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The Truth About JediScript Lists

// p a i r c o n s t r u c t s a p a i r u s i n g a two−e l ement a r r a y
// LOW−LEVEL FUNCTION, NOT JEDISCRIPT
funct ion p a i r ( x , x s ) {

return [ x , x s ] ;
}

Terminology

We call these things “vectors”. We are often impose limitations on
ourselves when using “vectors”. This is called “array discipline”.
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Vectors in JavaScript

Definition

Vectors in JavaScript are tables that enjoy special syntactic
support.

Creating an empty vector

var my vecto r = [ ] ; // c r e a t i n g an empty v e c t o r
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Adding Fields

Syntax for adding fields

We can add fields using the following syntax:

// c r e a t i n g an empty v e c t o r
var my vecto r = [ ] ;

// add ing a f i e l d w i th key 42
my vecto r [ 42 ] = ”some s t r i n g ” ;

// a c c e s s i n g the f i e l d
a l e r t ( my vec to r [ 42 ] ) ;
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What if the key has not been added yet?

Access using non-existing keys

// c r e a t i n g an empty v e c t o r
var my vecto r = [ ] ;

// a c c e s s i n g u s i n g non−e x i s t e n t key
a l e r t ( my vec to r [ 88 ] ) ;

// shows ” unde f i n ed ”
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What can be used as key?

Anything!

We can use any data structure as a keys

// c r e a t i n g an empty v e c t o r
var my vecto r = [ ] ;

// add ing a f i e l d w i th key ” f o r t y two ”
my vecto r [ ” f o r t y two ” ] = ”some s t r i n g ” ;

// a c c e s s i n g the f i e l d
a l e r t ( my vec to r [ ” f o r t y two ” ] ) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming



JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

JavaScript’s “Arrays” (aka Vectors)
Objects in JavaScript

Array Convention for Vectors

Array Convention

If the keys of a vector are integers ranging from 0 to a given
number, the vector is called an array.

JediScript Week 10

All vectors in JediScript are arrays.

JavaScript follows this convention

The built-in functions on vectors assume that vectors are arrays.
For example, my vector.length ignores fields that are not
non-negative integers.
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Back to pair

funct ion p a i r ( x , x s ) {
return [ x , x s ] ;

}

Literal arrays

JavaScript supports the creation of a literal array, without a need
to list the keys.

var my ar ray = [ ” s ome s t r i n g ” , ” s omeo t h e r s t r i n g ” ] ;
. . . my ar ray [ 0 ] . . .
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What if we want keys that are not non-negative integers?

JavaScript support for strings as keys

JavaScript supports strings as keys in objects.

Example

If my object is an object that has a field with key ”my field”, you
can use it like this:

// f i e l d a c c e s s e x p r e s s i o n
. . . my ob j ec t [ ” m y f i e l d ” ] . . .

// f i e l d a s s i gnment s ta tement
my ob jec t [ ” m y o t h e r f i e l d ” ] = 42 ;
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Creating Objects

Syntax of creating objects

An empty object is created using the syntax {}.

Example Session

var my ob jec t = {} ;
my ob j ec t [ ”a” ] = 13 ;
a l e r t ( my ob j ec t [ ”a” ] ) ;
my ob j ec t [ ”b” ] = 42 ;
a l e r t ( my ob j ec t [ ”b” ] ) ;
a l e r t ( my ob j ec t [ ”c” ] ) ;
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Syntactical Support for Objects

Objects will appear a lot in your programs. We need a syntax that
avoids the quotation marks around the names of fields.

Syntactic Convention 1

If the key of a field is a string that looks like a JavaScript
identifier, you can write

. . . my ob j ec t . m y f i e l d . . .

instead of

. . . my ob j ec t [ ” m y f i e l d ” ] . . .
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Syntactical Support for Objects (cont’d)

Syntactic Convention 2

If the key of a field is a string that looks like a JavaScript
identifier, you can write

my ob j ec t . m y f i e l d = . . . ;

instead of

my ob j ec t [ ” m y f i e l d ” ] = . . . ;
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Syntactical Support for Objects (cont’d)

Syntactic Convention 3

We can construct objects literally, using the syntax {...}, by
listing the key-value pairs, separated by “:” and “,”.

Example

var my ob jec t = { my f i e l d : 42 ,
m y o t h e r f i e l d : 88 } ;
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Objects as pairs

funct ion make stack ( ) {
var s t a c k = p a i r ( ” s t a c k ” , [ ] ) ;
return s t a c k ;

}
funct ion push ( s tack , x ) {

s e t t a i l ( s tack , p a i r ( x , t a i l ( s t a c k ) ) ) ;
}
// o th e r f u n c t i o n s
var my stack = make stack ( ) ;
push ( my stack , 4 ) ;
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funct ion make account ( i n i t i a l ) {
var ba l ance = i n i t i a l ;
return funct ion ( message , amount ) {

i f ( message === ”withdraw” ) {
ba l ance = ba l ance − amount ;
return ba l ance ;

} e l s e { // message === ” d e p o s i t ”
ba l ance = ba l ance + amount ;
return ba l ance ;

}
}
var my account = make account ( 1 0 0 ) ;
my account ( ”withdraw” , 5 0 ) ;
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Objects as functions, a variant

funct ion make account ( i n i t i a l ) {
var ba l ance = i n i t i a l ;
return funct ion ( message ) {

i f ( message === ”withdraw” ) {
return funct ion ( amount ){

ba l ance = ba lance−amount ;
return ba l ance ;

} ;
} e l s e { // message === ” d e p o s i t ”

return . . . ;
} ;

}
var my account = make account ( 1 0 0 ) ;
( my account ( ”withdraw” ) ) ( 5 0 ) ;
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Knowledge Representation View of Objects
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Aggregation

var myVehic l e = {max speed : 85} ;
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Classification

funct ion n ew v e h i c l e (ms){
return { max speed : ms} ;

}

var my veh i c l e = n ew v e h i c l e ( 8 5 ) ;

CS1101S: Programming Methodology 16—Object-Oriented Programming



JavaScript’s Native Data Structures
Recap: Programming Techniques for Data Representation

Object-Oriented Programming

Knowledge Representation View of Objects
Objects in JavaScript
Software Development View

Specialization

funct ion new car (mp) {
var c = new v e h i c l e ( 9 5 ) ;
c . max pas senge r s = mp;
return c ;

}

var my car = new car ( 5 ) ;
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Specialization

Usually, the concept of inheritance (class extension) achieves
specialization in object-oriented languages.
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Philosophy of Objects in JavaScript/JediScript

Minimality: Introduce only three constructs (new, this, and
Inherits )

Flexibility: Supports many object-oriented programming
techniques, not just the traditional class/object scheme
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Constructor Functions

Constructors are ordinary functions

Any function in JavaScript can serve to create an object.

funct ion Student ( ) {
}
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Creating Objects with “new”

Constructors are ordinary functions

The keyword new creates an object, referred to by “this” in the
function, and allows method invocation (see later)

funct ion Student ( ) {
}
var p e t e r = new Student ( ) ;
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Example using “this”

funct ion Student ( number ) {
t h i s . mat r i c number = number ;
t h i s . y e a r o f s t u d y = 1 ;

}
var p e t e r = new Student ( ”A0014234X” ) ;
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Functions operating on objects

funct ion s e t y e a r ( s tudent , y ) {
s t uden t . y e a r o f s t u d y = y ;

}
var p e t e r = new Student ( ”A0014234X” ) ;
s e t y e a r ( pe t e r , 2 ) ;
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Alternative: Methods

What are methods?

Methods are functions that are defined with the intention of being
applied to objects through object invocation

funct ion Student ( number ) {
t h i s . mat r i c number = number ;
t h i s . y e a r o f s t u d y = 1 ;

}
funct ion s e t y e a r ( y ) {

t h i s . y e a r = y ;
}
var p e t e r = new Student ( ”A001342X” ) ;
p e t e r . s e t y e a r ( 2 ) ; // w i l l t h i s work ?
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Connecting methods to objects

Prototype field of Constructors

The prototype field of constructors are used for object invocation.

funct ion s e t y e a r ( y ) {
t h i s . y e a r = y ;

}
Student . p r o t o t yp e . s e t y e a r = s e t y e a r ;

Student . p r o t o t yp e . s e t y e a r =
funct ion ( y ) {

t h i s . y e a r = y ;
} ;
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Invoking Methods

var p e t e r = new Student ( ”A001342X” ) ;
p e t e r . s e t y e a r ( y ) ;

Invocation mechanism

This special notation calls the function
Student.prototype . set year using the argument 2 as y, and the
implicit argument peter as “this”.
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Inheritance

funct ion GraduateStudent ( s , n ) {
t h i s . s u p e r v i s o r = s ;
Student . c a l l ( th i s , n ) ;

}
GraduateStudent . I n h e r i t s ( Student ) ;
var pau l = new GraduateStudent ( ” Pro f Leong” ,

”A0014234X” ) ;
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Overriding Methods

GraduateStudent . p r o t o t yp e . s e t y e a r =
funct ion ( y ) {

i f ( y < 5) {
a l e r t ( ”a v e r y j u n i o r grad s t uden t ” ) ;

} e l s e {
Student . p r o t o t yp e . s e t y e a r . c a l l ( th i s , n ) ;

} ;
}

}
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Control Flow in Procedural Languages (time)

P1 P2 P3

control

time
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Control Flow in Object-oriented Languages (time)

application
method
self orobject application

control

M3M2M1M3M2M1methods

O2O1objects

time
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Execution of Object Application

window . move ( 100 , 50 )

code

lookup
method

lookup
class

arguments
identifier
methodobject

execution

code
address

class
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Early Binding in Procedural Languages

procedure
application

procedure
execution

executing
code

early
binding
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Late Binding in Object-oriented Languages

application
object

application
"this"

execution
method

binding
late

"this"
setting

methodmethod

binding
early

application execution

executing
code
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Summary

Objects are possible and widely used already in JediScript
Week 8

In JediScript Week 10, objects enjoy special support (new,
this, Inherits)
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