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CS1020: DATA STRUCTURES AND ALGORITHMS I 
Tutorial 9 – Analysis of Algorithms 

(Week 11, starting 28 March 2016) 

 
1. Big-O Complexity 
Remember, Big-O time complexity gives us an idea of the growth rate of a function. In other words, 
for a large input size N, as N increases, in what order of magnitude is the volume of statements 
executed expected to increase? 

Rearrange the following functions in increasing order of their big-O complexity: 

4n2 log3 n 20n n2.5 

n0.00000001 log n! nn 2n 

2n+1 22n 3n n log n 

100 n2/3 log [(log n) 2] n! (n−1)! 
 

Answer 

Notice that some of the above terms have equal Big-O complexity. Remember that in Big-O notation, 
we only care about the dominating term of the function, without its constant coefficient. This can be 
proven mathematically. As N gets very large, the effect of the other terms on the volume of 
statements executed becomes insignificant. 

 O(log [(log n)2]) = O(log log n) < 
Logarithmic time O(log3 n) = O(log n) < 
(Sublinear time) O(n0.00000001)   < O(100 n2/3) < 

Linear time O(20n)   < 
Linearithmic time O(n log n) = O(log n!) Why?1 < 
Quadratic time O(4n2)   < 
(Polynomial time) O(n2.5)   < 

Exponential time O(2n) = O(2n+1) < O(3n) < O(22n) = O(4n) < 

Factorial time O((n−1)!)   < O(n!) < 

!!! O(nn) 

  

                                                      
1 We can add coefficients to either function, so that one function bounds the other from above, 

i.e. both functions are in the same big-O complexity: 
 𝑛

2
 log 𝑛

2
 < log n! < n log n < 2 log (n!) = O(n log n) = O(log (n!)) 

 
A visualization of this fact, though not a proof: 

http://www.wolframalpha.com/input/?i=y%3D2log%28N%21%29%2C+y%3DN+log%28N%29%2C+y+%3D+log%2
8N%21%29%2C+y+%3D+%28N%2F2%29+log+%28N%2F2%29 

Proof sketch: See accepted answer at http://stackoverflow.com/questions/2095395/is-logn-%CE%98n-logn 
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2. Analyzing Time Complexity 
Find the big-O time complexity of each of the following code fragments: 

(a) 
int i = 1; 
while (i <= n) { 
 System.out.println("*"); 
 i = 2 * i; 
} 
 

(b) 
int i = n; 
while (i > 0) { 
 for (int j = 0; j < n; j++) 
  System.out.println("*"); 
 i = i / 2; 
} 
 

(c) 
while (n > 0) { 
 for (int j = 0; j < n; j++) 
  System.out.println("*"); 
 n = n / 2; 
} 
 

(d) 
for (int i = 0; i < n; i++) // loop 1 
 for (int j = i+1; j > i; j--) // loop 2 
  for (int k = n; k > j; k--) // loop 3 
   System.out.println("*"); 
 

(e) 
void foo(int n){ 
 if (n <= 1) 
  return; 
 doOhOne(); // doOhOne() runs in O(1) time 
 foo(n/2); 
 foo(n/2); 
} 
 

(f) 
void foo(int n){ 
 if (n <= 1) 
  return; 
 doOhN(); // doOhN() runs in O(n) time 
 foo(n/2); 
 foo(n/2); 
} 
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Answer 

Iterative Algorithms 
(a) O(log n) 

How many statements are executed, relative to input size n? Often, 
but NOT always, we can get an idea from the number of times a loop 
iterates. 

There are no loops within the while loop, and the volume of 
statements executed within each iteration is a constant, i.e. not 
dependent on n. Therefore, we can just sum up the number of 
iterations to find out the relationship between n and the volume of 
statements executed. 

The loop body executes for i = 20, 21, 22, 23, ..., 2⌊log2n⌋, and this 
sequence has 1 + ⌊log2n⌋ = O(log n) values. 

 

(b) O(n log n) 

The two loops here are nested, but the number of iterations the inner 
loop runs is independent of the outer loop. Therefore, the total 
volume of statements can be taken by multiplying both values 
together. 

The outer loop iterates O(log n) times. Within EACH iteration, the 
inner loop iterates n times, independent of the outer loop. Therefore, 
the time complexity of this code fragment is O(n log n). 

 

(c) O(n) 

Here, we cannot examine each loop one at a time and then multiply 
the number of iterations together. Notice that n is used to control the 
outer loop, and it affects the number of iterations. 

The inner loop is dependent on the control variable of the outer loop. 
Therefore, we have to fall back to summing up the number of inner 
loop iterations to find the volume of statements executed. 

The geometric series2 1 + 2 + 4 + ... + n
4
 + n

2
 + n = 2n - 1 = O(n) 

 

(d) O(n2) 

Loop 2 runs a constant number of times (exactly once) every loop 1 
iteration and does not affect the time complexity. We can carefully 
trace the values of j in each loop 1 / loop 2 iteration to find the 
number of times the innermost loop iterates. 

The arithmetic series 1 + 2 + 3 + ... + (n-2) + (n-1) = (𝑛−1)(𝑛)
2

 = O(n2) 

  

                                                      
2 You may observe that n

4
 = 2(log2n)−2, n

2
 = 2(log2n)−1, n = 2log2n 

When n is a power of 2: 
i # iterations 
1 = 20 1 
2 = 21 1 
4 = 22 1 
…  
n = 2 log n    1 

 

When n is a power of 2: 
i # inner iter. 
n = 2 log n    n 
…  
4 = 22 n 
2 = 21 n 
1 = 20 n 

 

When n is a power of 2: 
n, outer  # inner iter. 
n  n 
n/2 n/2 
n/4 n/4 
…  
4 4 
2 2 
1 1 

 

i # k iter. 
0    n-1 
1 n-2 
…  
n - 3 2 
n - 2 1 
n - 1 0 
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Recursive Algorithms 
(e) O(n) 

Draw the recursive tree. In many 
recursive problems, we can nicely add up 
the volume of statements executed 
within each level in the tree, and then 
nicely add up these subtotals to find the 
total volume of statements executed. 

In this case, each call executes O(1) 
number of statements besides the 2 
recursive calls, so we just need to find 
the total number of recursive calls made. 

Adding up the level subtotals, the total volume of statements executed is the geometric series 
1 + 2 + 4 + ... + n

4
 + n

2
 + n = 2n - 1 = O(n) 

 

(f) O(n log n) 

Here, we cannot just add up 
the number of method calls. 
Do not forget that the input 
size n changes at each 
recursive call. 

Each method call executes a 
different amount of 
statements, aside from 
invoking other recursive 
calls. 

Each level executes n statements, aside from the two recursive calls. There are O(log n) levels. 
Therefore, the time complexity is O(n log n). 
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3. Efficient Algorithm Design 
Given an integer array A and an integer k, we want to find all pairs of elements in the array that add 
up to k. For each pair found, print the two numbers. If it is not possible to find any such combination, 
print "Not possible." 

The elements in A are unique. The array elements and k could be positive, zero, or negative. You do 
not need to print the other permutation that represents the same pair. 

Sample Run 1 
Enter size of array: 10 
Enter the elements: 2 5 6 11 -1 0 25 -3 1 8 
Enter the value of k: 22 
-3 25 
Sample Run 2 
Enter size of array: 10 
Enter the elements: 2 5 6 11 -1 0 25 -3 1 8 
Enter the value of k: 50 
Not possible. 

There are two (to four) algorithms to solve this problem. One is a brute force algorithm, while the 
others are more efficient but require more code to implement. Design and analyze the big-O time 
complexity of two algorithms, then implement them. 

public void findPairsBruteForce(int[] input, int target) { 
 /* TODO */ 
} 
public void findPairsImproved(int[] input, int target) { 
 mergeSort(input); // O(n log n) sort given to you 
 // Efficiency should be better than the brute force algorithm! 
} 
 

Answer 
 
Besides the brute force algorithm, we can: O(n2) 
 Pre-sort the array and for each element, perform binary search O(n log n) = O(n log n + log(n!)) 
 Pre-sort the array and traverse it intelligently from both ends O(n log n) = O(n log n + n) 
 Use a HashSet3 to efficiently store and find one number Average O(n) 

 

Brute Force Algorithm 
for each start index 
 for each end index after start 
  if A[start] + A[end] == k 
   print 

As the nested loops always run to completion and there is a constant amount of code within the 
inner loop, the time complexity can be determined by taking the sum of the number of inner loop 
iterations in the worst case. The worst case occurs when no pair is found. 

For n numbers in A, the start index moves from 0 to n - 2 inclusive. When start index is 0, the end 
index moves from 1 to n-1 inclusive. Therefore, the time complexity of the brute force algorithm is 
(n-1) + (n-2) + ... + 3 + 2 + 1 = (𝑛−1)(𝑛)

2
 = O(n2). If n is large, we can do much better. 

                                                      
3 Coming soon 



Page 6 of 7 
 

public void findPairsBruteForce(int[] input, int target) { 
 int n = input.length; // input size 
 boolean possible = false; 
  
 for (int start = 0; start < n - 1; start++) { 
  for (int end = start + 1; end < n; end++) { 
   if (input[start] + input[end] == target) { 
    System.out.println(input[start] + " " + input[end]); 
    possible = true; 
    break;  // elements unique, no more matches for start 
   } 
  } 
 } 
  
 if (!possible) 
  System.out.println("Not possible."); 
} 
 

Pre-sorting Followed by Efficient searching 
sort A efficiently 
for each start index 
 if found (k - A[start]) in A[start + 1, n) using binary search 
  print 

Since we want to find an x where A[start] + x == k, we can instead use binary search to 
efficiently find the existence of x in the array. Binary search only works on a sorted array. 

The time complexity of binary search over i elements is O(log i). For n numbers in A, the start index 
moves from 0 to n - 2 inclusive. When start index is 0, binary search needs to execute proportional to 
log (n-1) statements in the worst case. Therefore, the time complexity of this algorithm4 is 
log (n-1) + log (n-2) + ... + log 3 + log 2 + 1 = 1 + log[(n-1)!] = O(n log n). 

public void findPairsImproved(int[] input, int target) { 
 mergeSort(input); // O(n log n) sort given to you 
 int n = input.length; 
 boolean possible = false; 
  
 for (int start = 0; start < n - 1; start ++) { 
  int index = Arrays.binarySearch( // end index is exclusive 
   input, start + 1, n, target - input[start]); 
  if (index >= 0) { // match found 
   System.out.println(input[start] + " " + input[index]); 
   possible = true; 
  } 
 } 
  
 if (!possible) 
  System.out.println("Not possible."); 
} 

                                                      
4 We can conclude that log[(n-1)!] = O(n log n) because log[(n/2)!] < log[(n-1)!] < log(n!) and 

log[(n/2)!] = O(n
2
 log n

2
) = O(n log n) 
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We can still improve the efficiency of searching for a matching pair on a sorted array, but the time 
complexity of the algorithm for this entire problem will not improve further because it is limited by 
the sorting algorithm. 

 

Pre-sorting Followed by Efficient searching 
sort A efficiently 
start moves from the front, end moves from the end/back of A 
while start < end 
 if A[start] + A[end] < k 
  start++ 
 else if A[start] + A[end] > k 
  end-- 
 else 
  print 
  start++, end-- 
 

This algorithm allows us to eliminate many more pairs without even comparing them against k. Each 
index moves toward each other from the ends of the array. If the sum of the two array elements is 
too small, there will NOT be any solutions with the current first element and any second element 
after the first. Likewise, if the sum is too large, there will be no solutions with the given second 
element. 

Each iteration in the while loop, either one or both indexes move toward each other. In the worst 
case, only one index moves toward each other at any time. The loop iterates n-1 times, but the time 
complexity of the entire algorithm is O(n log n) due to sorting. 

You can (and should) easily implement this algorithm on your own! 

 

^_^ 
 

O(1) 

weeks left! 
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