math.h> AND
 Compile your program with –lm option (i.e. gcc –lm …)

 See Tables 3.3 and 3.4 (pages 88 – 89) for some math
functions

Math Functions (2/2)
Top-Down Design & Functions Unit3 - 6NUS

 Some useful math functions
 Function abs(x) from <stdlib.h>; the rest from <math.h>

Q: Since the parameters x
and y in pow() function are of
double type, why can we call
the function with pow(t, 2)?

A: Integer value can be
assigned to a double
variable/parameter.

Function prototype:
double pow(double x, double y)

function return type

Math Functions: Example (1/2)
Top-Down Design & Functions Unit3 - 7NUS

 Program Unit3_Hypotenuse.c computes the hypotenuse
of a right-angled triangle given the lengths of its two
perpendicular sides

ଶ ଶ
h

a

b

Math Functions: Example (2/2)
Top-Down Design & Functions Unit3 - 8NUS

// Unit3_Hypotenuse.c
// Compute the hypotenuse of a right-angled triangle.
#include <stdio.h>
#include <math.h>

int main(void) {
float hypot, side1, side2;

printf("Enter lengths of the 2 perpendicular sides: ");
scanf("%f %f", &side1, &side2);

hypot = sqrt(side1*side1 + side2*side2);
// or hypot = sqrt(pow(side1, 2) + pow(side2, 2));

printf("Hypotenuse = %6.2f\n", hypot);

return 0;
}

Unit3_Hypotenuse.c

Remember to compile with –lm option!

Math Functions: Example (2/2)
Top-Down Design & Functions Unit3 - 9NUS

// Unit3_Hypotenuse.c
// Compute the hypotenuse of a right-angled triangle.
#include <stdio.h>
#include <math.h>

int main(void) {
float hypot, side1, side2;

printf("Enter lengths of the 2 perpendicular sides: ");
scanf("%f %f", &side1, &side2);

hypot = sqrt(side1*side1 + side2*side2);
// or hypot = sqrt(pow(side1, 2) + pow(side2, 2));

printf("Hypotenuse = %6.2f\n", hypot);

return 0;
}

Unit3_Hypotenuse.c

Function
• “sqrt()” is a function

• Input 9
• Output 3

sqrt()

9

3

NUS Top-Down Design & Functions Unit5 - 10

Writing Functions (1/5)
Top-Down Design & Functions Unit5 - 11NUS

 A program is a collection of functions (modules) to transform inputs
to outputs

 In general, each box in a structure chart is a sub-problem which is
handled by a function

 In mathematics, a function maps some input values to a single
(possibly multiple dimensions) output

 In C, a function maps some input values to zero or more output
values
 No output: void func(…) { … }
 One output, e.g., double func(…) { …; return value; }
 More outputs through changing input values (we’ll cover this later)

 Return value (if any) from function call can (but need not) be
assigned to a variable.

Function
• In general, a function

can have
• no input, or
• no output,
• or any combinations

sqrt()

9

3

Input, or
called

arguments,
or

parameters

Output or
return value

NUS Top-Down Design & Functions Unit5 - 12

Writing Functions (2/5)
Top-Down Design & Functions Unit5 - 13NUS

Syntax:
function interface comment
ftype fname (formal parameters list)
{

local variable declarations
executable statements
return statement (if appropriate)

}

/*
* Finds the square root of the
* sum of the squares of the two parameters
* Precond: x and y are non-negative numbers
*/

double sqrt_sum_square(double x, double y) {
// x and y above are the formal parameters

double sum_square; // local variable declaration

sum_square = pow(x,2) + pow(y,2);
return sqrt(sum_square);

}

Unit5_FunctionEg.c

Notes:
Precondition: describes conditions that should be true before calling function.
Postcondition: describes conditions that should be true after executing function.

These are for documentation purpose.

Writing Functions (3/5)
Top-Down Design & Functions Unit5 - 14NUS

Actual parameters (also arguments) are values passed to function for computation
Formal parameters (or simply parameters) are placeholder when function is
defined.

 Matching of actual and formal parameters from left to right
 Scope of formal parameters, local variables are within the function only

int main(void) {
double y = 1.23; // not the same as y

// in sqrt_sum_square
double z = 4.56;

// x below not the same as x in sqrt_sum_square
double x = sqrt_sum_square(y, z);

printf("The square root of the sum of square ");
printf("of %.2f and %.2f is %.2f\n", y, z, x);
return 0;

}

double sqrt_sum_square(double x, double y)
{

// x and y above are formal parameters

double sum_square; // local variable

sum_square = pow(x,2) + pow(y,2);

return sqrt(sum_square);
}

 Arrows indicate flow of control between main() and the function

 Add function prototype at top of program, before main() function

// Function prototype at top of program
double sqrt_sum_square(double, double);

Writing Functions (4/5)
Top-Down Design & Functions Unit5 - 15NUS

The complete
program

#include <stdio.h>
#include <math.h>

/* Function prototype placed at top of program */
double sqrt_sum_square(double, double);

int main(void) {
double y = 1.23; // not the same as y in sqrt_sum_square
double z = 4.56;

// x below has nothing to do with x in sqrt_sum_square
double x = sqrt_sum_square(y, z);
// in the previous statement, y and z are actual parameters

printf("The square root of the sum of squares ");
printf("of %.2f and %.2f is %.2f\n", y, z, x);

return 0;
}

/* Finds the square root of the
* sum of the squares of the two parameters
* Precond: x and y are non-negative numbers
*/

double sqrt_sum_square(double x, double y) {
// x and y above are the formal parameters

double sum_square; // local variable declaration

sum_square = pow(x,2) + pow(y,2);
return sqrt(sum_square);

}

Unit5_FunctionEg.c

Writing Functions (5/5)
Top-Down Design & Functions Unit5 - 16NUS

 Use of functions allow us to manage a complex (abstract) task with
a number of simple (specific) ones.
 This allows us to switch between abstract and go to specific at ease to

eventually solve the problem.

 Function allows a team of programmers working together on a large
program – each programmer will be responsible for a particular set
of functions.

 Function is good mechanism to allow re-use across different
programs. Programmers use functions like building blocks.

 Function allows incremental implementation and testing (with the
use of driver function to call the function and then to check the
output)

 Acronym NOT summarizes the requirements for argument list
correspondence. (N: number of arguments, O: order, and T: type).

WHY FUNCTIONS?

Writing Functions (4/5)
Top-Down Design & Functions Unit5 - 18NUS

The complete
program

#include <stdio.h>
#include <math.h>

/* Function prototype placed at top of program */
double sqrt_sum_square(double, double);

int main(void) {
double y = 1.23; // not the same as y in sqrt_sum_square
double z = 4.56;

// x below has nothing to do with x in sqrt_sum_square
double x = sqrt_sum_square(y, z);
// in the previous statement, y and z are actual parameters

printf("The square root of the sum of squares ");
printf("of %.2f and %.2f is %.2f\n", y, z, x);

return 0;
}

/* Finds the square root of the
* sum of the squares of the two parameters
* Precond: x and y are non-negative numbers
*/

double sqrt_sum_square(double x, double y) {
// x and y above are the formal parameters

double sum_square; // local variable declaration

sum_square = pow(x,2) + pow(y,2);
return sqrt(sum_square);

}

Unit5_FunctionEg.c

Isn’t it better?
Top-Down Design & Functions Unit5 - 19NUS

#include <stdio.h>
#include <math.h>

/* Function prototype placed at top of program */
double sqrt_sum_square(double, double);

int main(void) {
double y = 1.23; // not the same as y in sqrt_sum_square
double z = 4.56;

// x below has nothing to do with x in sqrt_sum_square
double x = sqrt(pow(y,2) + pow (z,2));
// in the previous statement, y and z are actual parameters

printf("The square root of the sum of squares ");
printf("of %.2f and %.2f is %.2f\n", y, z, x);

return 0;
}

Is it always shorter the better?
• In Chinese we say:

• “You learn and revise knowledge according to a regular schedule”
• In Chinese modern translation:

• “學習知識并按一定的時間去溫習它”
• In Ancient Chinese

• “學而時習之”

NUS Top-Down Design & Functions Unit5 - 20

Captures common patterns
• E.g. computing binomial coefficient

݊
݇ ൌ

݊!
݇! ݊ െ ݇ !

• You won’t write code like
int binoCoff(int n, int k) {

a = code for computing 1x2x3…x n
b = code for computing 1x2x3…x k
c = code for computing 1x2x3…x(n‐k)
return a / (b * c);

}

Common
Patterns

NUS Top-Down Design & Functions Unit5 - 21

Captures common patterns
• E.g. computing binomial coefficient

݊
݇ ൌ

݊!
݇! ݊ െ ݇ !

• Write a function factorial(n) then
int binoCoff(int n, int k) {

a = factorial(n)
b = factorial(k)
c = factorial(n‐k)
return a / (b * c);

}

NUS Top-Down Design & Functions Unit5 - 22

Advantages of Functions Abstraction
• Captures common patterns
• Makes it more natural to think about tasks and subtasks
• Makes programs easier to understand
• Allows for code reuse

• E.g. the factorial function can be used for other functions, e.g.
computing the natural number e

• Separates specification from implementation
• I can ask my colleagues/project partners to write the function

factorial for me
• And he can write in any method he wants

• Make debugging easier
• Hide irrelevant information

NUS Top-Down Design & Functions Unit5 - 23

Made of?
How does it

work?

NUS Top-Down Design & Functions Unit5 - 24

NUS Top-Down Design & Functions Unit5 - 25

rocket male female

Ex #1: A Simple “Drawing” Program (1/3)
Top-Down Design & Functions Unit5 - 26NUS

Problem:
 Write a program Unit5_DrawFigures.c to

draw a rocket ship (which is a triangle over a
rectangle over an inverted V), a male stick
figure (a circle over a rectangle over an
inverted V), and a female stick figure (a circle
over a triangle over an inverted V)

Analysis:
 No particular input needed, just draw the needed 3 figures
 There are common shapes shared by the 3 figures

Design:
 Algorithm (in words):

1. Draw Rocket ship
2. Draw Male stick figure (below Rocket ship)
3. Draw Female stick figure (below Male stick figure)

rocket male female

Ex #1: A Simple “Drawing” Program (2/3)
Top-Down Design & Functions Unit5 - 27NUS

Design (Structure Chart):

Draw 3
Figures

Draw Rocket
Ship

Draw
Triangle

Draw
Rectangle

Draw
Inverted V

Draw Male
Stick Figure

Draw Circle Draw
Rectangle

Draw
Inverted V

Draw Female
Stick Figure

Draw Circle Draw
Triangle

Draw
Inverted V

rocket male female

Ex #1: A Simple “Drawing” Program (3/3)
Top-Down Design & Functions Unit5 - 28NUS

Implementation (partial program)

Write a complete program
Unit5_DrawFigures.c

#include <stdio.h>

void draw_rocket_ship();
void draw_male_stick_figure();
void draw_circle();
void draw_rectangle();

int main(void) {
draw_rocket_ship();
printf("\n\n");

draw_male_stick_figure();
printf("\n\n");

return 0;
}

void draw_rocket_ship() {
}

void draw_male_stick_figure() {
}

void draw_circle() {
printf(" ** \n");
printf(" * * \n");
printf(" * * \n");
printf(" ** \n");

}

void draw_rectangle() {
printf(" ****** \n");
printf(" * * \n");
printf(" * * \n");
printf(" * * \n");
printf(" ****** \n");

}

Unit5_DrawFiguresPartial.c

Problem Solving (1/2)
Top-Down Design & Functions Unit5 - 29NUS

Analysis

Design

Implementation

Testing

Iterative
process

Determine
problem
features

Write
algorithm

Produce
code

Check for
correctness and

efficiency

Problem Solving (2/2)
Top-Down Design & Functions Unit5 - 30NUS

stepwise
refinement

(hierarchy of)
sub-problems

Can sub-problems
be implemented?

Knowledge in C
and its libraries Knowledge in

algorithms

Knowledge in
data structures
(mostly CS2040)

NO

YES

Implementation
& Testing

structure chart

Analysis and Design

Top-Down Design (1/13)
Top-Down Design & Functions Unit5 - 31NUS

 We introduced some math functions in the previous unit.
 These math functions are provided in <math.h>.
 Such functions provide code reusability. Once the

function is defined, we can use it whenever we need it,
and as often as we need it.

 Can we create our own functions?
 In the following case study, we introduce top-down design

in approaching an algorithm problem.
 In the process, we encounter certain tasks that are

similar, hence necessitating the creation of user-defined
function.

Decomposition!

Top-Down Design (2/13)
Top-Down Design & Functions Unit5 - 32NUS

Case Study: You work for a hardware company that
manufactures flat washers. To estimate shipping costs,
your company needs a program that computes the weight
of a specified quantity of flat washers.

rim area = (d2/2)2 – (d1/2)2

Top-Down Design (3/13)
Top-Down Design & Functions Unit5 - 33NUS

 Analysis:
 To get the weight of a specified qty of washers, we need to know

the weight of each washer
 To get the weight of a washer, we need its volume and density

(weight = volume  density)
 To get the volume, we need its rim area and thickness (volume =

rim area  thickness)
 To get the rim area, we need the diameters d2 and d1

Total weight

qty weight

volume density

rim area thickness

d2 d1

rim area = (d2/2)2 – (d1/2)2

qty, density,
thickness, d2
and d1 are given
as inputs

Top-Down Design (4/13)
Top-Down Design & Functions Unit5 - 34NUS

 Design (pseudocode):
1. Read inputs (qty, density, thickness, d2,

d1)
2. Compute weight of one washer

2.1 Compute area of small circle (hole)
using d1

2.2 Compute area of big circle using d2
2.3 Subtract small area from big area to

get rim area
2.4 Compute volume = rim area 

thickness
2.5 Compute weight = volume  density

3. Compute total weight of specified
number of washer = weight  qty

4. Output the calculated total weight

Total weight

qty weight

volume density

rim area thickness

d2 d1

Step-wise
refinement: Splitting
a complex task (step
2) into subtasks
(steps 2.1 – 2.5)

Top-Down Design (5/13)
Top-Down Design & Functions Unit5 - 35NUS

 Design (hierarchical chart):
Compute Total

Weight

Ask for all
inputs

qty?

density?

thickness?

d1?

d2?

Compute
Weight

Compute hole
area (use d1)

Compute big
circle area
(use d2)

Compute rim
area

Compute
volume (use
thickness)

Compute
weight (use

density)

Compute
weight x qty

Output total
weight

Note that the computation
of area (which employs
the same formula) is
performed twice.

Top-Down Design (6/13)
Top-Down Design & Functions Unit5 - 36NUS

 Design (structure chart):
 A documentation tool that shows the relationship among the sub-

tasks

Compute Total
Weight

Input : qty,
density,

thickness, d1, d2

Compute Weight
of a single

washer

Compute circle
area

Compute total
Weight

Output total
weight

This is called twice.

Top-Down Design (7/13)
Top-Down Design & Functions Unit5 - 37NUS

#include <stdio.h>
#include <math.h>
#define PI 3.14159

int main(void) {
double d1, // hole circle diameter

d2, // big circle diameter
thickness,
density;

int qty;

double unit_weight, // single washer's weight
total_weight, // a batch of washers' total weight
outer_area, // area of big circle
inner_area, // area of small circle
rim_area; // single washer's rim area

// read input data
printf("Inner diameter in cm: "); scanf("%lf", &d1);
printf("Outer diameter in cm: "); scanf("%lf", &d2);
printf("Thickness in cm: "); scanf("%lf", &thickness);
printf("Density in grams per cubic cm: "); scanf("%lf", &density);
printf("Quantity: "); scanf("%d", &qty);

Unit5_Washers.c

Top-Down Design (8/13)
Top-Down Design & Functions Unit5 - 38NUS

// compute weight of a single washer
outer_area = pow(d2/2, 2) * PI;
inner_area = pow(d1/2, 2) * PI;
rim_area = outer_area - inner_area;
unit_weight = rim_area * thickness * density;

// compute weight of a batch of washers
total_weight = unit_weight * qty;

// output
printf("Total weight of the batch of %d washers is %.2f grams.\n",

qty, total_weight);

return 0;
}

Unit5_Washers.c

gcc -Wall Unit5_Washers.c -lm

Top-Down Design (9/13)
Top-Down Design & Functions Unit5 - 39NUS

 Note that area of circle is computed twice. For code
reusability, it is better to define a function to compute
area of a circle.

double circle_area(double diameter) {
return pow(diameter/2, 2) * PI;

}

 We can then call/invoke this function whenever we need
it.
circle_area(d2)  to compute area of circle with diameter d2

circle_area(d1)  to compute area of circle with diameter d1

Top-Down Design (10/13)
Top-Down Design & Functions Unit5 - 40NUS

#include <stdio.h>
#include <math.h>
#define PI 3.14159

double circle_area(double diameter) {
return pow(diameter/2, 2) * PI;

}

int main(void) {

// identical portion omitted for brevity

// compute weight of a single washer

rim_area = circle_area(d2) - circle_area(d1);
unit_weight = rim_area * thickness * density;

// identical portion omitted for brevity
}

Function
definition

Calling circle_area()
twice.

Top-Down Design (11/13)
Top-Down Design & Functions Unit5 - 41NUS

 Components of a function definition
 Header (or signature): consists of return type, function name, and

a list of parameters (with their types) separated by commas
 Function names follow identifier rules (just like variable names)
 May consist of letters, digit characters, or underscore, but cannot

begin with a digit character
 Return type is void if function does not need to return any value
 Function body: code to perform the task; contains a return

statement if return type is not void

double circle_area(double diameter) {
return pow(diameter/2, 2) * PI;

}

Return type Function name Parameter

Function body

Top-Down Design (12/13)
Top-Down Design & Functions Unit5 - 42NUS

 Values of arguments are copied into parameters

rim_area = circle_area(d2) - circle_area(d1);

Value of d2 copied to
parameter diameter

Value of d1 copied to
parameter diameter

 Arguments need not be variable names; they can be
constant values or expressions

circle_area(12.3)  To compute area of circle with diameter 12.3

circle_area((a+b)/2)  To compute area of circle with diameter
(a+b)/2, where a and b are variables

double circle_area(double diameter)
{

return pow(diameter/2, 2) * PI;
}

Top-Down Design (13/13)
Top-Down Design & Functions Unit5 - 43NUS

 Preferred practice: add function prototype
 Before main() function
 Parameter names may be omitted, but not their type

#include <stdio.h>
#include <math.h>
#define PI 3.14159

double circle_area(double);

int main(void) {
// identical portion omitted for brevity

// compute weight of a single washer
rim_area = circle_area(d2) - circle_area(d1);
unit_weight = rim_area * thickness * density;

// identical portion omitted for brevity
}

double circle_area(double diameter) {
return pow(diameter/2, 2) * PI;

}
Function definition

Function prototype

Unit5_WashersV2.c

Line 32 (see
slide 21)

Line 45 (see slide 21)

Function Prototypes (1/2)
Top-Down Design & Functions Unit5 - 44NUS

 It is a good practice to put function prototypes at the top
of the program, before the main() function, to inform the
compiler of the functions that your program may use and
their return types and parameter types.

 Function definitions to follow after the main() function.
 Without function prototypes, you will get error/warning

messages from the compiler.

Function Prototypes (2/2)
Top-Down Design & Functions Unit5 - 45NUS

 Let’s remove (or comment off) the function prototype for
circle_area() in Unit5_WashersV2.c

 Messages from compiler:
Unit5_WashersV2.c: In function ‘main’:
Unit5_WashersV2.c:32:5: warning: implicit declaration of
function ‘circle_area’
Unit5_WashersV2.c: At top level:
Unit5_WashersV2.c:45:8: error: conflicting types for
‘circle-area’
Unit5_WashersV2.c:32:16: previous implicit declaration of
‘circle_area’ was here

 Without function prototype, compiler assumes the default (implicit)
return type of int for circle_area() when the function is used in line
32, which conflicts with the function header of circle_area() when the
compiler encounters the function definition later in line 45.

Default Return Type (1/3)
Top-Down Design & Functions Unit5 - 46NUS

 A ‘type-less’ function has default return type of int

 Program can be compiled, but with warning:

1 #include <stdio.h>
2
3 int main(void) {
4 printf("%d\n", f(100, 7));
5 return 0;
6 }
7
8 f(int a, int b) {
9 return a*b*b;
10 }

warning: implicit declaration of function 'f'  line 4
(due to absence of function prototype)
warning: return type defaults to 'int'  line 8

Default Return Type (2/3)
Top-Down Design & Functions Unit5 - 47NUS

 Another example

 Program can be compiled, but with warning:

1 #include <stdio.h>
2
3 int main(void) {
4 f(100, 7);
5 return 0;
6 }
7
8 void f(int a, int b) {
9 return a*b*b;
10 }

warning: implicit declaration of function 'f'  line 4
(due to absence of function prototype)
warning: conflicting types for 'f'  line 8

Without function prototype,
compiler assumes function f to
be an int function when it
encounters this.

However, f is defined as a
void function here, so it
conflicts with above.

Default Return Type (3/3)
Top-Down Design & Functions Unit5 - 48NUS

 Tips
 Provide function prototypes for all functions
 Explicitly specify the function return type for all functions

1 #include <stdio.h>
2
3 int f(int, int);
4
5 int main(void) {
6 printf("%d\n", f(100, 7));
7 return 0;
8 }
9
10 int f(int a, int b) {
11 return a*b*b;
12 }

‘return’ statement in main()
Top-Down Design & Functions Unit5 - 49NUS

 Q: Why do we write return 0; in our main() function?
 Answer:

 Our main() function has this header
int main(void)

 Hence it must return an integer (to the operating system)
 The value 0 is chosen to be returned to the operating system

(which is UNIX in our case). This is called the status code of the
program.

 In UNIX, when a program terminates with a status code of 0, it
means a successful run.

 You may optionally check the status code to determine the
appropriate follow-up action. In UNIX, this is done by typing
echo $? immediately after you have run your program. – You
do not need to worry about this.

There Is a Saying

NUS Top-Down Design & Functions Unit5 - 50

Pass-By-Value and Scope Rules (1/4)
Top-Down Design & Functions Unit5 - 51NUS

 In C, the actual parameters are passed to the formal
parameters by a mechanism known as pass-by-value.

double sqrt_sum_square(double x, double y) {

double sum_square;
sum_square = pow(x,2) + pow(y,2);
return sqrt(sum_square);

}

int main(void) {

double a = 10.5, b = 7.8;
printf("%.2f\n", srqt_sum_square(3.2, 12/5);
printf("%.2f\n", srqt_sum_square(a, a+b);
return 0;

}

a b
10.5 7.8

3.2 and 2.0

3.2

Actual parameters:

2.0
x y
Formal parameters:

10.5 18.3

10.5 and 18.3

Pass-By-Value and Scope Rules (2/4)
Top-Down Design & Functions Unit5 - 52NUS

 Formal parameters are local to the function they are declared in.
 Variables declared within the function are also local to the function.
 Local parameters and variables are only accessible in the function

they are declared – scope rule.
 When a function is called, an activation record is created in the call

stack, and memory is allocated for the local parameters and
variables of the function.

 Once the function is done, the activation record is removed, and
memory allocated for the local parameters and variables is released.

 Hence, local parameters and variables of a function exist in memory
only during the execution of the function. They are called automatic
variables.

 In contrast, static variables exist in the memory even after the
function is executed. (We will not use static variables in CS1010.)

Pass-By-Value and Scope Rules (3/4)
Top-Down Design & Functions Unit5 - 53NUS

 Spot the error in this code:

int f(int);

int main(void) {
int a;
...

}

int f(int x) {
return a + x;

}



Pass-By-Value and Scope Rules (4/4)
Top-Down Design & Functions Unit5 - 54NUS

 Trace this code by hand and write out its output.

#include <stdio.h>
void g(int, int);

int main(void) {
int a = 2, b = 3;

printf("In main, before: a=%d, b=%d\n", a, b);
g(a, b);
printf("In main, after : a=%d, b=%d\n", a, b);
return 0;

}

void g(int a, int b) {
printf("In g, before: a=%d, b=%d\n", a, b);
a = 100 + a;
b = 200 + b;
printf("In g, after : a=%d, b=%d\n", a, b);

}



Consequence of Pass-By-Value
Top-Down Design & Functions Unit5 - 55NUS

 Can this code be used to swap the values in a and b?

#include <stdio.h>
void swap(int, int);

int main(void) {
int a = 2, b = 3;

printf("In main, before: a=%d, b=%d\n", a, b);
swap(a, b);
printf("In main, after : a=%d, b=%d\n", a, b);
return 0;

}

void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}



Pass-by-Value
• Your passport is important to you, you do not want others

to make any changes to it and ruin in
• If you want to apply for a job, and the company needs

your passport
• 99% of the time they just need your photocopy of your passport
• Why?
• They also do not want to lost/damage your passport

• Pass-by-value
• Make a copy of your data to the function

NUS Top-Down Design & Functions Unit5 - 56

So Vegas is a function!

NUS Top-Down Design & Functions Unit5 - 57

In contrast (in the future)
• If you want to apply a VISA to a certain country, you need

to submit the passport
• Why?
• They need to stamp or paste the VISA in your passport

• The passport is changed during the process.
• There are ways to change the variable you passed (but not now)
• Namely, pass-by-pointer(later) and pass-by-reference(C++)

NUS Top-Down Design & Functions Unit5 - 58

NUS Top-Down Design & Functions Unit5 - 59

// Compute the area of a right-angled triangle.
// side1 and side2 are the lengths of the
// two perpendicular sides.

// Pre-cond:

double triangle_area(double side1, double side2) {
return side1 * side2 / 2.0;

}

 The function triangle_area() computes the area of a
right-angled triangle. The two parameters are the
lengths of the two perpendicular sides.

 How should you write the pre-condition?

side1 > 0, side2 > 0

Writing Pre-Condition

NUS Top-Down Design & Functions Unit5 - 60

// Compute the area of a right-angled triangle.
// Pre-cond: side1 > 0, side2 > 0
double triangle_area(double side1, double side2) {

return side1 * side2 / 2.0;
}

 Which of the two approaches is correct?

// Compute the area of a right-angled triangle.
// Pre-cond: side1 > 0, side2 > 0
void triangle_area(double side1, double side2) {

printf("Area = %.2f\n", side1 * side2 / 2.0);
}

 In general, a function should perform either computation or I/O, not
both. triangle_area() is to compute the area, so it should return the
answer to the caller, which then decides whether to print the answer
or use it for further computation in a bigger task.

Function Cohesion

Global Variables (1/2)
Top-Down Design & Functions Unit5 - 61NUS

 Global variables are those that are declared outside all
functions.

int f1(int);
void f2(double);

int glob; // global variable

int main(void) {
...
glob = glob + 1;

}

int f1(int x) {
...
glob = glob + 1;

}

void f2(double x) {
...
glob = glob + 1;

}

Global Variables (2/2)
Top-Down Design & Functions Unit5 - 62NUS

 Global variables can be accessed and modified by any
function!

 Because of this, it is hard to trace when and where the
global variables are modified.

 Hence, we will NOT allow the use of global variables

Summary
Top-Down Design & Functions Unit5 - 63NUS

 In this unit, you have learned about
 Top-down design through stepwise refinement,

splitting a task into smaller sub-tasks
 How to write user-defined functions and use them
 Pass-by-value and scope rules of local parameters

and variables

End of File

Top-Down Design & Functions Unit5 - 64NUS

