

CS1020 Mid-term Test - 1 of 7 - AY2015/6 Semester 2

Comments on CS1020 Mid-term Test (AY2015/6 Semester 2)

1. Section A: MCQs
The bonus question asks what the story Prof Tan told the class in his first lecture is. The
correct answer is (A) Baby. Prof Tan specifically wanted to deliver the first lecture to share
his favourite ‘baby story’, so it must have been quite a disappointment to him that many
students answered wrongly.

A number of students answered (C) James Gosling. Prof Tan did mention Games Gosling in
slide 6 of lecture #1 as the creator of Java, but it wasn’t a story. However, we accepted this
as the correct answer as well.

For the other 5 MCQs, the table below shows the percentage of students who chose the
correct answers, and of those who chose the most popular wrong answers:

 Q1 Q2 Q3 Q4 Q5

%students who chose the
correct answer

A
(55.0%)

D
(57.6%)

C
(71.8%)
Easiest

E
(64.4%)

B
(51.8%)
Hardest

%students who chose the
most popular wrong answer

C
(16.2%)

E
(28.8%)

B
(16.2%)

B
(21.5%)

E
(34.7%)

The percentage of students who got the answers right is a bit on the low side. The easiest
question is Q3, and the hardest seems to be Q5, with only half of the class got it right. Q5 is
on basic OOP, so it is disappointing that many students didn’t get it right. Please go through
Q5 again to understand it if you have got it wrong.

2. Section B: Common mistakes
I will share the common mistakes we encountered in our marking.

Q6.
(i) Incorrect output format
A number of students wrote only one integer. They may have missed out the method
call to print() within D2.f(). Others wrote the output on two lines, failing to
distinguish between print() and println().

It is sad to see students adding the two integers to be printed together, or writing the '+'
character in the output. There is a need to understand what the '+' operator does, for
different types of operands.

(ii) Default constructor
A number of students are not aware that Java implicitly creates a default constructor
when there is NO constructor declared within a class. This constructor implicitly calls
super() as its first and only statement. There is no error when we compile the code,
and subsequently run it.

CS1020 Mid-term Test - 2 of 7 - AY2015/6 Semester 1

(iii) Failing to trace through D2.f() execution
Many students do not understand pass-by-value, reference versus object, and what the
new keyword does.

A good number printed "3 3" as the output, either wrongly thinking that there is only
one reference d1, or one common object pointed to by each d1 in the two different
methods by the time we call the print() statement in D2.f().

Tracing through program execution line-by-line, drawing the references in both
methods and the objects they point to, on paper, will help greatly in ensuring that the
values are correctly assigned and accessed.

If you do not understand references and objects well, how to draw them on paper, or
how to trace through what a statement does using your diagram, please clarify your
doubts with your tutor ASAP, or enquire on the IVLE forums. These are fundamental to
Object Oriented Programming!

Q7i.
(i) “m() does not exist in class A”
A number of students did not remember that B and C will inherit public members from
A. Some students mixed up the direction in which methods are inherited.

 A B object has m() because class A has m() defined, and class B inherits it from A.
 A C object has m() because it inherits m() from B, and hence from A.
 Every C is a B , which in turn is an A, so it has the m() behaviour.

“B inherits public members from A” is just a concept. How does Java implement it? Here,
during compile-time:
 Java checks whether m() exists in B, the datatype of the reference named b.
 As m() does not exist in B, Java moves up the inheritance hierarchy.
 If the method is still not found in java.lang.Object, compilation fails, as in
Q7iii.

(ii) Confusion over inheriting from a class far up the inheritance hierarchy
The super keyword cannot be used to invoke an implementation of a method two
levels up the inheritance hierarchy, when the method has already been overridden one
level up. A number of students confused that fact with a class not being able to inherit
members of classes two levels up.

 Within C.n(), we cannot write a statement to invoke A.n().

 However, outside class C, in Q7.main(), we CAN invoke A.m() using the
reference b.

Therefore, the super keyword is used within the subclass to access a superclass’
member, not from OUTSIDE the subclass. It is also important to distinguish between the
two different concepts: inheritance versus overriding.

C extends B extends A is also NOT a case of multiple inheritances. C directly extends
only one class. An example of multiple inheritances, which Java does NOT support, is

CS1020 Mid-term Test - 3 of 7 - AY2015/6 Semester 1

“Superman extends BOTH Bird AND Human”.

(iii) Runtime error versus compile-time error
A call to b.m() in line 31 is valid (we are still at part i). However, some students
mistakenly thought that method m() does not exist. Even if that were the case, we
would encounter a compile-time error, rather than a runtime error. The compiler will
ensure that a method call refers to a matching method that exists in the datatype of
the reference, or above.

Q7ii.

(i) Polymorphic behaviour
Many students thought that B.n() will be executed. It is true that b is declared as a B
reference, and that at compile-time, Java 'thinks' the program will execute B.n().
However, the method actually executed at runtime depends on the datatype of the
object, NOT that of the reference. Since the object’s datatype is C, C.n() will be
executed at runtime.

(ii) this.getClass().getName()
As mentioned in the question, this.getClass().getName() returns the
datatype of the object, not that of the reference! Again, as with super, the keyword
this is only used within the service classes A, B and C to refer to the current instance,
and not from the driver class Q7.

Q7iii.

(i) "C.p in C "
As explained in Q7i. point (i), at compile-time, Java finds p() based on the datatype of
the reference, NOT that of the object.

(ii) “Error as C cannot be accessed from B”
Here, invoking b.p() from outside C has nothing to do with accessibility or
encapsulation.
 Accessibility - Within C.n():
 No access to a private variable in A, not even on the same object using this
 Symbol not found - Outside of class C, in Q7.main():
 The compiler says there is no p() in B and above, because of the reference's
datatype

(iii) “b is a B object/instance, though instantiated with the C() constructor”
This is one of the two most common mistakes in the entire Q7.

To be precise, b is a reference, not an object; hence b points (refers) to an object.
Understand the difference between them.
 The datatype of the object (instance), pointed (referred) to by b, is C.
 The datatype of the reference is B.
 Even if we cast the reference, the datatype of b is still B, and that of the object is

still C.

CS1020 Mid-term Test - 4 of 7 - AY2015/6 Semester 1

Q8.
(i) “F’s next points to G”
A number of students either traced through the code wrongly, or did not express the
result properly on the diagram. Although there is no "standard" notation, F's next
attribute pointing to G or G's next attribute or its value within confuses others and
possibly yourself.

Ask yourself, should a reference point to an object or an attribute?

(ii) “null object”
null is a special value that can be assigned only to reference-typed variables. It means
that the reference does NOT point to any object. There is no “null object” in Java
(unlike Python).

(iii) “curr2.getNext()is null, so NullPointerException will be thrown”
A method returning a null is not a problem. null is a valid value for a reference-typed
variable, and null can be assigned to jump. The exception occurs when we try to de-
reference null using "." or "[". Here, at line 7, there is no object to call the instance
method getNext() on, since jump is null.

(iv) Terminating loop before line 6 / after line 7
To avoid encountering a NullPointerException when there are an even number of nodes,
many students broke out of the loop just before line 5 when curr2.getNext() is
null, or just before line 6 when jump is null, on the last iteration. This results in the tail
node of the first list not being properly separated from the second list.

Performing checks on jump after line 7 will not solve the problem, as line 7 fails while
running. Some students inserted code after line 9, but their code did not work for both
even and odd sized lists.

(v) Infinite loop
Many students identified the problem that getNext() is being called using a null
reference, the fact that the problem occurs when there are an even number of nodes,
and tested whether jump is null after ensuring that the first list has its references
properly set at line 6.

However, if lines 8 and 9 are only executed when jump is not null, then the program will
not terminate when jump is null, because both curr and curr2 are unable to advance
past the last nodes in their respective lists.

CS1020 Mid-term Test - 5 of 7 - AY2015/6 Semester 1

Q9.
(i) The use of cast (Integer)
There are several possible answers for this question. Two versions are given in the
Answers document, one of which is the following:

for (Integer num: numbers) { // line 1
 while (num > 0) { // line 2
 int digit = num % 10; // line 3
 digits.remove((Integer) digit); // line 4
 num /= 10; // line 5
 }
}

Many students wrote a code similar to the above but did not include the type cast
(Integer), that is, their line 4 looks like:

 digits.remove(digit); // line 4

This does not work. Why?

Note that in the ArrayList API there are two overloaded remove() methods:

 remove(int index): Removes the element at the specified position in this list.

 remove(Object o): Removes the first occurrence of the specified element
from this list, if it is present.

For example, if digit is 6, digits.remove(digit) will remove the element at
position 6 in digits! That element may not be 6 as some elements might have been
removed from digits by then.

Alternatively, we may declare digit as an Integer reference instead of int type in line 3:

 Integer digit = num % 10;

Doing so would then eliminate the need of the type cast (Integer) in line 4.

(ii) Calling the same method several times and assigning a value to an accessor
Quite a number of students wrote this:

 while (numbers.get(i) > 0) { // line 1
 int digit = numbers.get(i) % 10; // line 2
 digits.remove((Integer) digit); // line 3
 numbers.get(i) = numbers.get(i)/10; // line 4
 }

Note that numbers.get(i) is being called a few times in each iteration. This kind of
code, as you should have learned in CS1010 (or equivalent), is bad because each time
you call a method there is overhead incurred. You should call it once instead, assign the
value to a variable, and use the variable thereafter, as shown in the Answers document.

The other more serious mistake is in line 4. It attempts to assign a value to
numbers.get(i) which is an accessor! This is a compilation error. You should use a

CS1020 Mid-term Test - 6 of 7 - AY2015/6 Semester 1

mutator (eg: the set() method in ArrayList) to do this. However, if you had assigned
numbers.get(i) to a variable as suggested above, this would not be an issue.

(iii) Using the wrong syntax on ArrayList, treating it like an array

I saw a number of answers that look like this:

 while (numbers[i] > 0) {
 int digit = numbers[i] % 10;
 digits.remove((Integer) digit);
 numbers[i] /= 10;
 }

Students mixed up the syntax of ArrayList with array. We write arr[i] to access the ith
element of an array arr, but we write arrList.get(i) to access the ith element of an
ArrayList arrList.

The same mistake is encountered in Q10.

(iv) Using // for division

I saw num = num//10; a number of times while marking, something which I have
never seen before. Only later then I found out that // is integer division in Python, so this
must have been written by CS1010S students. In Java, / is integer division if both the
operands are integers, and // would make the rest of the line a comment.

(v) Using String

A number of students used String to solve this question. There is no need to use String
here. Moreover, using String would incur overhead such as converting the integer into a
string, and it would take up more space to hold the characters in the string. Note that in
general, you use something only if its benefits outweigh the cost. In this case, the
problem can be easily solved by sticking to ArrayList.

Q10 (a)

(i) Using the wrong syntax on ArrayList, treating it like an array
As in Q9 point (iii), a number of students wrote _vertices[i] to access the ith element in
_vertices.

(ii) Missing one side or getting out of range
Some students processed only n – 1 sides of an n-sided polygon as their ‘for’ loop runs
from 0 to n – 2 as follows:

 for (int i=0; i<_vertices.size()–1; i++)

Some students included all the sides, but the value (i+1) in _vertices.get(i+1) will be out
of range when it comes to the last iteration (i.e. when i = n-1). Some students solved this
by having an ‘if’ statement to separate the two cases, but this can be solved by using the
mod operator % as shown in the Answers document.

CS1020 Mid-term Test - 7 of 7 - AY2015/6 Semester 1

One other solution is to add the first vertex into _vertices as the last vertex, so that now
_vertices contains n+1 vertices, with the same first and last vertex. You can then run
through the loop for i from 0 to n-1 without having to worry that (i+1) in the last
iteration goes out of range. Remember to remove the last vertex from _vertices after
that.

Q10 (b)
Many students made the mistake of writing:

 int size = pts.size();
 for (int i=0; i<size; i++) {
 for (int j=0; j<size; j++) {
 if (pts.get(i).equals(pts.get(j)))
 return false;
 }
 }

Such issue should have been addressed in CS1010 (or equivalent). Here, when i==j, the
points are the same and hence the code will always return false!

Besides the one shown in the Answers document, here is one acceptable algorithm
which a few students used:

 Instead of using a nested loop, use a single loop with indexOf() and lastIndexOf()
to check if they return different values; if so, then there must be duplicates.

 for (Point pt: pts) {
 if (pts.indexOf(pt) != pts.lastIndexOf(pt))
 return false;
 }

Ivan Chew and Aaron Tan
10 March 2016

