Chapter 6 Projects

1. [after §6.4] Plant Germination Observation **:
Write a program that has two classes: a driven class called MapleTree, and a driver class called MapleTreeDriver.

The driver should:

· Create an object called tree from the MapleTree class.

· Call the plant method to record the planting of the seed.

· Call the germinate method to record the first observation of a seedling and record its height.

· Call the dumpData method to display the current values of all instance variables.

The driven class should contain three private instance variables, plantDate, height, and heightDate. The two dates are to be entered as text in the format, dd/mm/yyyy. This class must include a plant method, a germinate method, and a dumpData method. The plant method prompts the user for and inputs the date of planting. The germinate method prompts the user for and inputs the date on which a seedling is first observed. It also prompts the user for and inputs the height of that seedling above the surface of the soil in meters. (Of course, this will be a fractional value.) The dumpData method prints the current value of all instance variables.

Sample session:

Enter plant date (dd/mm/yyyy): 15/04/2003
Enter germination date (dd/mm/yyyy): 12/06/2003
Enter observed height in meters: 0.007
Plant date = 15/04/2003

Germinate date = 12/06/2003

Initial height = 0.0070 meters

2. [after §6.4] Bank Account *:

Given the below BankAccount.java file, provide an accompanying BankAccountDriver.java file that “exercises” (tests) the BankAccount class by calling its methods. Specifically, your BankAccountDriver class should:

· Declare and instantiate a BankAccount object.

· Prompt the user for a customer name.

· Call setCustomer, passing in the user-entered customer name.

· Prompt the user for a bank account number.

· Call setAccountNum, passing in the user-entered bank account number.

· Call printAccountInfo.

Don’t forget to use proper style in your BankAccountDriver.java file (including a prologue section at the top of the file).

Write your code so that it works in conjunction with the below class. When run, your program should produce the output shown in the subsequent sample session.

/***************************************

* BankAccount.java

* Dean & Dean

*

* This program stores and prints information

* for a bank account.

***************************************/

public class BankAccount

{

 private String customer; // customer's name

 private int accountNum; // bank account number

 //**

 public void setCustomer(String customer)

 {

 this.customer = customer;

 } // end setCustomer

 public void setAccountNum(int accountNum)

 {

 this.accountNum = accountNum;

 } // end setAccountNum

 //**

 // This method prints a bank account's information.

 public void printAccountInfo()

 {

 System.out.println(

 this.customer + "'s account number is " +

 this.accountNum + ".");

 } // end printAccountInfo

} // end class BankAccount
Sample session:

Customer name: William Gates
Account number: 123456
William Gates's account number is 123456.

3. [after §6.8] Logistic Equation **:
Write a program that exercises the “logistic equation,”
xt+1 = xt + r xt (1 – xt),

where

xt is the ratio of the value of x at time t to x’s maximum value
r is a growth factor, which equals the rate of growth when xt is small.

In its discrete form, the logistic equation is famous for being the simplest representation of chaos. It is frequently used to describe the population of creatures in a particular area as a fraction of the maximum stable population. When the growth factor is sufficiently high, there is a tendency for each succeeding value, xt+1, to vary greatly from the preceding value, xt. Successive values jump around in a chaotic fashion, and later values are a very sensitive function of small changes in earlier values. This sensitivity to small changes is sometimes called the “butterfly effect” – a butterfly flapping its wings in China changes the location of the next tornado in Kansas. After exercising the growth model over a period of time, if you get to a point where xt+1 = xt, that tells you that you’ve reached the maximum value of x (if you plug xt+1 = xt into the logistic equation, you’ll find that xt = 1, which means x equals x’s maximum value).
Use the class, Logistic, to represent the population itself, and use the class, LogisticDriver, to manage the simulation. Make these two classes conform to the following UML class diagram:

[image: image1]
In the main method, instantiate an object called logistic. Then:
while more equals ‘y’
 initialize

 input number of steps desired

 for that number of steps

 step

In initialize, input growthFactor and x.

In step, use the formula to increment x and print x
Sample session:
LOGISTIC EQUATION

Enter growth factor: .75
Enter initial value: .5
Enter number of steps to simulate: 10
x = 0.6875

x = 0.8486328125

x = 0.9449741840362549

x = 0.9839726656922068

x = 0.9958005098392914

x = 0.9989369006716154

x = 0.9997333775327674

x = 0.9999332910675368

x = 0.999983319429323

x = 0.9999958296486496

Again? (y/n): y
Enter growth factor: 1.5
Enter initial value: .5
Enter number of steps to simulate: 10
x = 0.875

x = 1.0390625

x = 0.978179931640625

x = 1.0101958611048758

x = 0.9947461360720572

x = 1.0025855273347113

x = 0.9986972089052465

x = 1.000648849650422

x = 0.9996749436659857

x = 1.0001623696745767

Again? (y/n): y
Enter growth factor: 3.0
Enter initial value: .5
Enter number of steps to simulate: 10
x = 1.25

x = 0.3125

x = 0.95703125

x = 1.0803985595703125

x = 0.8198110957164317

x = 1.2629736848863977

x = 0.2665871533990134

x = 0.8531424825238862

x = 1.2290136436344863

x = 0.38463096581879697

Again? (y/n): n
4. [after §6.9] Circle *:

Given the following CircleDriver.java file. Provide an accompanying Circle.java file. Specifically, your Circle class should contain:

· One instance variable – radius.

· A method named setRadius that assigns the passed-in radius value to the radius instance variable.

· A method named initialize that prompts the user for a radius value and then assigns the entered value to the radius instance variable.

· A method named printCircleData that uses the circle’s radius to calculate the circle’s diameter, circumference, and area. Use the Java API constant Math.PI for the value of π. Print the circle’s radius, diameter, circumference, and area. There are many ways to implement printCircleData. In the interest of gaining experience with local variables, declare and use local variables for storing the circle’s diameter, circumference, and area.

Don’t forget to use proper style in your Circle.java file (including a prologue section at the top of the file).

Write your code so that it works in conjunction with the below class. When run, your program should produce the output shown in the subsequent sample session.

/**

* CircleDriver.java

* Dean & Dean

*

* This is the driver for the Circle class.

***/

public class CircleDriver

{

 public static void main(String[] args)

 {

 Circle circle;

 circle = new Circle();

 circle.initialize();

 circle.printCircleData();

 } // end main

} // end class CircleDriver

Sample session:
Enter a radius value: 4
Radius = 4.0

Diameter = 8.0

Circumference = 25.132741228718345

Area = 50.26548245743669

5. [after §6.10] Digital Filter **:
Write a program that exhibits the behavior of a digital filter, which removes noise from a sampled signal. The filter removes noise by running a sequence of sample values through a formula which generates a current output from current and previous inputs and previous outputs. For this demonstration, use the following formula, which describes either a “Chebyshev second order low-pass” filter or a “Butterworth second order low-pass” filter:
y = (x + 2 * x1 + x2) / D0 – A1 * y1 – A2 * y2,

In the above formula, x, x1, and x2 are the current input sample and the two previous input samples, respectively, and y y1, and y2 are the current filtered output and the two previous filtered outputs, respectively. For a 1.0 dB-ripple Chebyshev filter, the coefficients have the following values: D0 = 6.57; A1 = -0.696; A2 = 0.378. For a 0.5 dB-ripple Chebyshev filter the coefficients have the following values: D0 = 5.22; A1 = -0.491; A2 = 0.302. For a Butterworth filter the coefficients have the following values: D0 = 6.94; A1 = -0.677; A2 = 0.254.

Make your program conform to the following UML class diagram:

[image: image2]
Algorithm:

In main, print the heading, call initialize, and input the desired number of steps. Then do the simulation with a for loop that increments time:
print time

input x

print findY(x)

step

The initialize method prompts for and inputs D0, A1, and A2.

The findY method computes y using the formula given above.

The step method copies values from later-time variables to earlier-time variables.

Sample session:

2ND ORDER CHEBYSHEV OR BUTTERWORTH LOW-PASS FILTER

Enter D0: 5.22

Enter A1: -0.491

Enter A2: 0.302

Enter number of steps to simulate: 10

time= 0, input= 0
 output= 0

time= 1, input= 100

 output= 19

time= 2, input= 0
 output= 47

time= 3, input= 0
 output= 36

time= 4, input= 0
 output= 3

time= 5, input= 0
 output= -9

time= 6, input= 0
 output= -5

time= 7, input= 0
 output= 0

time= 8, input= 0
 output= 1

time= 9, input= 0
 output= 0

6. [after §6.10] Vending Machine ***:
Write a program that mimics the operations of a vending machine. More specifically, the program reads amounts of money that are inserted into the vending machine, asks the user to select an item, and then prints the change that’s returned to the user.

Use this implementation:

· Use two separate files – one that holds main and one that holds a VendingMachine class definition.

· Within the VendingMachine class, include only one variable, paymentSum. It holds the sum of money inserted for the current selection. In the interest of encapsulation, use local variables, as opposed to instance variables, whenever possible. Declare a variable locally within a method if the variable needs to persist only for the duration of a particular method call. Declare a variable as an instance variable if the variable needs to persist longer than the duration of a particular method call. For the VendingMachine class, the sum of the inserted money is the only thing that needs to persist longer than the duration of a particular method call.

· Within the VendingMachine class, include these methods:

· insertMoney – This method prompts the user to enter an amount of money that is inserted into the machine. Input validation ensures that the user enters a positive number. The entered money amount adds to the accumulated sum of inserted money.

· selectItem – This method first checks to make sure that some money has been inserted into the machine. If that’s the case, the method prompts the user to enter the selected item’s price. Input validation ensures that the entered price is a positive number and that it is no greater than the accumulated inserted money. Finally, the method calculates and prints a list of the coins that are to be returned to the user as change.
· Within the VendingMachineDriver class’s main method, use a loop that continues until the user enters ‘q’. Inside the loop, use a switch statement with case clauses for the three choices – insert money, select an item, quit.

Use this main method:

public static void main(String[] args)

{
 Scanner stdIn = new Scanner(System.in);

 char choice; // user's choice of action

 boolean done = false; // flag that says user wants to quit

 VendingMachine vm = new VendingMachine();

 System.out.println("Welcome to John's vending machine!\n");

 do

 {

 System.out.println(

 "Options: (i)nsert money, (s)elect an item," + " (q)uit");

 System.out.print("Enter i, s, or q ==> ");
 choice = stdIn.nextLine().charAt(0);

 switch (choice)

 {

 case 'i': case 'I':

 vm.insertMoney();

 break;

 case 's': case 'S':

 vm.selectItem();

 break;

 case 'q': case 'Q':

 done = true;

 break;

 default:

 System.out.println("Invalid selection.");

 } // end switch

 } while (!done);

} // end main

This UML class diagram identifies the classes and their members.

[image: image3]
Sample session:

Welcome to John's vending machine!

Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> I
Amount of money inserted: 5
Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> s
Selected item's price: 2.94
Your change is:

8 quarter(s)

0 dime(s)

1 nickle(s)

1 penny(ies)

Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> x
Invalid selection.

Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> s
Sorry, you can't select, since you haven't inserted money yet.

Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> i
Amount of money inserted: 1
Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> i
Amount of money inserted: 0
Invalid payment. Must enter a positive number.

Amount of money inserted: .25
Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> s
Selected item's price: 1.5
Invalid selection. Price exceeds payment.

Selected item's price: 0
Invalid price. Must enter a positive number.

Selected item's price: 1.13
Your change is:

0 quarter(s)

1 dime(s)

0 nickle(s)

2 penny(ies)

Options: (i)nsert money, (s)elect an item, (q)uit

Enter i, s, or q ==> q
7. [after §6.12] Rectangle *:
7. Write a class definition for a Rectangle class that contains:
· Two int fields, length and width.

· Mutator and accessor methods for the length and width fields.

· A Boolean method named isSquare that returns true if the rectangle’s length and width are the same and false otherwise.

7. Write a class definition for a RectangleDriver class that contains a main method that acts as a driver for the Rectangle class of the previous problem. The main method should do this:

· Construct a Rectangle object named rect.

· Use the mutator methods to assign arbitrary values to rect’s length and width fields.

· Use the Boolean method to determine if rect is a square.

· If rect is a square, print “Square: ” and then the square’s dimensions. For example:

 Square: 4x4

· If rect is not a square, print “Rectangle: ” and then the rectangle’s dimensions. For example:

 Rectangle: 6x13

· In printing the above messages, use the accessor methods to retrieve the rectangle’s dimensions.

8. [after §6.12] Predator-Prey Dynamics ***:
Construct a class called PredatorPrey that models a species that could be either predator or prey or both. As prey, assume that the population gets nourishment from outside at a rate proportional to its size, up to a maximum. As predator, assume that it eats some other species at a rate proportional to the product of the sizes of the two populations, except eating is limited to a maximum rate when the prey population is relatively large. Include death rate. Make your class and its driver conform to the following UML class diagram:

[image: image4]
Write appropriate mutator and accessor code for all the set and get methods.
The take, lose, accept, and die methods each make some contribution to populationChange. (The take method increases predator population in proportion to what the predator eats. The lose method decreases prey population in proportion to what has been eaten. The accept method increases prey population in proportion to nourishment received from the environment – if the prey are plants, nourishment is photosynthesis. The die method decreases population for all creatures.) As these methods are invoked within a particular time step, populationChange accumulates from zero. After making all contributions to populationChange, use the doIt method to correct population by the net amount of populationChange and then reset populationChange to zero. Have the take method also return the populationChange it computes. Then in main, divide this returned value by an input efficiency factor, and insert the quotient as the argument in lose. This implements the transfer of food from prey to predator and accounts for waste. The time parameter is the time increment in one simulation step. The prey parameter in take is the current prey population.
In the take method, simulate predator action with this formula:

change = change + time * heterotrophicRate * predatorPopulation *
 preyPopulation / (1 + preyPopulation / maximumUsablePreyPopulation)
The maximum usable prey population is the maximum number of prey that one predator could consume per unit time if there were an infinite number of prey available.
In the accept method, simulate prey reception of outside-world nourishment with this formula:

change = change + time * population * autoTrophicRate *
 (1.0 - population / maximumPopulation)

In the die method, simulate dying with this formula:

change = change - time * population * deathRate.

Sample session:

PREDATOR PREY DYNAMICS

Enter time increment per step: 1
Prey's nourishing rate: 0.5
Prey's death rate: 0.1

Maximum prey population: 1000
initial prey population: 500

Predator's consumption rate / prey: 0.005
Predator's maximum useful prey: 100
Predator's death rate: 0.4
initial predator population: 60

predation efficiency (< 1.0): 0.2
total simulation time: 30

prey population = 450, predator population = 61

prey population = 403, predator population = 61

prey population = 360, predator population = 61

prey population = 319, predator population = 61

prey population = 279, predator population = 59

prey population = 242, predator population = 58

prey population = 207, predator population = 55

prey population = 175, predator population = 51

prey population = 147, predator population = 47

prey population = 124, predator population = 42

prey population = 107, predator population = 37

prey population = 95, predator population = 32

prey population = 90, predator population = 27

prey population = 90, predator population = 22

prey population = 95, predator population = 19

prey population = 105, predator population = 16

prey population = 121, predator population = 13

prey population = 143, predator population = 12

prey population = 172, predator population = 10

prey population = 210, predator population = 9

prey population = 255, predator population = 9

prey population = 308, predator population = 8

prey population = 367, predator population = 8

prey population = 429, predator population = 8

prey population = 491, predator population = 8

prey population = 549, predator population = 8

prey population = 599, predator population = 9

prey population = 640, predator population = 9

prey population = 671, predator population = 9

prey population = 693, predator population = 9
This particular set of inputs causes the prey population to oscillate! This is not the usual situation, but sometimes it does occur.

9. [after §6.13] Guitar Mechanics **:
Write a program that simulates the motion of a plucked guitar string. Use a class, Guitar, to represent the string, and use another class, GuitarDriver, to manage the simulation. Make the two classes conform to this UML class diagram:

[image: image5]
Algorithm:

In GuitarDriver, instantiate an object called guitar, and then initialize it. Have the initialize method input a damping factor and initial previous and current string positions. In main, after calling the initialize method, input the desired time interval, stepSize, and the total number of steps in the simulation, steps. Then have main implement the simulation with a for loop, which includes these operations:

increment timeStep
call findChange to get change returned

call makeChange to implement the change by updating y and oldY.

print time and the current position

In principle, we could combine the findChange and makeChange methods, but it’s better practice to keep them separated, because there may be other nearby objects (other guitar strings) which acoustically interact with the plucked string. In such cases, we do a better job of modeling the system if we do all the findChange operations first, and then do all the makeChange operations later.

A particular string oscillates at a particular frequency, and the reciprocal of this frequency is a time interval called the period of the oscillation. In the interest of making the upcoming formulas simple, we’ll make the assumption that one period equals 2π. If there is no damping, the change in the string’s position during the time interval, stepSize (where stepSize << 1) is given by this assignment:

change = (y – oldY) – y * stepSize * stepSize
This says that the next change is the same as the previous change minus an acceleration term that is proportional to the current position times the square of the duration of the time step. (The negative acceleration occurs because the string pulls back like a spring.)
Since velocity = (positional change) / (time increment), for a given time increment, the positional change is proportional to velocity. Emitted sound carries energy away from the string, and this damps the string’s vibration. The emitted sound energy and the concomitant damping are proportional to the square of the string velocity, and the velocity is proportional to change. Therefore, we can model damping by following the above assignment with another assignment:

change -= dampingSign * dampingFactor * change * change
Note that dampingSign = +1 when y is positive and -1 when y is negative.

Sample session:

GUITAR MECHANICS

Enter damping factor: .5

Enter initial previous position: -1

Enter initial current position: -1

Enter time step size: .1

Enter number of steps in simulation: 10

at time = 0.1, position = -0.99005

at time = 0.2, position = -0.9703965

at time = 0.3, position = -0.94147

at time = 0.4, position = -0.9038638

at time = 0.5, position = -0.8583069

at time = 0.6, position = -0.8056324

at time = 0.7, position = -0.74674577

at time = 0.8, position = -0.68259305

at time = 0.9, position = -0.6141334

at time = 1.0, position = -0.54231507

+main(args : String[]) : void

LogisticDriver

Logistic

-growthFactor : double = 0.5

-x : double = 0.2

-change : double = 0.0

+initialize() : void

+step() : void

+main(args : String[]) : void

FilterDriver

Filter

-D0 : double = 6.58

-A1 : double = -0.696

-A2 : double = 0.378

-x : double = 0.0

-x1 : double = 0.0

-x2 : double = 0.0

-y : double

-y1 : double = 0.0

-y2 : double = 0.0

+initialize() : void

+findY(input : double) : double

+step() : void

VendingMachineDriver

+main(args : String[]) : void

VendingMachine

-paymentSum : double

+insertMoney() : void

+selectItem() : void

+main(args : String[]) : void

PredatorPreyDriver

-autoTrophicRate : double = 0

-heteroTrophicRate : double = 0

-maxPrey : double = 1.0e100

-deathRate : double

-maxPopulation : double = 1.0e100

-population : double

-populationChange : double = 0

+setAutoTrophicRate(rate : double) : void

+setHeteroTrophicRate(ratePerPrey : double) : void

+setMaxPrey(rate : double) : void

+setDeathRate(rate : double) : void

+setMaxPopulation(population : double) : void

+setPopulation(population : double) : void

+getPopulation() : double

+take(time : double, prey : double) : double

+lose(loss : double) : void

+accept(time : double) : void

+die(time : double) : void

+doIt() : void

PredatorPrey

+main(args : String[]) : void

GuitarDriver

Guitar

-dampingFactor : double = 0.5

-oldY : double = -1

-y : double = -1

+initialize() : void

+findChange(stepSize : double) : double

+makeChange(change : double) : double

+getY() : double

