34
CHAPTER 2 (NUMBER SYSTEMS AND CODES

CHAPTER 2 (NUMBER SYSTEMS AND CODES 33

Chapter

2

Number Systems and Codes

OBJECTIVES

In this chapter, you will be introduced to the following topics:

· The number systems on various bases, and the conversion between numbers in different bases.

· Arithmetic operations on binary numbers.

· Representations of negative numbers.

· Floating-point representation for real numbers.

· Decimal codes, alphanumeric code, and error-detection code.

· The Gray code.

2.1
Information Representation

Computers are information processing tools that give meaning to raw data. Data should be represented in a form that permits efficient storage and ease of manipulation (although these two goals might be conflicting at times). In data communications, we are also concerned with issues such as security, error detection and error correction.

Data are usually represented in some form of code for compactness and uniformity. For instance, a ‘yes’ response may be represented by ‘Y”, and a ‘no’ by ‘N’; the four seasons by ‘S’ (spring), ‘M’ (summer), ‘A’ (autumn) and ‘W’ (winter). We can see that the choices are rather arbitrary. In real-life, codes are used for identification purposes, such as the Singapore NRIC
 number and the NUS
 student’s matriculation number.

Computers are also number crunching devices. Numeric values are represented in a form that eases arithmetic computations and preserves accuracy as much as possible.

The atomic unit of data is the bit (binary digit), stemming from the fact that the elementary storage units in a computer are electronic switches where each switch holds one of the two states: on (usually represented by 1), or off (0), as shown below.

Ultimately, all data, numeric or non-numeric, are represented in sequence of bits of zeroes and ones. Eight bits constitute a byte (a nibble is half a byte, or four bits, but this is rarely used these days), and a word, which is a unit for data storage and transfer, is usually in multiples of byte, depending on the width of the system bus. Computers nowadays typically use 32-bit or 64-bit words.

A sequence of bits allows for a range of representations. Storage units can be grouped together to provide larger range of representations. For convenience, we shall refer to these representations as values, though they may represent non-numeric data. For example, the four seasons could be represented by two switches, to cover a range of four values 00, 01, 10 and 11, as shown below.

In general, N bits can represent up to 2N distinct values. Conversely, to represent a range of M values, the number of bits required is
[image: image1.wmf]é

ù

M

2

log

.

	1 bit
	(
	represents up to 2 values (0, 1)

	2 bits
	(
	represents up to 4 values (00, 01, 10, 11)

	3 bits
	(
	represents up to 8 values (000, 001, 010, 011, 100, 101, 110, 111)

	4 bits
	(
	represents up to 16 values (0000, 0001, 0010, …, 1110, 1111)

	32 values
	(
	requires 5 bits

	40 values
	(
	requires 6 bits

	64 values
	(
	requires 6 bits

	100 values
	(
	requires 7 bits

	1024 values
	(
	requires 10 bits

2.2
Positional Numerals

Different numeral systems have emerged in civilizations over the history. They can be roughly categorised as follows:

· Non-positional numeral systems

· Relative-position numeral systems

· Positional numeral systems

Non-positional systems are position-independent and include those of the Egyptian and Greek. In the Greek numeral system, more than 27 symbols are used, such as (for 1, (for 30, and (for 500, and so 531 would be written as (((. The Egyptians drew different symbols for powers of ten, for example, [image: image2.png]

 for 1, [image: image3.png]

 for 10, and [image: image4.png]

 for 100. Hence, 531 would be depicted as [image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10.png]

[image: image11.png]

[image: image12.png]

[image: image13.png]

.

The Roman numeral system includes different symbols for some basic values: I (1), V (5), X (10), C (50), and M (100), but employs complicated rules on relative positioning of symbols to represent other values. For instance, IV is 4 but VI is 6.

The systems described above are not well suited for computations. The problem is overcome by the elegant positional notation, where each position carries an implicit weight. The familiar Arabic decimal numeral is one such system.

In the decimal numeral system, the positional weights are powers of ten. In general, a decimal number (an an-1 … a0 . f1 f2 … fm) has the value

(an (10n) + (an-1 (10n-1) +…+ (a0 (100) + (f1 (10-1) + (f2 (10-2) +…+ (fm (10-m)

For example, 28.75 = (2 (101) + (8 (100) + (7 (10-1) + (5 (10-2)

2.3
Bases of Number Systems

The base or radix of a number system is the number of digits present. The decimal numeral system has a base or radix of 10, where the set of 10 symbols (digits) is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The weights are in powers of ten.

Number systems on other bases are defined likewise. For instance, a base-four number system consists of the set of four symbols {0, 1, 2, 3} with weights in powers of four. Hence, a base-four number 123.1, also written as (123.1)4 for clarity, has the value (1 (42) + (2 (41) + (3 (40) + (1 (4-1) or 16 + 8 + 3 + 0.25 or 27.25 in decimal, or (27.25)10. Listing base-four integers in increasing value yields 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, … .

In general, a base-b number (an an-1 … a0 . f1 f2 … fm)b has the value

(an (bn) + (an-1 (bn-1) +…+ (a0 (b0) + (f1 (b-1) + (f2 (b-2) +…+ (fm (b-m)

The point that separates the integer part and fraction part is known as the radix point. The weights are in powers of b. The above forms the basis for conversion of a base-b number to decimal.

We may also adopt the computationally more efficient Horner’s rule to convert a base-b integer to decimal. This method simply factors out the powers of b, by rewriting (an (bn) + (an-1 (bn-1) +…+ (a0 (b0) as (((an (b) + an-1) (b + …) (b + a0. For example, (123)4 = ((1 (4) + 2) (4 + 3 = 27. For fractions, we may adopt the same method by replacing multiplication with division.

Special names are given to number systems on certain bases. If you think that the base is a small value, you are wrong. The Babylonians used a sexagesimal system with base 60!

Table 2-1 Bases of Positional Numeral Systems

	Base
	Name
	
	Base
	Name

	2
	Binary
	
	9
	Nonary

	3
	Ternary
	
	10
	Decimal (or Denary)

	4
	Quaternary
	
	12
	Duodecimal

	5
	Quinary
	
	16
	Hexadecimal

	6
	Senary
	
	20
	Vigesimal

	7
	Septimal
	
	60
	Sexagesimal

	8
	Octal (or Octonary)
	
	
	

For a base b that is less than ten, the symbols used are the first b Arabic symbols: 0, 1, 2, …, b–1. For bases that exceed ten, more symbols beyond the ten Arabic symbols must be introduced. The hexadecimal system uses the additional symbols A, B, C, D, E and F to represent 10, 11, 12, 13, 14 and 15 respectively.

The binary number system is of particular interest to us as the two symbols 0 and 1 correspond to the two bits that represent the states of a switch. The octal and hexadecimal number systems are also frequently encountered in computing.

Examples: Convert the following numbers into their decimal equivalent.

(1101.101)2
= (1 (23) + (1 (22) + (1 (20) + (1 (2-1) + (1 (2-3)

= 8 + 4 + 1 + 0.5 + 0.125 = 13.625

(572.6)8
= (5 (82) + (7 (81) + (2 (80) + (6 (8-1)

= 320 + 56+ 2 + 0.75 = 378.75

(2A.8)16
= (2 (161) + (10 (160) + (8 (16-1)

= 32 + 10 + 0.5 = 42.5

(341.24)5
= (3 (52) + (4 (51) + (1 (50) + (2 (5-1) + (4 (5-2)

= 75 + 20 + 1 + 0.4 + 0.16 = 96.56

2.4
Decimal to Binary Conversion

One way to convert a decimal number to its binary equivalent is the sum-of-weights method. Here, we determine the set of weights (which are in powers of two) whose sum is the number in question.

Examples: Convert decimal numbers to their binary equivalent using sum-of-weights.

(9)10
= 8 + 1 = 23 + 20 = (1001)2

(18)10
= 16 + 2 = 24 + 21 = (10010)2

(58)10
= 32 + 16 + 8 + 2 = 25 + 24 + 23 + 21 = (111010)2

(0.625)10
= 0.5 + 0.125 = 2-1 + 2-3 = (0.101)2

We observe that multiplying a number x by 2n is equivalent to shifting left the binary representation of x by n positions, with zeroes appended on the right. For example, the value (5)10 is represented as (101)2, and (40)10 (which is 5 (23) is (101000)2. Similarly, dividing a number x by 2n is equivalent to shifting right its binary representation by n positions. This may help in quicker conversion.

The second method deals with the integral portion and the fractional portion separately, as follows:

· Integral part: Repeated division-by-two
· Fractional part: Repeated multiplication-by-two
Repeated Division-by-Two

To convert a decimal integer to binary, we divide the number successively by two until the quotient becomes zero. The remainders form the answer, with the first remainder serving as the least significant bit (LSB) and the last remainder the most significant bit (MSB).

The example below shows how (43)10 is converted into its binary equivalent.

	2
	43
	
	

	2
	21
	rem 1
	(LSB

	2
	10
	rem 1
	

	2
	 5
	rem 0
	

	2
	 2
	rem 1
	

	2
	 1
	rem 0
	

	
	 0
	rem 1
	(MSB

Repeated Multiplication-by-Two

To convert a decimal fraction to binary, we multiply the number successively by two, removing the carry in each step, until the fractional product is zero or until the desired number of bits is collected. The carries form the answer, with the first carry serving as the MSB and the last as the LSB.

The example below shows how (0.3125)10 is converted into its binary equivalent.

	
	
	Carry
	

	0.3125 (2
	= 0.625
	0
	(MSB

	0.625 (2
	= 1.25
	1
	

	0.25 (2
	= 0.5
	0
	

	0.5 (2
	= 1.0
	1
	(LSB

2.5
Conversion Between Bases

Decimal to Base-R Conversion

We may extend the repeated-division and repeated-multiplication techniques to convert a decimal value into its equivalent in base R:

· Integral part: Repeated division-by-R
· Fractional part: Repeated multiplication-by-R
Truncation and Rounding

In the course of converting values – especially fractional values – between bases, there might be instances when the values are to be corrected within a specific number of places. This may be done by truncation or rounding.

In truncation, we simply chop a portion off from the fraction. Table 2-2 shows the truncation of the value (0.12593)10 with respect to the number of decimal places desired.

Table 2-2 Truncation versus Rounding

	Number of
decimal places
	Truncated
value
	Rounded
value

	4
	(0.1259)10
	(0.1259)10

	3
	(0.125)10
	(0.126)10

	2
	(0.12)10
	(0.13)10

	1
	(0.1)10
	(0.1)10

In rounding, we need to examine the leading digit of the portion we intend to remove. We divide the digits of the numeral system into two equal-sized sets, where the first set contains the ‘lighter’ digits (example: 0, 1, 2, 3, 4 in the decimal system), and the second set the ‘heavier’ digits (5, 6, 7, 8, 9). If that digit being examined belongs to the former set, we remove the unwanted portion; if it belongs to the latter set, we ‘promote’ (round up) the last digit in the retained portion to its next higher value (propagating the promotion if necessary). Table 2-2 above shows the rounding of the value (0.12593)10 with respect to the specified number of decimal places.

For bases that are odd numbers, there exists a ‘middle’ digit that may be classified either as a ‘light’ digit or a ‘heavy’ digit. For example, (6.143)7 may be rounded to two places either as (6.14)7 or (6.15)7.

Conversion between Binary and Octal/Hexadecimal

There exist simple techniques for conversion between binary numbers and octal (or hexadecimal) numbers. They are given below.

· Binary (Octal: Partition (from the radix point outwards) in groups of 3; each group of 3 bits corresponds to an equivalent octal digit.

· Octal (Binary: Expand each octal digit into an equivalent group of 3 bits.

· Binary (Hexadecimal: Partition (from the radix point outwards) in groups of 4; each group of 4 bits corresponds to an equivalent hexadecimal digit.

· Hexadecimal (Binary: Expand each hexadecimal digit into an equivalent group of 4 bits.

Examples: Conversion between binary and octal/hexadecimal.

(10 111 011 001 . 101 11)2 = (2731.56)8

(2731.56)8 = (010 111 011 001 . 101 110)2

(101 1101 1001 . 1011 1)2 = (5D9.B8)16

(5D9.B8)16 = (0101 1101 1001 . 1011 1000)2

Octal and hexadecimal notations are commonly encountered in computing literature as they provide more compact writing compared to binary notation, and they can be easily converted into binary form.

On closer observation, it is not difficult to uncover the underlying principle behind these techniques. (Hint: 8 is 23, and 16 is 24.) With this, we can design similar techniques to convert between related bases, such as between binary and quaternary (base 4), and between ternary (base 3) and nonary (base 9).

General Conversion

Apart from the techniques for conversion between related bases such as those discussed above, for general conversion between two bases, the approach is to convert the given value first into decimal, followed by converting the decimal value into the target base.

2.6
Arithmetic Operations on Binary Numbers

Arithmetic operations on binary numbers are similar to those on decimal.

The example below shows the multiplication of two binary numbers. The multiplicand (11001) is multiplied with every bit of the multiplier (10101), and the partial products are then added.

	
	
	
	
	
	
	1
	1
	0
	0
	1

	
	
	
	
	
	(
	1
	0
	1
	0
	1

	
	
	
	
	
	
	1
	1
	0
	0
	1

	
	
	
	
	1
	1
	0
	0
	1
	
	

	+
	
	1
	1
	0
	0
	1
	
	
	
	

	
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1

Binary addition is performed in the same manner as in decimal. The examples below compare addition in the two systems.

	Binary
	
	Decimal

	
	
	1
	1
	0
	1
	1
	
	
	
	6
	4
	8

	+
	
	1
	0
	0
	1
	1
	
	+
	
	5
	9
	7

	
	1
	0
	1
	1
	1
	0
	
	
	1
	2
	4
	5

The addition is performed column by column, from right to left. At each column three bits are added: one bit from each of the two numbers, and a carry-in bit. The column addition generates the sum bit, and a carry-out bit that is propagated to the next column to its left as the carry-in. Table 2-3 shows the eight possible outcomes of a column addition.

Table 2-3 Bit addition table

	0
	+
	0
	+
	0
	=
	0
	0

	0
	+
	0
	+
	1
	=
	0
	1

	0
	+
	1
	+
	0
	=
	0
	1

	0
	+
	1
	+
	1
	=
	1
	0

	1
	+
	0
	+
	0
	=
	0
	1

	1
	+
	0
	+
	1
	=
	1
	0

	1
	+
	1
	+
	0
	=
	1
	0

	1
	+
	1
	+
	1
	=
	1
	1

Subtraction is performed in a similar fashion.

	Binary
	
	Decimal

	
	
	1
	0
	0
	1
	0
	
	
	
	8
	2
	3

	–
	
	0
	1
	1
	0
	1
	
	–
	
	3
	9
	7

	
	
	0
	0
	1
	0
	1
	
	
	
	4
	2
	6

Like addition, the subtraction is performed column by column. However, unlike traditional method where we might progressively ‘borrow’ from a few columns before returning to the column we are currently working on, we adopt the ‘borrow-in’ and ‘borrow-out’ concept that allows the information to be propagated one column at a time. Table 2-4 shows the eight possible outcomes of a column subtraction. A column subtraction generates a difference bit and a borrow-out bit that becomes the borrow-in of the next column to its left.

Table 2-4 Bit subtraction table

	0
	
	0
	–
	0
	=
	0
	0

	0
	
	0
	–
	1
	=
	1
	1

	0
	
	1
	–
	0
	=
	0
	1

	0
	
	1
	–
	1
	=
	0
	0

	1
	
	0
	–
	0
	=
	1
	1

	1
	
	0
	–
	1
	=
	1
	0

	1
	
	1
	–
	0
	=
	0
	0

	1
	
	1
	–
	1
	=
	1
	1

2.7
Negative Numbers

Till now, we have only considered unsigned numbers, which are non-negative values. We shall now consider a few schemes to represent signed integers (positive and negative values). The four common representations for signed binary numbers are:

· Sign-and-magnitude

· Excess

· 1’s complement

· 2’s complement

Sign-and-Magnitude

The sign-and-magnitude representation employs a prefix bit to indicate the sign of the number, followed by the magnitude field. A positive value has a sign bit of 0 while a negative value a sign bit of 1. Figure 2-3 shows how the value –75 is represented in an 8-bit sign-and-magnitude scheme. We may write the value as (11001011)sm.

An 8-bit sign-and-magnitude representation allows values between –127 (represented as (11111111)sm) and +127 (represented as (01111111)sm) to be represented. There are two representations for zero: (00000000)sm and (10000000)sm. In general, an n-bit sign-and-magnitude representation can cover this range of values [–(2n–1 – 1), 2n–1 – 1].

To negate a value, we invert the sign bit.

Excess

The excess system (also known as biased system) is another popular system in use for negative numbers. To represent a value, a fixed bias is added to this value, and the binary representation of the result is the desired representation. For example, assuming a 5-bit excess system, if the bias chosen is 16, then it is called the excess-16 system. In the excess-16 system, the value –16 is represented as (00000)ex16 (since –16 + 16 = 0), and the value 3 would be represented as (10011)ex16 (since 3 + 16 = 19). Since the excess system is just a simple translation of the binary system, (00000)ex16 would represent the most negative value (which is –16), and (11111)ex16 would represent the largest positive value (which is 15).

The bias is usually chosen so that the range of values represented has a balanced number of positive and negative values. Hence we pick 16 as the bias for a 5-bit excess system, resulting in the range of [–16, 15]. (Sometimes we pick 15 as the bias, which results in the range [–15, 16].) For a 4-bit system, a reasonable bias would be 8 (or sometimes 7). In general, for n bits, the bias is usually 2n-1.

Table 2-5 shows the 4-bit excess-8 system.

Table 2-5 The 4-bit Excess-8 system

	Value
	Excess-8
	
	
	Value
	Excess-8

	–8
	0000
	
	
	0
	1000

	–7
	0001
	
	
	1
	1001

	–6
	0010
	
	
	2
	1010

	–5
	0011
	
	
	3
	1011

	–4
	0100
	
	
	4
	1100

	–3
	0101
	
	
	5
	1101

	–2
	0110
	
	
	6
	1110

	–1
	0111
	
	
	7
	1111

1’s Complement

For positive values, the ones’ complement representation is identical to the binary representation. For instance, the value 75 is represented as (01001011)2 in an 8-bit binary system, as well as (01001011)1s in an 8-bit 1’s complement system. What about negative values?

Given a number X which can be expressed as an n-bit binary number, its negated value, –X, can be obtained in 1’s complement form by this formula:

–X = 2n – X – 1

For example, 75 is represented as (01001011)2 in an 8-bit binary system, and hence –75 is represented as (10110100)1s in the 8-bit 1’s complement system. (Note that 28 – 75 – 1 = 180 whose binary form is 10110100.)

We observe that we can easily derive –X from X in 1’s complement by inverting all the bits in the binary representation of X. Note also that the first bit serves very much like a sign bit, indicating that the value is positive (negative) if the first bit is 0 (1). However, the remaining bits do not constitute the magnitude of the number, particularly for negative numbers.

An 8-bit 1’s complement representation allows values between –127 (represented as (10000000)1s) and +127 (represented as (01111111)1s) to be represented. There are two representations for zero: (00000000)1s and (11111111)1s. In general, an n-bit 1’s complement representation has a range [–(2n–1 – 1), 2n–1 – 1].

To negate a value, we invert all the bits. For example, in an 8-bit 1’s complement scheme, the value 14 is represented as (00001110)1s, therefore –14 is represented as (11110001)1s.

2’s Complement

The two’s complement system share some similarities with the ones’ complement system. For positive values, it is the same as the binary representation. The first bit also indicates the sign of the value (0 for positive, 1 for negative).

Given a number X which can be expressed as an n-bit binary number, its negated value, –X, can be obtained in 2’s complement form by this formula:

–X = 2n – X

For example, 75 is represented as (01001011)2 in an 8-bit binary system, and hence –75 is represented as(10110101)2s in the 8-bit 2’s complement system. (Note that 28 – 75 = 181 whose binary form is 10110101.)

Again, we observe that we can easily derive –X from X in 2’s complement by inverting all the bits in the binary representation of X, and then adding one to it.

An 8-bit 2’s complement representation allows values between –128 (represented as (10000000)2s) and +127 (represented as (01111111)2s) to be represented, and hence it has a range that is one larger than that of the 1’s complement representation. This is due to the fact that there is only one unique representation for zero: (00000000)2s. In general, an n-bit 2’s complement representation has a range [–2n–1, 2n–1 – 1].

To negate a value, we invert all the bits and plus 1. For example, in an 8-bit 2’s complement scheme, the value 14 is represented as (00001110)2s, therefore –14 is represented as (11110010)2s.

Comparisons of Sign-and-Magnitude and Complements

Table 2-6 compares the sign-and-magnitude, 1’s complement and 2’s complement schemes of a 4-bit signed number system.

Table 2-6 Sign-and-Magnitude, 1’s complement and 2’s complement

	Value
	Sign-and-Magnitude
	1’s Comp.
	2’s Comp.
	
	
	Value
	Sign-and-Magnitude
	1’s Comp.
	2’s Comp.

	+7
	0111
	0111
	0111
	
	
	–0
	1000
	1111
	-

	+6
	0110
	0110
	0110
	
	
	–1
	1001
	1110
	1111

	+5
	0101
	0101
	0101
	
	
	–2
	1010
	1101
	1110

	+4
	0100
	0100
	0100
	
	
	–3
	1011
	1100
	1101

	+3
	0011
	0011
	0011
	
	
	–4
	1100
	1011
	1100

	+2
	0010
	0010
	0010
	
	
	–5
	1101
	1010
	1011

	+1
	0001
	0001
	0001
	
	
	–6
	1110
	1001
	1010

	+0
	0000
	0000
	0000
	
	
	–7
	1111
	1000
	1001

	
	
	
	
	
	
	–8
	-
	-
	1000

Diminished Radix Complement and Radix Complement

The complement systems are not restricted to the binary number system. In general, there are two complement systems associated with a base-R number system.

· Diminished Radix (or (R-1)’s) Complement

· Radix (or R’s) Complement

Given an n-digit base-R number X, its negated value, –X, can be obtained in (R-1)’s complement form by this formula:

–X = Rn – X – 1

For example, (–22)10 is represented as (77)9s in the 2-digit 9’s complement system, and (–3042)5 is represented as (1402)4s in the 4-digit 4’s complement system.

Given an n-digit base-R number X, its negated value, –X, can be obtained in R’s complement form by this formula:

–X = Rn – X

For example, (–22)10 is represented as (78)10s in the 2-digit 10’s complement system, and (–3042)5 is represented as (1403)5s in the 4-digit 5’s complement system.

2.8
Addition and Subtraction in Complements

We shall discuss how addition of binary numbers is performed under the complement schemes.

Addition in 2’s Complement System

The following is the algorithm for A + B in the 2’s complement system:

1. Perform binary addition on the two numbers A and B.

2. Discard the carry-out of the MSB.

3. Check for overflow: an overflow occurs if the carry-in and carry-out of the MSB column are different, or if A and B have the same sign but the result has an opposite sign.

The following are some examples of addition on 4-bit 2’s complement numbers. The decimal values are shown for verification.

There is no overflow in the above examples, as the results are all within the value range of values [–8, 7] for the 4-bit 2’s complement system. The following two examples, however, illustrate the cases where overflow occurs. Neither 11 nor –9 falls within the valid range of values.

Overflow is detected when two positive values are added to produce a negative value, or adding two negative values results in a positive value.

Addition in 1’s Complement System

The following is the algorithm for A + B in the 1’s complement system:

1. Perform binary addition on the two numbers A and B.

2. Add the carry-out of the MSB to the result.

3. Check for overflow: an overflow occurs if A and B have the same sign but the result has an opposite sign.

The following are some examples of addition on 4-bit 1’s complement numbers. Again, the decimal values are shown for verification.

In the last example above, an overflow occurs as the value –9 is out of range, and is detected by the sign of the result being opposite to the sign of the two values.

Subtraction in Complement Systems

In hardware implementation, subtraction is more complex than addition. Therefore, the subtraction operation is usually carried out by a combination of complement and addition. In essence, we convert the operation A – B into A + (–B). As we have seen, negating B to obtain –B is a simple matter in the complement systems.

For example, to perform (5)10 – (3)10 in the 4-bit 2’s complement binary system, we get (0101)2s – (0011)2s, or (0101)2s + (1101)2s. Applying the addition algorithm described earlier, the result is (0010)2s, or (2)10.

2.9
Fixed-Point Representation

In representing real numbers in the computer, the radix point is not explicitly stored. One strategy is to assume a position of the radix point, which divides the field into two portions, one for the integral part and the other the fractional part. This is known as fixed-point representation. For example, Figure 2-4 shows the value (21.75)10 or (010101.11)2, in an 8-bit sign-and-magnitude scheme with two bits allocated to the fraction part.

It is apparent that the number of bits allocated to the representation determines the maximum number of values (up to 2n values for an n-bit representation), the width of the integral portion determines the range of values, and the width of the fractional portion determines the precision of the values. It is the finite size of the fractional portion that results in imprecise representation of certain numeric values, and computational error due to truncation or rounding. Due to the discrete nature of computer, real numbers are only approximated in their computer representation.

2.10
Floating-Point Representation

The simple fixed-point representation allows for a very limited range of values that can be represented. A more versatile scheme, the floating-point representation, overcomes this weakness. The radix point in this format is ‘floating’, as we adopt the concept of scientific notation. Some examples of values written in the scientific notation are shown below.

Examples:

Decimal values expressed in scientific notation.

0.123 (1030 = 123,000,000,000,000,000,000,000,000,000

0.5 (10-17 = 0.000 000 000 000 000 005

–98.765 (10-7 = –0.000 009 876 5

Binary values expressed in scientific notation.

101.101 (2-7 = 0.0000101101

110.011 (28 = 11001100000

The scientific notation comprises the mantissa (also called significand), the base (or radix) and the exponent. Figure 2-5 shows the three components of a decimal number in scientific notation.

These representations: –12.3456 (103, –123456 (10-1, and –0.00123456 (107 all represent the same value –12345.6. To achieve consistency and storage efficiency, we adopt a form where the mantissa is said to be normalised. A normalised mantissa is one in which the digit immediately after the radix point is non-zero. Therefore, the normalised form of our example would be –0.123456 (105.

The scientific notation is implemented as floating-point representation. The sign-and-magnitude format is usually chosen to represent the mantissa, and the base (radix) is assumed to be two, since numbers are represented in binary in computers. The floating-point format hence consists of three fields: a sign bit, a mantissa field, and an exponent field (the relative positions of the mantissa field and exponent field, as well as their widths, may vary from system to system), as shown in Figure 2-6.

The mantissa is usually normalised, so the first bit in the mantissa field must be a 1. Indeed, some systems further save on this bit, and store the mantissa only from the second bit onwards. The exponent field may be implemented in different schemes, such as sign-and-magnitude, 1’s complement, 2’s complement, or excess.

More bits for mantissa offers better precision, while a bigger exponent field provides a larger range of values. There is hence a trade-off between precision and range in determining the widths of these two fields.

The examples below assume a floating-point representation with 1-bit sign, 5-bit normalised mantissa, and 4-bit exponent for the value (0.1875)10, under the various schemes for exponent.

Examples:

Convert the given value to binary and express it in scientific notation with normalised mantissa:

(0.1875)10 = (0.0011)2 = 0.11 (2-2

If exponent is in 1’s complement format:

If exponent is in 2’s complement format:

If exponent is in excess-8 format:

Multiplication on Floating-Point Numbers

The steps for multiplying two numbers A and B in floating-point representation are:

1. Multiply the mantissas of A and B.

2. Add the exponents of A and B.

3. Normalise if necessary.

For example: if A = (0.11)2 (24 and B = (0.101)2 (2-1, then A (B = (0.11 (0.101) (24-1 = (0.01111)2 (23 = (0.1111)2 (22. This illustrates the multiplication of two decimal values 12 and 5/16 to obtain 3.75.

Addition on Floating-Point Numbers

The steps for adding two numbers A and B in floating-point representation are:

1. Equalise the exponents of A and B.

2. Add the mantissas of A and B.

3. Normalise if necessary.

For example: if A = (0.11)2 (24 and B = (0.101)2 (2-1, then we convert A to (11000)2 (2-1, so A + B = (11000 + 0.101) (2-1 = (11000.101)2 (2-1 = (0.11000101)2 (24. This illustrates the addition of two decimal values 12 and 5/16 to obtain 12.3125.

IEEE Floating Point Representation

The IEEE
 has devised the IEEE Standard 754 floating point representation for representing real numbers on computers, adopted widely in Intel-based computers, Macintoshes and most UNIX machines. It provides a 32-bit format for single-precision values, and a 64-bit format for double-precision values. The double-precision format contains a mantissa field that is more than twice as long as the mantissa field of the single-precision format, permitting greater accuracy.

The mantissa field assumes an implicit leading bit of 1, and the exponent field adopts the excess system with a bias value of 127 for the single-precision format, and a bias of 1023 for the double-precision format. Some representations are reserved for special values such as zero, infinity, NAN (not-a-number), denormalised values.

2.11
Codes

Our preceding discussion has been on the various representations for numeric values with the objective of easing arithmetic operations. However, we recognise that we are too accustomed to the decimal number system, whereas the ‘natural’ choice for computer representation is the binary number system, and the conversion between the two systems can be costly.

If arithmetic computations are not our concern, we may devise some coding schemes to represent decimal numbers. These schemes support quick conversion between the code and the value it represents, with the objective for data communications.

We shall discuss a few popular coding schemes such as BCD, Excess-3, 84-2-1, 2421, and the Biquinary codes. These codes are used to represent the ten decimal digits.

BCD (Binary Coded Decimal)

The BCD (Binary Coded Decimal) represents each decimal digit using a 4-bit code with weights 8, 4, 2 and 1. Hence it is also known as the 8421 code.

For example, the decimal number 294 would be represented as 0010 1001 0100 in BCD, with a 4-bit BCD code for each decimal digit in the number. (For negative values, the negative sign ‘–’ is to be coded separately and is not within the scope of BCD coding.)

Some codes are unused: 1010, 1011, …, 1111. These codes are considered as errors.

The BCD code offers the advantage of ease of conversion to its decimal equivalent. Performing arithmetic operations on BCD codes however, are more complicated and best avoided. BCD codes are useful for interfaces such as keypad inputs.

Excess-3 Code

The Excess-3 code uses a bias value of three. Hence the codes for the ten digits 0, 1, …, 9 are 0011, 0100, …, 1100 respectively. The decimal number 294 would be represented as 0101 1100 0111.

84-2-1 Code

The 84-2-1 code uses the weights of 8, 4, -2 and -1 in the coding. The decimal number 294 would be represented as 0110 1111 0100.

2421 Code

The 2421 code uses the weights of 2, 4, 2 and 1 in the coding. According to the weights, certain digits may have alternative codes. For instance, the digit 3 could be represented as 0011 or 1001. However, we pick the former in the standard 2421 coding, so that the codes for the first five digits 0 – 4 begin with 0, whereas the codes for the last five digits 5 – 9 begin with 1. The decimal number 294 would be represented as 0010 1111 0100.

Biquinary Code

The Biquinary code (bi=two, quinary=five) uses seven bits. The first two bits are either 01 (for representations of the first five digits) or 10 (for representations of the last five digits), and the following five bits consist of a single 1. The Biquinary code has error-detecting capability. The decimal number 294 would be represented as 0100100 1010000 0110000.

Comparison of Decimal Codes

Table 2-7 BCD, Excess-3, 84-2-1, 2421 and Biquinary Codes

	Decimal
digit
	BCD
8421
	Excess-3
	84-2-1
	2421
	Biquinary
5043210

	0
	0000
	0011
	0000
	0000
	0100001

	1
	0001
	0100
	0111
	0001
	0100010

	2
	0010
	0101
	0110
	0010
	0100100

	3
	0011
	0110
	0101
	0011
	0101000

	4
	0100
	0111
	0100
	0100
	0110000

	5
	0101
	1000
	1011
	1011
	1000001

	6
	0110
	1001
	1010
	1100
	1000010

	7
	0111
	1010
	1001
	1101
	1000100

	8
	1000
	1011
	1000
	1110
	1001000

	9
	1001
	1100
	1111
	1111
	1010000

Table 2-7 compares the common decimal codes. Note that the codes for the first five digits all begin with 0, while the codes for the last five digits begin with 1. Other codes exist, such as the 5211 code.

The following are some definitions:

· A weighted code is one where each bit position has an associated weight. The BCD, 84-2-1, 2421 and Biquinary codes are all weighted codes.

· A self-complementing (or reflective) code is one in which the codes for complementary digits are also complementary to each other. For instance, the Excess-3 code for digit 2 is 0101, while the code for digit 7 (the complement of 2) is 1010 (the complement of 0101). The Excess-3, 84-2-1 and 2421 codes are self-complementing.

· A sequential code is one in which each succeeding code value is one binary value greater than its preceding code value. The BCD and Excess-3 codes are sequential.

ASCII Code

Apart from numerical values, computing devices also handle textual data comprising characters. The character set includes letters in the alphabet (‘A’ … ‘Z’, ‘a’ … ‘z’), digits (‘0’ … ‘9’), special symbols (‘+’, ‘$’, ‘.’, ‘;’, ‘@’, ‘*’, etc.) and non-printable characters (control-A, backspace, control-G, etc.).

The ASCII (American Standard Code for Information Interchange) character set is a commonly used standardised code that uses 7 bits, plus a parity bit for error detection. Table 2-8 shows the ASCII character set. Every character has a unique ASCII value. The ASCII value of character ‘A’, for example, is (1000001)2 or (65)10.

Table 2-8 The ASCII Character Set

	
	MSBs

	LSBs
	000
	001
	010
	011
	100
	101
	110
	111

	0000
	NUL
	DLE
	SP
	0
	@
	P
	`
	p

	0001
	SOH
	DC1
	!
	1
	A
	Q
	a
	q

	0010
	STX
	DC2
	"
	2
	B
	R
	b
	r

	0011
	ETX
	DC3
	#
	3
	C
	S
	c
	s

	0100
	EOT
	DC4
	$
	4
	D
	T
	d
	t

	0101
	ENQ
	NAK
	%
	5
	E
	U
	e
	u

	0110
	ACK
	SYN
	&
	6
	F
	V
	f
	v

	0111
	BEL
	ETB
	'
	7
	G
	W
	g
	w

	1000
	BS
	CAN
	(
	8
	H
	X
	h
	x

	1001
	HT
	EM
)
	9
	I
	Y
	i
	y

	1010
	LF
	SUB
	*
	:
	J
	Z
	j
	z

	1011
	VT
	ESC
	+
	;
	K
	[
	k
	{

	1100
	FF
	FS
	,
	<
	L
	\
	l
	|

	1101
	CR
	GS
	-
	=
	M
]
	m
	}

	1110
	O
	RS
	.
	>
	N
	^
	n
	~

	1111
	SI
	US
	/
	?
	O
	_
	o
	DEL

Parity Bit

Errors may occur during data transmission. If we could detect the error, we could request for re-transmission. Better still, if the error could be corrected automatically, it would save the re-transmission, but this requires a more complex mechanism.

The Biquinary code uses 7 bits, 3 more bits than the usual 4-bit codes such as BCD, to provide error-detection capability. If a supposedly Biquinary code received shows 0101001, we detect the error instantly.

For the detection of single-bit error – a bit is inverted during the transmission – a simple error-detection scheme called the parity bit scheme can be used. An additional parity bit is attached (usually appended) to the data. The parity bit scheme comes in two flavours: the odd parity and the even parity.

In the odd parity scheme, the additional parity bit is chosen so that the total number of 1’s in the data, including the parity bit, is an odd number. Likewise, for even parity scheme, the total number of 1’s in the data and parity must be even.

If we use the odd parity scheme on the ASCII character set, then the character ‘A’, having the ASCII value 1000001, would be appended with the parity bit 1 to become 10000011.

The parity bit scheme detects only single-bit error. If two bits are inverted during data transmission, it would go undetected under this scheme.

The parity bit scheme may be extended to a block of data. For example, in Figure 2-8, a block of five 4-bit words is shown on the left. On the right, it is shown how a parity bit is appended to each of the five words, and an additional parity word is added where each bit in that parity word is the parity bit for its associated column. Odd parity scheme is assumed in this example.

The parity bit scheme has limited ability on error correction. More complex schemes, such as the Hamming code, are needed to do error correction.

2.12
Gray Code

We shall conclude this chapter with a special code – the Gray code. The Gray code is neither a decimal code, nor is it an arithmetic code created for the purpose of computation.

The essential feature of a Gray code is that there is only a single bit change from one code value to the next. The sequence is circular. This feature makes the Gray code suitable for error detection applications.

With the above feature in mind, the following two sequences are examples of 2-bit Gray codes:

Sequence #1: 00 → 01 → 11 → 10 → (back to 00)

Sequence #2: 00 → 10 → 11 → 01 → (back to 00)

Other sequences can be derived from the above two sequences, by choosing one of the code values as the first code value in the cyclic sequence. Among all the valid Gray code sequences, we adopt the first sequence above as the standard 2-bit Gray code sequence.

Table 2-9 shows the standard 4-bit Gray code sequence. The binary sequence is shown alongside the Gray code sequence for comparison.

Table 2-9 The Standard 4-bit Gray Code

	Decimal
	Binary
	Gray code
	Decimal
	Binary
	Gray code

	0
	0000
	0000
	8
	1000
	1100

	1
	0001
	0001
	9
	1001
	1101

	2
	0010
	0011
	10
	1010
	1111

	3
	0011
	0010
	11
	1011
	1110

	4
	0100
	0110
	12
	1100
	1010

	5
	0101
	0111
	13
	1101
	1011

	6
	0110
	0101
	14
	1110
	1001

	7
	0111
	0100
	15
	1111
	1000

Binary-to-Gray Conversion

The algorithm to convert a binary value to its corresponding standard Gray code value is as follows:

1. Retain the MSB.

2. From left to right, add each adjacent pair of binary code bits to get the next Gray code bit, discarding the carry.

The following example shows the conversion of binary number (10110)2 to its corresponding standard Gray code value, (11101)Gray.

Gray-to-Binary Conversion

The algorithm to convert a standard Gray code value to its corresponding binary value is as follows:

1. Retain the MSB.

2. From left to right, add each binary code bit generated to the Gray code bit in the next position, discarding the carry.

The following example shows the conversion of the standard Gray code value (11011)Gray to its corresponding binary value, (10010)2.

Let us consider a disk whose surface is divided into eight sectors. Each sector is identified by a 3-bit code. Figure 2-9a shows the binary coding on the sectors, and Figure 2-9b the Gray coding.

With misaligned sensors, on a disk with binary coded sectors, Figure 2-9c shows an instance where the system registers the transition from sector 001 to 000 to 010 as the disk rotates, where in fact the correct transition should be sector 001 to 010. The spurious sector 000 registered is due to the binary coded sequence, as one of the misaligned sectors crosses into the next sector before the other sensors. Figure 2-9d shows that a Gray coded sequence would eliminate such error.

Quick Review Questions

2-1.
Convert the binary number 1011011 to its decimal equivalent.

a.
5
b.
63
c.
91
d.
92
e.
139

2-2.
What is the weight of the digit ‘3’ in the base-7 number 12345?

a.
3
b.
7
c.
14
d.
21
e.
49

2-3.
Which of the following has the largest value?

a.
(110)10
b.
(10011011)2
c.
(1111)5
d.
(9A)16
e.
(222)8
2-4.
If (321)4 = (57)10, what is the decimal equivalent of (321000000)4?

a.
57 (104
b.
57 (106
c.
57 (44
d.
57 (46
e.
574
2-5.
Convert each of the following decimal numbers to binary (base two) with at most eight digits in the fractional part, rounded to eight places.

a.
2000
b.
0.875
c.
0.07
d.
12.345

2-6.
Convert each of the decimal numbers in Question 2-5 above to septimal (base seven) with at most six digits in the fractional part, rounded to six places.

2-7.
Convert each of the decimal numbers in Question 2-5 above to octal (base eight) with at most four digits in the fractional part, rounded to four places.

2-8.
Convert each of the decimal numbers in Question 2-5 above to hexadecimal (base sixteen) with at most two digits in the fractional part, rounded to two places.

2-9.
Which of the following octal values is equivalent to the binary number (110001)2?

a.
(15)8
b.
(31)8
c.
(33)8
d.
(49)8
e.
(61)8
2-10.
Convert the binary number (1001101)2 to

a.
quaternary
b.
octal
c.
decimal
d.
hexadecimal

2-11.
What is (1011)2 × (101)2?

a.
(10000)2
b.
(110111)2
c.
(111111)2
d.
(111011)2
e.
(101101)2
2-12.
Perform the following operations on binary numbers.

a.
(10111110)2 + (10001101)2

b.
(11010010)2 – (01101101)2

c.
(11100101)2 – (00101110)2
2-13.
In a 6-bit 2’s complement binary number system, what is the decimal value represented by (100100)2s?

a.
–4
b.
36
c.
–36
d.
–27
e.
–28
2-14.
In a 6-bit 1’s complement binary number system, what is the decimal value represented by (010100)1s?

a.
–11
b.
43
c.
–43
d.
20
e.
–20
2-15.
What is the range of values that can be represented in a 5-bit 2’s complement binary system?

a.
0 to 31
b.
–8 to 7
c.
–8 to 8
d.
–15 to 15
e.
–16 to 15
2-16.
In a 4-bit 2’s complement scheme, what is the result of this operation: (1011)2s + (1001)2s?

a.
4
b.
5
c.
20
d.
–12
e.
overflow
2-17.
Assuming a 6-bit 2’s complement system, perform the following subtraction operations by converting it into addition operations:

a.
(011010)2s – (010000)2s

b.
(011010)2s – (001101)2s

c.
(000011)2s – (010000)2s
2-18.
Assuming a 6-bit 1’s complement system, perform the following subtraction operations by converting it into addition operations:

a.
(011111)1s – (010101)1s

b.
(001010)1s – (101101)1s

c.
(100000)1s – (010011)1s
2-19.
Which of the following values cannot be represented accurately in the 8-bit sign-and-magnitude fixed-point number format shown in Figure 2.4?

a.
4
b.
–29.5
c.
20.2
d.
–3.75
e.
12.25
2-20.
What does 1 110 1001 represent in this floating-point number scheme: 1-bit sign, 3-bit normalised mantissa, followed by 4-bit 2’s complement exponent?

a.
0.125 × 29
b.
–0.125 × 29
c.
–0.75 × 2-1
d.
–0.75 × 2-6
e.
–0.75 × 2-7
2-21.
How to represent (246)10 in the following system/code?

a.
10-bit binary
b.
BCD
c.
Excess-3
d.
2421 code
e.
84-2-1 code
2-22.
The decimal number 573 is represented as 1111 0110 1011 in an unknown self-complementing code. Find the code for the decimal number 642.

2-23.
Convert (101011)2 to its corresponding Gray code value.

a.
(101011)Gray
b.
(010100)Gray
c.
(110010)Gray
d.
(111110)Gray
e.
(43)Gray
2-24.
Convert (101011)Gray to its corresponding binary value.

a.
(101011)2
b.
(010100)2
c.
(110010)2
d.
(111110)2
e.
(010101)2
Answers to Quick Review Questions

2-1. (c)
2-2. (e)
2-3. (c)
2-4. (d)

2-5.
(a) (2000)10 = (11111010000)2
(b) (0.875)10 = (0.111)2

(c) (0.07)10 = (0.00010010)2
(d) (12.345)10 = (1100.01011000)2
2-6.
(a) (2000)10 = (5555)7

(b) (0.875)10 = (0.606061)7

(c) (0.07)10 = (0.033003)7 or (0.033004)7

(d) (12.345)10 = (15.226223)7
2-7.
(a) (2000)10 = (3720)8

(b) (0.875)10 = (0.7)8

(c) (0.07)10 = (0.0437)8

(d) (12.345)10 = (14.2605)8

2-8.
(a) (2000)10 = (7D0)16

(b) (0.875)10 = (0.E)16

(c) (0.07)10 = (0.12)16

(d) (12.345)10 = (C.58)16

2-9. (e)

2-10.
(a) (1031)4
(b) (115)8
(c) (77)10
(d) (4D)16

2-11.
(b)

2-12.
(a) (101001011)2
(b) (01100101)2
(c) (10110111)2

2-13.
(e)
2-14. (d)
2-15. (e)
2-16. (e)

2-17.
(a) (001010)2s = (10)10
(b) (001101)2s = (13)10
(c) (110011)2s = –(13)10
2-18.
(a) (001010)1s = (10)10
(b) (011100)1s = (28)10
(c) overflow

2-19.
(c)
2-20. (e)

2-21.
(a) (0011110110)2
(b) (0010 0100 0110)BCD
(c) (0101 0111 1001)Excess-3

(d) (0010 0100 1100)2421
(e) (0110 0100 1010)84-2-1

2-22.
642 = 0100 0000 1001

2-23. (d)
2-24 .(c)

Exercises

2-25.
How is subtraction carried out for binary numbers represented in the sign-and-magnitude form?

2-26.
According to the fixed-point number format in Figure 2.4, what are the largest and smallest positive values that can be represented? What are the largest and smallest negative values?

2-27.
Find out how the special values are represented in the IEEE Standard 754 floating-point representation.

2-28.
Perform the following number system conversions:

(a) 11010112 = ?16
(d) 10100.11012 = ?10
(g) 12510 = ?2

(b) 67.248 = ?2
(e) 71568 = ?10
(h) 143510 = ?8

(c) DEAD.BEEF16 = ?8
(f) 15C.3816 = ?10
2-29.
Sometimes we need to round a value to a specified number of places. Perform the following rounding, providing an answer that is most accurate.

(a) The answer for question 2-28b, correct to two places.

(b) The answer for question 2-28b, correct to one place.

(c) The answer for question 2-28c, correct to three places.

(d) The answer for question 2-28c, correct to two places.

2-30.
Add the following pairs of unsigned binary numbers (unsigned numbers are non-negative values), showing all carries:

(a)
110101
(b)
1110010

 +
 11001
 +
1101101

2-31.
Write the 8-bit sign-and-magnitude, 1’s-complement, and 2’s-complement representations for each of these decimal numbers:

+18, +115, +79, –49, –3, –100.

2-32.
The diminished radix complement of base-6 numbers is called the 5’s complement.

(a)
Obtain the 5’s complement of (543210)6.

(b)
Design a 3-bit self-complementing code to represent each of the six digits of the base-6 number system.

2-33.
Convert the following binary numbers into standard Gray codes:

(a) 010112
(b) 1011012
(c) 101011112
2-34.
Convert the following standard Gray codes in to binary numbers:

(a) 01011Gray
(b) 101101Gray
(c) 10101111Gray
2-35.
Represent the decimal 3951 in the following coding schemes:

(a)
BCD code

(b)
Excess-3 code

(c)
2421 code

(d)
84-2-1 code

(e)
ASCII (ASCII code for character ‘0’ is 4810, or 01100002.)

2-36.
Complete the following sequence so that the result is a 3-bit Gray code sequence.

011 (? (? (100 (101 (001 (? (?

Figure 2-1 Two states of a switch.

OFF

ON

11: Winter

10: Autumn

01: Summer

00: Spring

Figure 2-2 Representing four states using two switches (two bits).

(43)10 = (101011)2

(0.3125)10 = (0.0101)2

Carry-in

Carry-out

Sum

Borrow-out

Borrow-in

Difference

1

1

0

0

1

0

1

1

Figure 2-3 An 8-bit Sign-and-Magnitude representation of –75.

�
4�
�
�
0�
1�
0�
0�
�
+�
–7�
�
+�
1�
0�
0�
1�
�
�
–3�
�
�
1�
1�
0�
1�
�

�
3�
�
�
0�
0�
1�
1�
�
+�
4�
�
+�
0�
1�
0�
0�
�
�
7�
�
�
0�
1�
1�
1�
�

�
6�
�
�
�
0�
1�
1�
0�
�
+�
–3�
�
+�
�
1�
1�
0�
1�
�
�
3�
�
�
1�
0�
0�
1�
1�
�

�
–2�
�
�
�
1�
1�
1�
0�
�
+�
–6�
�
+�
�
1�
0�
1�
0�
�
�
–8�
�
�
1�
1�
0�
0�
0�
�

�
5�
�
�
0�
1�
0�
1�
�
+�
6�
�
+�
0�
1�
1�
0�
�
�
11�
�
�
1�
0�
1�
1�
�

�
–6�
�
�
�
1�
0�
1�
0�
�
+�
–3�
�
+�
�
1�
1�
0�
1�
�
�
–9�
�
�
1�
0�
1�
1�
1�
�

�
–3�
�
�
�
1�
1�
0�
0�
�
+�
–6�
�
+�
�
1�
0�
0�
1�
�
�
–9�
�
�
1�
0�
1�
0�
1�
�
�
�
�
+�
�
�
�
�
1�
�
�
�
�
�
�
0�
1�
1�
0�
�

�
–2�
�
�
�
1�
1�
0�
1�
�
+�
–4�
�
+�
�
1�
0�
1�
1�
�
�
–6�
�
�
1�
1�
0�
0�
0�
�
�
�
�
+�
�
�
�
�
1�
�
�
�
�
�
�
1�
0�
0�
1�
�

�
4�
�
�
0�
1�
0�
0�
�
+�
–7�
�
+�
1�
0�
0�
0�
�
�
–3�
�
�
1�
1�
0�
0�
�

�
3�
�
�
0�
0�
1�
1�
�
+�
4�
�
+�
0�
1�
0�
0�
�
�
7�
�
�
0�
1�
1�
1�
�

Figure 2-4 An 8-bit Sign-and-Magnitude Fixed-Point Representation.

1

1

1

0

1

0

1

0

Integer part

Fraction part

Assumed radix point

Exponent

Base

Mantissa

Sign

Exponent

Mantissa

1101

11000

1110

0

Figure 2-5 Scientific Notation.

–12.3456 (10 3

11000

Figure 2-6 A Floating-Point Representation.

0

0110

11000

0

Sign

Mantissa

Exponent

23 bits

8 bits

Figure 2-7 The IEEE Standard 754 Floating-Point Representation.

Single-precision

Double-precision

Sign

Mantissa

Exponent

52 bits

11 bits

0001

0110

Column-wise parity

Row-wise parity

1001

1111

1011

1�
0�
1�
1�
0�
Binary�
�
↓�
�
�
�
�
�
�
1�
�
�
�
�
Gray�
�

0101 0

1001 1

1111 1

1011 0

0001 0

0110 1

Figure 2-8 Applying parity bits on a block of data.

1�
+�
0�
1�
1�
0�
Binary�
�
�
�
↓�
�
�
�
�
�
1�
�
1�
�
�
�
Gray�
�

1�
0�
+�
1�
1�
0�
Binary�
�
�
�
�
↓�
�
�
�
�
1�
1�
�
1�
�
�
Gray�
�

1�
0�
1�
+�
1�
0�
Binary�
�
�
�
�
�
↓�
�
�
�
1�
1�
1�
�
0�
�
Gray�
�

1�
0�
1�
1�
+�
0�
Binary�
�
�
�
�
�
�
↓�
�
�
1�
1�
1�
0�
�
1�
Gray�
�

1�
1�
0�
1�
�
1�
Gray�
�
�
�
�
�
+�
↓�
�
�
1�
0�
0�
1�
�
0�
Binary�
�

1�
1�
0�
�
1�
1�
Gray�
�
�
�
�
+�
↓�
�
�
�
1�
0�
0�
�
1�
�
Binary�
�

1�
1�
�
0�
1�
1�
Gray�
�
�
�
+�
↓�
�
�
�
�
1�
0�
�
0�
�
�
Binary�
�

1�
�
1�
0�
1�
1�
Gray�
�
�
+�
↓�
�
�
�
�
�
1�
�
0�
�
�
�
Binary�
�

1�
1�
0�
1�
1�
Gray�
�
↓�
�
�
�
�
�
�
1�
�
�
�
�
Binary�
�

0

0

1

0

(c) Binary coded: 001 (000 (010.

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

(d) Gray coded: 001 (011.

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

0

Figure 2-9 Gray code on disk sectors.

(a) Binary coded sectors.

(b) Gray coded sectors.

� NRIC: National Registration Identity Card

� NUS: National University of Singapore

� IEEE: Institute of Electrical and Electronics Engineers

_1126694014.unknown

