
CS1101S, Semester I, 2016/2017—Discussion Group Exercises Week 9 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology

Semester I, 2016/2017

Discussion Group Exercises Week 9

Problems:

1. (a) Consider the following function definition:

function change(x, new_value) {

x = new_value;

}

Consider the following statements:

var x = 0;

change(x, 1);

What is the value of x after the above statements are evaluated? Explain your answer
using the environment model.

(b) From recitation week 8, you are given the function definition make_stack to create a
new tagged data structure called stack and clean to empty an existing stack of any
elements it may contain. Ben Bitdiddle wonders why a stateful stack needs to be a
tagged data structure and proposes the following untagged version:

function make_stack() {

return [];

}

function clean(stack) {

stack = [];

}

Using the environment model and appropriate examples, help explain to Ben why such
a tagged data structure is necessary.

2. Given the following program:

var a = 10;

function foo(x) {

var b = 0;

function goo(x) {

var a = 30;

// Breakpoint #1

if (x <= 2) {

a = a + x;

b = b + x;



CS1101S, Semester I, 2016/2017—Discussion Group Exercises Week 9 2

// Breakpoint #2

} else {

goo(x - 1);

}

}

// Breakpoint #3

a = a + x;

b = b + x;

// Breakpoint #4

goo(3);

// Breakpoint #5

}

// Breakpoint #6

foo(1);

// Breakpoint #7

Evaluate the program and draw the environment structure produced at each break point.

3. SICP, Exercise 3.2

In software testing applications, it is useful to be able to count the number of times a given
function is called during the course of a computation. Write a function make_monitored

that takes as input a function, f, that itself takes one input. The result returned by
make_monitored is a third function, say mf, that keeps track of the number of times it has
been called by maintaining an internal counter. If the input to mf is the string “get count”,
then mf returns the value of the counter. If the input is the string “reset count”, then mf

resets the counter to zero. For any other input, mf returns the result of calling f on that
input and increments the counter. For instance, we could make a monitored version of the
Math.sqrt function:

var s = make_monitored(Math.sqrt);

s(100);

> 10

s("get_count");

> 1

s("reset_count");

s("get_count");

> 0

4. The following procedure is quite useful, although obscure:

function mystery(x) {

function loop(x, y) {

if (is_empty_list(x)) {

return y;

} else {

var temp = tail(x);

set_tail(x, y);

return loop(temp, x);

}

}

return loop(x, []);

}



CS1101S, Semester I, 2016/2017—Discussion Group Exercises Week 9 3

loop uses the temporary variable temp to hold the old value of the tail of x, since the
set_tail on the next line destroys the tail. Explain what mystery does in general.

Suppose v is defined by:

var v = list(1, 2, 3, 4);

Draw the box-and-pointer diagram that represents the list to which v is bound. Suppose
that we now evaluate:

var w = mystery(v);

Draw box-and-pointer diagrams that show the structures v and w after evaluating this
expression. What would be printed as the values of v and w?

5. SICP, Exercises 3.16 and 3.17

Ben Bitdiddle decides to write a procedure to count the number of pairs in any list structure.
”Its easy,” he reasons. ”The number of pairs in any structure is the number in the head
plus the number in the tail plus one more to count the current pair.” So Ben writes the
following function:

function count_pairs(x) {

if (!is_pair(x)) {

return 0;

} else {

return 1 + count_pairs(head(x)) + count_pairs(tail(x));

}

}

Show that this function is not correct. In particular, draw box-and-pointer diagrams rep-
resenting list structures made up of exactly three pairs for which Bens procedure would
return 3, return 4, return 7, or never return at all.

Devise a correct version count-pairs that returns the number of distinct pairs in any struc-
ture.

(Hint: Traverse the structure, maintaining an auxiliary data structure that is used to keep
track of which pairs have already been counted.)

6. (Modified from 2011 Midterm) You should have by now been familiar with list and its derived
data structure stack and queue. Typically, we can only traverse a list in one direction by
using the accessor functions head and tail. In this question, we will introduce a general
data structure called doubly-linked list which allows us to traverse the list in both direction.
A doubly-linked list consists of nodes, each of which can either be an empty list or a list of
three entries. One entry is a data item and the other two entries are the previous and next
nodes. The first and last nodes of a doubly-linked list should have empty nodes i.e. empty
lists as their previous and next node respectively.

(a) Define the constructor function make_node and accessor functions get_data, get_prev
and get_next which satisfy the following contracts:

• get_data(make_node(data, prev, next)) returns data

• get_prev(make_node(data, prev, next)) returns prev

• get_next(make_node(data, prev, next)) returns next

function make_node(data, prev, next) {

// Your answer



CS1101S, Semester I, 2016/2017—Discussion Group Exercises Week 9 4

}

function get_prev(node) {

// Your answer

}

function get_next(node) {

// Your answer

}

function get_data(node) {

// Your answer

}

Also define the functions empty_node and is_empty_node to create and check for an
empty node in a doubly-linked list.

function empty_node() {

// Your answer

}

function is_empty_node() {

// Your answer

}

(b) Define the mutator functions set_data, set_previous and set_next that take in a
node n and a value v and set the data entry, previous entry and next entry of n to value
v respectively.

function set_data(n, v) {

// Your answer

}

function set_previous(n, v) {

// Your answer

}

function set_next(n, v) {

// Your answer

}

(c) Define the functions insert_before and insert_after that take in two nodes n1 and
n2 and insert n2 before and after n1 respectively in the doubly-linked list that contains
n1. Also define another function remove that take in a node n and remove that node
from the doubly-linked list that it resides in.

function insert_before(n1, n2) {



CS1101S, Semester I, 2016/2017—Discussion Group Exercises Week 9 5

// Your answer

}

function insert_after(n1, n2) {

// Your answer

}

function remove(n) {

// Your answer

}

(d) Define a function has_loop that takes in a doubly-linked list and determines if it con-
tains a loop. If there is a loop, the function returns true, otherwise the function returns
false.

function has_loop(dlist) {

// Your answer

}

(e) Define a function dlist_to_list that takes in a doubly-linked list and returns a reg-
ular list with elements in the same order

function dlist_to_list(dlst) {

// Your answer

}

(f) Define a function list_to_dlist that takes in a regular list and returns a doubly-
linked list with elements in the same order. Your function should return the first node
of the doubly-linked list

function list_to_dlist(lst) {

// Your answer

}

(g) Define a function reverse_dlist that takes in a doubly-linked list and return a
doubly-linked list with the elements in reversed order.

function reverse_dlist(dlst) {

// Your answer

}


