
CS1101S, Semester I, 2016/2017—Recitation 8 1

National University of Singapore

School of Computing

CS1101S: Programming Methodology

Semester I, 2016/2017

Recitation 8

Mutable Data Structures

Source Week 8

1. x = 〈expression〉;
Assignment statement. Assigns the result of evaluating 〈expression〉 as new value to vari-
able x; returns the value.

2. set_head(p, x)

Sets the head (first component) of the pair p to be x; returns undefined.

3. set_tail(p, x)

Sets the tail (second component) of the pair p to be x; returns undefined.

Problems:

1. Consider the following implementation of a stack object.

function make_stack() {

var stack = pair("stack", []);

return stack;

}

Note that the stack is represented by a pair whose head is a tag "stack". The stack is
represented by a list, which of course is initially empty.

We can create a new stack using the program:

var my_stack = make_stack();

(a) Add a function called is empty which returns true iff the stack is empty. The function
is empty does not change the stack.

function is_empty(stack) {

// complete the function here

}

(b) Add a function called clean which empties the stack of any elements it may contain.
The function clean should change the stack destructively (i.e. the previous state is
“destroyed”), and return undefined.

function clean(stack) {

// complete the function here

}



CS1101S, Semester I, 2016/2017—Recitation 8 2

(c) Add a function called peek which returns the top element of the stack, leaving the
stack unchanged. If the stack is empty, signal a ”stack underflow” error.

function peek(stack) {

// complete the function here

}

(d) Add a function called push which allows an element to be added to the top of the stack.
The function push should change the stack destructively, and return undefined.

function push(stack, x) {

// complete the function here

}

(e) Add a function called pop which removes and returns the top element of the stack. The
function pop should change the stack destructively, and return undefined.

function pop(stack) {

// complete the function here

}

2. Write a function called push all which takes a stack and a list and pushes all the elements
of the list onto the stack. The function push all should change the stack destructively, and
return undefined.

function push_all(stack, lst) {

// complete the function here

}

3. Write a function called pop all which takes a stack and pops elements off it until it becomes
empty, adding each element to the output list. The function pop all should change the
stack destructively.

function pop_all(stack) {

// complete the function here

}

4. Implement the reverse function only using the stack operations you have implemented so
far.

function reverse(lst) {

// complete the function here

}


