
JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

16—Object-Oriented Programming

CS1101S: Programming Methodology

Martin Henz

October 17, 2012

Generated on Wednesday 17 October, 2012, 14:14

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

1 JavaScript’s Native Data Structures
JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

2 Recap: Programming Techniques for Data Representation

3 Object-Oriented Programming

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

The Truth About JediScript Lists

// p a i r c o n s t r u c t s a p a i r u s i n g a two−e l ement a r r a y
// LOW−LEVEL FUNCTION, NOT JEDISCRIPT
funct ion p a i r (x , x s) {

return [x , x s] ;
}

Terminology

We call these things “vectors”. We are often impose limitations on
ourselves when using “vectors”. This is called “array discipline”.

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Vectors in JavaScript

Definition

Vectors in JavaScript are tables that enjoy special syntactic
support.

Creating an empty vector

var my vecto r = [] ; // c r e a t i n g an empty v e c t o r

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Adding Fields

Syntax for adding fields

We can add fields using the following syntax:

// c r e a t i n g an empty v e c t o r
var my vecto r = [] ;

// add ing a f i e l d w i th key 42
my vecto r [42] = ”some s t r i n g ” ;

// a c c e s s i n g the f i e l d
a l e r t (my vec to r [42]) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

What if the key has not been added yet?

Access using non-existing keys

// c r e a t i n g an empty v e c t o r
var my vecto r = [] ;

// a c c e s s i n g u s i n g non−e x i s t e n t key
a l e r t (my vec to r [88]) ;

// shows ” unde f i n ed ”

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

What can be used as key?

Anything!

We can use any data structure as a keys

// c r e a t i n g an empty v e c t o r
var my vecto r = [] ;

// add ing a f i e l d w i th key ” f o r t y two ”
my vecto r [” f o r t y two ”] = ”some s t r i n g ” ;

// a c c e s s i n g the f i e l d
a l e r t (my vec to r [” f o r t y two ”]) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Array Convention for Vectors

Array Convention

If the keys of a vector are integers ranging from 0 to a given
number, the vector is called an array.

JediScript Week 10

All vectors in JediScript are arrays.

JavaScript follows this convention

The built-in functions on vectors assume that vectors are arrays.
For example, my vector.length ignores fields that are not
non-negative integers.

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Back to pair

funct ion p a i r (x , x s) {
return [x , x s] ;

}

Literal arrays

JavaScript supports the creation of a literal array, without a need
to list the keys.

var my ar ray = [” s ome s t r i n g ” , ” s omeo t h e r s t r i n g ”] ;
. . . my ar ray [0] . . .

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

What if we want keys that are not non-negative integers?

JavaScript support for strings as keys

JavaScript supports strings as keys in objects.

Example

If my object is an object that has a field with key ”my field”, you
can use it like this:

// f i e l d a c c e s s e x p r e s s i o n
. . . my ob j ec t [” m y f i e l d ”] . . .

// f i e l d a s s i gnment s ta tement
my ob jec t [” m y o t h e r f i e l d ”] = 42 ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Creating Objects

Syntax of creating objects

An empty object is created using the syntax {}.

Example Session

var my ob jec t = {} ;
my ob j ec t [”a”] = 13 ;
a l e r t (my ob j ec t [”a”]) ;
my ob j ec t [”b”] = 42 ;
a l e r t (my ob j ec t [”b”]) ;
a l e r t (my ob j ec t [”c”]) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Syntactical Support for Objects

Objects will appear a lot in your programs. We need a syntax that
avoids the quotation marks around the names of fields.

Syntactic Convention 1

If the key of a field is a string that looks like a JavaScript
identifier, you can write

. . . my ob j ec t . m y f i e l d . . .

instead of

. . . my ob j ec t [” m y f i e l d ”] . . .

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Syntactical Support for Objects (cont’d)

Syntactic Convention 2

If the key of a field is a string that looks like a JavaScript
identifier, you can write

my ob j ec t . m y f i e l d = . . . ;

instead of

my ob j ec t [” m y f i e l d ”] = . . . ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Syntactical Support for Objects (cont’d)

Syntactic Convention 3

We can construct objects literally, using the syntax {...}, by
listing the key-value pairs, separated by “:” and “,”.

Example

var my ob jec t = { my f i e l d : 42 ,
m y o t h e r f i e l d : 88 } ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

1 JavaScript’s Native Data Structures

2 Recap: Programming Techniques for Data Representation

3 Object-Oriented Programming

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Objects as pairs

funct ion make stack () {
var s t a c k = p a i r (” s t a c k ” , []) ;
return s t a c k ;

}
funct ion push (s tack , x) {

s e t t a i l (s tack , p a i r (x , t a i l (s t a c k))) ;
}
// o th e r f u n c t i o n s
var my stack = make stack () ;
push (my stack , 4) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Objects as functions

funct ion make account (i n i t i a l) {
var ba l ance = i n i t i a l ;
return funct ion (message , amount) {

i f (message === ”withdraw”) {
ba l ance = ba l ance − amount ;
return ba l ance ;

} e l s e { // message === ” d e p o s i t ”
ba l ance = ba l ance + amount ;
return ba l ance ;

}
}
var my account = make account (1 0 0) ;
my account (”withdraw” , 5 0) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Objects as functions, a variant

funct ion make account (i n i t i a l) {
var ba l ance = i n i t i a l ;
return funct ion (message) {

i f (message === ”withdraw”) {
return funct ion (amount){

ba l ance = ba lance−amount ;
return ba l ance ;

} ;
} e l s e { // message === ” d e p o s i t ”

return . . . ;
} ;

}
var my account = make account (1 0 0) ;
(my account (”withdraw”)) (5 0) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

1 JavaScript’s Native Data Structures

2 Recap: Programming Techniques for Data Representation

3 Object-Oriented Programming
Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Knowledge Representation View of Objects

Aggregation

Classification

Specialization

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Aggregation

var myVehic l e = {max speed : 85} ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Classification

funct ion n ew v e h i c l e (ms){
return { max speed : ms} ;

}

var my veh i c l e = n ew v e h i c l e (8 5) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Specialization

funct ion new car (mp) {
var c = new v e h i c l e (9 5) ;
c . max pas senge r s = mp;
return c ;

}

var my car = new car (5) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Specialization

Usually, the concept of inheritance (class extension) achieves
specialization in object-oriented languages.

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Philosophy of Objects in JavaScript/JediScript

Minimality: Introduce only three constructs (new, this, and
Inherits)

Flexibility: Supports many object-oriented programming
techniques, not just the traditional class/object scheme

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Constructor Functions

Constructors are ordinary functions

Any function in JavaScript can serve to create an object.

funct ion Student () {
}

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Creating Objects with “new”

Constructors are ordinary functions

The keyword new creates an object, referred to by “this” in the
function, and allows method invocation (see later)

funct ion Student () {
}
var p e t e r = new Student () ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Example using “this”

funct ion Student (number) {
t h i s . mat r i c number = number ;
t h i s . y e a r o f s t u d y = 1 ;

}
var p e t e r = new Student (”A0014234X”) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Functions operating on objects

funct ion s e t y e a r (s tudent , y) {
s t uden t . y e a r o f s t u d y = y ;

}
var p e t e r = new Student (”A0014234X”) ;
s e t y e a r (pe t e r , 2) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Alternative: Methods

What are methods?

Methods are functions that are defined with the intention of being
applied to objects through object invocation

funct ion Student (number) {
t h i s . mat r i c number = number ;
t h i s . y e a r o f s t u d y = 1 ;

}
funct ion s e t y e a r (y) {

t h i s . y e a r = y ;
}
var p e t e r = new Student (”A001342X”) ;
p e t e r . s e t y e a r (2) ; // w i l l t h i s work ?

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Connecting methods to objects

Prototype field of Constructors

The prototype field of constructors are used for object invocation.

funct ion s e t y e a r (y) {
t h i s . y e a r = y ;

}
Student . p r o t o t yp e . s e t y e a r = s e t y e a r ;

Student . p r o t o t yp e . s e t y e a r =
funct ion (y) {

t h i s . y e a r = y ;
} ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Invoking Methods

var p e t e r = new Student (”A001342X”) ;
p e t e r . s e t y e a r (y) ;

Invocation mechanism

This special notation calls the function
Student.prototype . set year using the argument 2 as y, and the
implicit argument peter as “this”.

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Inheritance

funct ion GraduateStudent (s , n) {
t h i s . s u p e r v i s o r = s ;
Student . c a l l (th i s , n) ;

}
GraduateStudent . I n h e r i t s (Student) ;
var pau l = new GraduateStudent (” Pro f Leong” ,

”A0014234X”) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Overriding Methods

GraduateStudent . p r o t o t yp e . s e t y e a r =
funct ion (y) {

i f (y < 5) {
a l e r t (”a v e r y j u n i o r grad s t uden t ”) ;

} e l s e {
Student . p r o t o t yp e . s e t y e a r . c a l l (th i s , n) ;

} ;
}

}

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Control Flow in Procedural Languages (time)

P1 P2 P3

control

time

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Control Flow in Object-oriented Languages (time)

application
method
self orobject application

control

M3M2M1M3M2M1methods

O2O1objects

time

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Execution of Object Application

window . move (100 , 50)

code

lookup
method

lookup
class

arguments
identifier
methodobject

execution

code
address

class

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Early Binding in Procedural Languages

procedure
application

procedure
execution

executing
code

early
binding

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Late Binding in Object-oriented Languages

application
object

application
"this"

execution
method

binding
late

"this"
setting

methodmethod

binding
early

application execution

executing
code

CS1101S: Programming Methodology 16—Object-Oriented Programming

JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Summary

Objects are possible and widely used already in JediScript
Week 8

In JediScript Week 10, objects enjoy special support (new,
this, Inherits)

CS1101S: Programming Methodology 16—Object-Oriented Programming

	JavaScript's Native Data Structures
	JavaScript's ``Arrays'' (aka Vectors)
	Objects in JavaScript

	Recap: Programming Techniques for Data Representation
	Object-Oriented Programming
	Knowledge Representation View of Objects
	Objects in JavaScript
	Software Development View

