Chapter 14 Projects

1. [after §14.4] Body Mass Index **:

Body mass index is a measure of whether someone’s weight is appropriate for their height. A body-mass-index value between 19 and 25 is considered to be in the normal range. Here’s the formula for calculating body mass index:

[image: image1.wmf]2

704

ches

heightInIn

unds

weightInPo

bmi

´

=

1. Implement a program that prompts the user for height and weight values and displays the associated body mass index.

Perform input validation by making sure that the user enters positive decimal numbers for height and weight. See the sample session for details. In particular, note the format for the echo-printed height and weight values and for the generated body-mass-index value.

For this program, there’s no need for multiple classes or even multiple methods. Just put all your code in a main method and put the main method in a BodyMassIndex class.

Sample session:

Enter height in inches: hi
Invalid inches value. Must be a decimal number.

Re-enter height in inches: 0
Invalid inches value. Must be positive.

Re-enter height in inches: 69.25
Enter weight in pounds: dog
Invalid pounds value. Must be a decimal number.

Re-enter weight in pounds: -3
Invalid pounds value. Must be positive.

Re-enter weight in pounds: 150.5
height = 69.25"

weight = 150.5 pounds

body mass index = 22.1
1. The difference between this program and the previous program is that this program uses feet and inches for the height value rather than just feet.

Perform input validation by making sure that the user enters a positive integer number for feet, a nonnegative decimal number for inches, and a positive decimal number for weight. See the sample session for details. In particular, note the format for the echo-printed height and weight values and for the generated body-mass-index value.
Sample session:

Enter height using feet space inches (e.g., 5 6.25): hi there
Invalid feet value. Must be an integer.

Invalid inches value. Must be a decimal number.

Re-enter height using feet space inches (e.g., 5 6.25): 0 9
Invalid feet value. Must be positive.

Re-enter height using feet space inches (e.g., 5 6.25): 5.25 0
Invalid feet value. Must be an integer.

Re-enter height using feet space inches (e.g., 5 6.25): 5 9.25
Enter weight in pounds: 0
Invalid pounds value. Must be positive.

Re-enter weight in pounds: 150.5
height = 5'-9.25"

weight = 150.5 pounds

body mass index = 22.1
2. [after §14.5] Storage and Retrieval of Objects in an Array ***:

a) Simple system:

Suppose you want to create a database of objects which can be stored and retrieved by the value of one of their instance values ─ the key value. Use an instance variable, number, to keep track of the total number of objects already stored, add each new object at index equal to this total value, and then increment this total value by one. To find an object whose key value is equal to some reference value, step through the array sequentially and compare each object’s key value with the reference value.

Here’s a UML class diagram describing a program that manages such a system:

[image: image2]
Make the Employee class define a single employee. It is fairly straightforward. The only special wrinkle is using the zero-pad flag in a printf method call to make sure that the display of ssn always has nine digits, that is, is padded left with zeros whenever the number is less than 100000000.
Make the SimpleEmployees class define an array of employees and keep number equal to the number of non-null elements in the array. Fill continuously from zero up to index = number – 1. Have the create method instantiate the array with length equal the maximum possible number of employees. In the SimpleEmployees.add method, put a reference to the new employee into the next available spot in the array, increment number, and return number, which equals the number of steps required to find that element in a sequential search. If number is already equal to the length of the array, the attempt to add another element throws an ArrayIndexOutOfBoundsException, so put the dangerous operation in a try block, and make the catch block print “array full” and return -1. In the findEmployee method, use a for loop to perform a sequential search, starting with index = 0. Break when the parameter value is the same as one of the employee’s ssn, and return that index value. If no match is found, return -1.

In the SimpleEmployeesDriver class, provide a helping add method to do the following: First instantiate an employee whose name is the (j+1)th letter of the alphabet and whose social security number is a 9-digit integer generated by Math.random. Then call the SimpleEmployees.add method to try to add that employee to the array. If the attempt to add to the array is successful, have the SimpleEmployeesDriver.add method print the number of search steps, the name, and the social security number for that employee.

In the main method, make the array length = 7. Use the above helping add method to add and display 6 employees, named “A” through “F”. Then, display all employee data. Ask user to input a social security number until the user inputs -1. Then try to add two more employees, “G” and “H”, to demonstrate the exception handling by the try-catch mechanism in the SimpleEmployees class.

Write the program so that it generates output like the following, recognizing, of course, that the random 9-digit social security numbers will be different each time you run the program.

Sample session:

search steps = 1 A 298842294

search steps = 2 B 648282605

search steps = 3 C 726358594

search steps = 4 D 280199748

search steps = 5 E 566266888

search steps = 6 F 690250539

A 298842294

B 648282605

C 726358594

D 280199748

E 566266888

F 690250539

Enter ssn or -1 to stop: 5

not found

Enter ssn or -1 to stop: 566266888

E 566266888

Enter ssn or -1 to stop: -1

search steps = 7 G 335672069

array full

b) Hashing system:

Although the above system is simple, it has a performance problem. The average time to perform a search is approximately half of the number of items in the array, and it increases as the array gets longer. It would be nice if you could use the key value as an index. Unfortunately, key values are often clustered. To distribute the data fairly evenly, you can transform the key value by hashing it, like this:

 hashValue = keyValue % arrayLength;
Then, use the hash value as the index.

This doesn’t work perfectly, though. If array length is less than the largest value, sometimes there’s a collision ─ two or more elements have the same hash value. To deal with collisions, use the hash value as a sequential-search starting point. That is, when adding to the array, first try to put the element at index = hash value. If that’s occupied, try the next higher index value, and so on ─ wrapping around to index = 0 when you reach the end of the array. If you get back to the starting point before finding an empty slot, do not add the new element, and print “array full”. When retrieving, start the search at index = hash value.
The trick to using a hashing system is to make sure the array is never more than about half full. As long as your array is less than about half full, on average you’ll be able to store and retrieve with no more than about two search steps. If the array has 1000 elements, that’s much better than using an ordinary sequential search, because 2 << 250, where 250 is the average number of pure sequential search steps for a half-full 1000-element array.

For this part of the project, change the program written for part a so that it implements the hashing algorithm just described. Use the same Employee class. Change the name SimpleEmployees to Employees and change the name SimpleEmployeesDriver to EmployeesDriver. Make the new driver the same except refer to the Employees class instead of the SimpleEmployees class.

In the Employees class, remove the number instance variable. In the add and findEmployee methods start by setting index equal to the hash value, as computed above. Then, starting at this index value, step through the array. When index equals the array length, wrap around to index = 0, and continue up to the starting point. In the add method, insert the new element at the first null and then break. Eliminate the try-catch mechanism used in part a, and use an if clause instead. In the findEmployee method, keep going until a match is found and break there. In either method, if index gets back to the starting point, return -1.

Since the elements will be scattered around in the array, make the displayAll method traverse the entire array and print “null” wherever an array element is unoccupied.

To show the hash value for each element, insert an extra System.out.print statement just before the loop in the Employees.add method.
Sample session:

hash value = 4 search steps = 1 A 127902828

hash value = 4 search steps = 2 B 622927274

hash value = 2 search steps = 1 C 929423679

hash value = 2 search steps = 2 D 461102721

hash value = 5 search steps = 2 E 009085179

hash value = 0 search steps = 1 F 074558470

F 074558470

null

C 929423679

D 461102721

A 127902828

B 622927274

E 009085179

Enter ssn or -1 to stop: 46

not found

Enter ssn or -1 to stop: 461102721

D 461102721

Enter ssn or -1 to stop: -1

hash value = 6 search steps = 3 G 830485830

hash value = 1 array full

3. [after §14.9] Date Formatting **:

Create a class named Date that stores date values and prints out the date in either a pure numeric format or a name and number format (see sample session for format details).

Date class notes:

· Date objects should store the date in two int instance variables ─ day and month, and it should include the String instance variable, error, initialized with null.
· Implement a 1-parameter Date constructor that receives a dateStr string parameter and performs complete error checking on the given dateStr value. The Date constructor is the entity that’s responsible for date error checking. That way, if a Date object is instantiated and if there are no errors, then you’re guaranteed that the Date object holds a legitimate date value. If any kind of error occurs, change the value of the error instance variable to a non-null string value, using an appropriate concatenation of a string constant, input substring, and/or API exception message.

· Constructors use the same exception handling rules as methods: In a try block, include the parsing of the month and day substrings and other error-checking logic that will not work if parsing fails.
· Take into account the actual number of days in each month, but assume that there are always 28 days in February.

· To extract day and month numbers from the given date string, use String’s indexOf method to find the location of the slash character, and String’s substring method to extract month and day substrings from the input string.
· Include a method for printing the date with a numeric format. Use the zero-pad flag in a printf method call to get exactly two digits for each month and day.
· Include a method for printing the date with an alphabetic format.
· Include a getError method which returns the value of the error instance variable.
In your driver class, include a loop that repeatedly:

· Asks the user to enter a date or “q” to quit.

· If the entry is not “q”, instantiate a Date object.
· If the error variable is null:
· Print the date using numeric format.

· Print the date using alphabetic format.
· Otherwise, print the value of the error variable.

Sample session:

Enter a date in the form mm/dd ("q" to quit): 5/2
05/02

May 2

Enter a date in the form mm/dd ("q" to quit): 05/02
05/02

May 2

Enter a date in the form mm/dd ("q" to quit): 52
Invalid date format - 52

Enter a date in the form mm/dd ("q" to quit): 5.0/2
Invalid format - For input string: "5.0"

Enter a date in the form mm/dd ("q" to quit): 13/2
Invalid month - 13

Enter a date in the form mm/dd ("q" to quit): 2/x
Invalid format - For input string: "x"

Enter a date in the form mm/dd ("q" to quit): 2/30
Invalid day - 30

Enter a date in the form mm/dd ("q" to quit): 2/28
02/28

February 28

Enter a date in the form mm/dd ("q" to quit): q
4. [after §14.9] Input Utility ***:
Write an Input class that inputs simple data type values, using the following methods:

public static String readLine() reads in an entire line as a string.

public static char readChar() reads in a single character.

public static double readDouble() reads in a double value.

public static float readFloat() reads in a float value.

public static long readLong() reads in a long value.

public static int readInt() reads in an int value.

For each method, if the input value does not conform to that method’s type, print an error message and terminate the program. To help you get started, here is the Input.readLine method:

 public static String readLine()

 {

 String string = "";

 try

 {

 string = new BufferedReader(

 new InputStreamReader(System.in)).readLine();

 }

 catch (IOException e)

 {

 System.out.println(e.getMessage());

 System.exit(0);

 }

 return string;

 } // end readLine

Notice that this method invokes BufferedReader’s readLine method, where buffered-reader object is instantiated with a pointer to an input-stream-reader object, which is itself instantiated with a pointer to the same System.in variable used to instantiate a Scanner object. This is how programmers input a line of text before the development of the Scanner class. Also notice the use of the System.exit(0); statement. This immediately terminates the program.

Each of the other methods listed above should begin its processing with an input string, so each of these other methods should begin by calling the Input.readLine method we have just provided.

Also include a helping method:
private static String getZeroFractionRemoved(String string)

If this method’s parameter contains a zero fraction, this method should remove that zero fraction and return the result. Otherwise, it should return the original parameter value. Call this helping method from readLong and readInt to strip off a decimal point when there are non-zero digits to the right of that decimal point. This accepts an integer value written in floating-point format.
Also include a main method that demonstrates each of these methods like this:

Sample session:

This demonstrates Input class methods

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: t
Enter a line of text: this is a test
text = this is a test

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: c
Enter a character: @
character = @

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: d
Enter a double number: 3.14159
double number = 3.14159

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: f
Enter a float number: -3.14
float number = -3.14
Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: i
Enter an integer: 5.0000
integer number = 5

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: l
Enter a long number: -16
long number = -16

Select one of these options:

 t: readLine() reads a line of (t)ext

 c: readChar() reads a single (c)haracter

 d: readDouble() reads a (d)ouble number

 f: readFloat() reads a (f)loat number

 i: readInt() reads an (i)nt number

 l: readLong() reads a (l)ong number

 q: quit

Enter t, c, d, f, i, l, or q: q
For the readChar method, if the user simply hits the Enter key, return the \n character. If the user enters any other single visible or invisible character, return that character. Otherwise, print the error message:

Invalid entry - expecting a single character.\n
Then terminate the program.
For the readDouble and readFloat methods, if the trimmed input string cannot be parsed, print the error message:

Invalid entry - expecting a double.\n
or:

Invalid entry - expecting a float.\n

Then terminate the program.
For the readLong and readInt methods, if the trimmed input string cannot be parsed, print the error message:

Invalid entry - expecting a long.\n
or:

Invalid entry - expecting an int.\n

Then terminate the program.

+main(args : String[]) : void

-add(j : int) : void

SimpleEmployeesDriver

SimpleEmployees

-employees : Employee[]

-number : int

+create(maximum : int) : void

+getEmployee(index : int) : Employee

+add(employee : Employee) : int

+findEmployee(ssn : int) : int

+displayAll() : void

Employee

+Employee(name : String, ssn : int) : Employee

+getSsn() : int

+display() : void

-name : String

-ssn : int

_1162697278.unknown

