Chapter 8 Projects

1. [after §8.4] Input Validation *:

In Chapter 4’s Project 8, we presented an algorithm to compute the average of several input values:

set MIN to 0.5
set MAX to 5.0
set cumulativeValue to 0
set count to 0
set more to ‘y’
while more is equal to ‘y’
 set count to count + 1
 print “Item number ” count “:”
 set value to MIN - 1.0
 while value is less than MIN or greater than Max
 print “Enter value (” MIN “ < value < ” MAX “): ”
 input value
 set cumulativeValue to cumulativeValue + value
 print “more? (y/n): ”
 input more

set value to cumulativeValue / count

print “Average value = ” value
Sample session:
Item number 1:

Enter value (0.5 < value < 5.0): 50
Enter value (0.5 < value < 5.0): 3.7
more? (y/n): y
Item number 2:

Enter value (0.5 < value < 5.0): .2
Enter value (0.5 < value < 5.0): 2.2
more? (y/n): n
Average value = 2.95

The pseudocode version of the algorithm uses nested loops to provide input validation. Input validation is an activity that could take place in a separate method, preferably with the input constraints passed to that method as arguments, so that the inputting method is fairly generic.

In this project, you will do what the algorithm does and match the same sample session, but you will do it in a different way, using an object-oriented design that conforms to this UML class diagram:

[image: image1]

The main method should instantiate an AverageValue object called avg. Then, in a while (more == 'y') loop, have main ask avg to call its accumulate method. After the loop, have main ask avg to call its printAverage method.

The accumulate method should establish values of MIN and MAX, increment count, display the current count, call inputValue, and add what it returns to cumulativeValue.

All of the input validation activity should be encapsulated in the inputValue method. It should not interact with the instance variables in any way; that is, make it a generic method that could be used in other contexts.

2. [after §8.4] HVAC Load ***:

This project is an object-oriented version of Chapter 3’s Project 7. This implementation will be more elegant than the previous one, because it will be more modular.

In this project you will calculate the heating and cooling loads for a typical residence. The wintertime heating load is all of the heat that flows out of the building when the outside temperature is nearly its coldest and when there is no free heat provided by sunshine or internal lights or appliances. The coldest time is typically in the middle of January. The summertime cooling load is all of the heat that flows into the building when the outside temperature is nearly its hottest, the outside humidity is high, there are no clouds to block the sun, and the building is occupied with normal lighting and appliance usage. The hottest time is usually about 3:00 PM in the middle of July.

Assume that four design parameters are constant: The winter indoor design temperature is 72oF, the summer indoor design temperature is 76oF, the summer indoor design humidity ratio is 0.01 lbs of water vapor per pound of dry air, and the sunshine coming in through west windows at the design time is 193 BTU/hr / ft2. (This is the value for 40 deg North Latitude at 3:00 PM on July 21.) The remaining design parameters are user inputs: total roof area, building perimeter, building height, total area of windows and doors, total area of west-facing windows, roof U-value, wall U-value, window and door U-value, winter outdoor design temperature, summer outdoor design temperature, summer outdoor humidity ratio, infiltration rate in cubic feet per minute (CFM), number of people present, and electricity in use.
 Consider doors to be additional windows. The outputs of the program are total heating BTU/hr total cooling BTU/hr, and the cooling load expressed in the nearest whole number of “tons,” where one ton = 12,000 BTU/hr.

The heating-load components are as follows:
roof load ← area * roof U-value * winter temperature difference

window load ← area * window U-value * winter temperature difference

wall load ← net area * wall U-value * winter temperature difference

infiltration load ← CFM * 1.08 * winter temperature difference
where:
winter temperature difference ←

 winter indoor design temperature –
 winter outdoor design temperature

net wall area ← building perimeter * building height – window area

To provide a factor of safety and to accelerate morning warm up, multiply the total of all of the above heating-load components by a factor of 1.3.

The cooling-load components are as follows:
Sensible Cooling:

roof load ← area * roof U-value * summer temperature difference

window load ← area * window U-value * summer temperature difference

wall load ← net area * wall U-value * summer temperature difference

infiltration temperature load ← CFM * 1.08 * summer temperature difference

solar load ← west solar heat gain * west window area

electrical load ← 3.416 * Watts

people temperature load ← 250 * number of people
Latent Cooling:
infiltration humidity load ← CFM * 4675 * summer humidity difference

people humidity load ← 200 * number of people
where:
summer temperature difference ←

 summer outdoor design temperature –

 summer indoor design temperature

summer humidity difference ←

 summer outdoor humidity ratio – summer indoor humidity ratio

To provide a factor of safety, multiply the total of all of the above cooling-load components by a factor of 1.1.
Make your program so that what appears on your computer screen matches the following sample session. The first 14 lines are prompts and input values, with input values in italics. The last 3 lines are outputs of the calculated results.

Sample session:
HVAC Load Calculation:

Enter total roof area in square ft: 1500
Enter building perimeter in ft: 140
Enter building height in ft: 18
Enter total window area in square ft: 400
Enter west window area in square ft: 80
Enter roof U-value: .04
Enter wall U-value: .10
Enter window U-value: .5
Enter winter outdoor temperature in deg F: 2.0
Enter summer outdoor temperature in deg F: 100
Enter summer outdoor humidity ratio: .013
Enter infiltration in CFM: 200
Enter number of people present: 3
Enter electrical use in Watts: 1500
Heating Load = 62608.0 BTU per hour

Cooling Load = 45354.1 BTU per hour

 or approximately 4 tons

Organize the project in accordance with this UML class diagram:

[image: image2]
The main program instantiates an HVACLoad object named load. Then it asks it to getInputs, findHeatingLoad, findCoolingLoad, and printCapacities.

The getInputs method prompts for and inputs values for each of the instance variables.

The findHeatingLoad method uses local variables for the assumed winter indoor temperature, winter temperature difference, and winter heating load. It returns the winter heating load in BTUH.

The findCoolingLoad method uses a local variable for the summer cooling load, which accumulates values returned by findCoolingSensibleLoad and findCoolingLatentLoad. (These two load components are separated and the method for sensible cooling is public because cooling sensible load is needed independently for air-quantity calculations, which might be included in a future enhancement of this program.) The findCoolingLoad method returns the summer heating load in BTUH.

The findCoolingSensibleLoad method uses local variables for assumed summer indoor temperature, west solar gain, summer temperature difference, and sensible cooling load. It returns the summer sensible load in BTUH.

The findCoolingLatentLoad method uses local variables for the assumed summer indoor humidity ratio, the summer humidity difference, and the latent cooling load. It returns the summer latent load in BTUH.

The printCapacities method uses a local variable for tons. It multiplies the input heating load by the 1.3 warm-up factor and the input cooling load by the 1.1 safety factor, and computes tons. Then it prints the results.

The netWallArea calculation is in a separate method because it might be changed later to a fancier algorithm, and it used by two other methods, findHeatingLoad and findCoolingSensibleLoad.

3. [after §8.6] Elevator Control **:

Write a program that mimics the operations of the inside of an elevator. More specifically, the program simulates what happens when the user chooses to go to a particular floor, and it simulates what happens when the user pulls the elevator’s fire alarm. Assume the elevator is in a high-rise building that has floors numbered 1 through 100.

Within your Elevator class, include these methods:

· selectFloor ─ This method prompts the user for a floor selection and then performs input validation for the floor selection. If the floor selection is inappropriate (less than 1, greater than 100), then the method prints an error message. If the floor selection is OK, the method simulates going to that floor. See the sample session below for the format of the simulation message.

· fireAlarm ─ This method prints a “danger” message and then simulates going to the first floor. Note that I’m assuming this is a high tech fire alarm that is programmed to force the elevator to go to the first floor! See the sample session below for the format of the “danger” message

Within your ElevatorDriver class, use a loop that continues until the user enters “q” for quit. See the sample session for details.

As you implement your solution, you should find that the selectFloor and fireAlarm methods contain some repeated coding logic. To avoid unnecessary redundancies in your code, have those methods call an appropriate helper method.

Sample session:

Welcome to John's elevator simulator!

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> x
Invalid selection.

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> F
Danger! You must exit the building now!

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> s
Enter the floor that you'd like to go to ==> 102
Invalid floor selection - must be between 1 and 100.

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> s
Enter the floor that you'd like to go to ==> 15
Going up..2..3..4..5..6..7..8..9..10..11..12..13..14..15..Ding!

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> s
Enter the floor that you'd like to go to ==> 10
Going down..14..13..12..11..10..Ding!

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> f
Danger! You must exit the building now!

Going down..9..8..7..6..5..4..3..2..1..Ding!

Options: (s)elect a floor, (f)ire alarm, (q)uit

Enter s, f, or q ==> q
Optional extension:

Some hotels cater to superstitious people by omitting the 13th floor. Modify your program so that there is no 13th floor.
4. [after §8.9] Prototype Restructuring *:

Consider the NestedLoopRectangle program in Figure 4.17 in Section 4.12 to be a prototype. Restructure that prototype into an object-oriented format that behaves exactly the same as the prototype behaved. Use the top-down methodology to perform the restructuring.

4. Write a class called PrintRectangleDriver whose main method instantiates a PrintRectangle object called rect. Then it asks rect to call its draw, which takes no arguments and returns void. In the same PrintRectangleDriver file, provide a stub for the PrintRectangle class. This PrintRectangle class cannot be public, it should contain no instance variables, and it should contain a stub method for the draw method only. This stub method should contain nothing but a print statement that confirms that the draw method was called.
Output:

in draw
4. Use the block comment (/* ... */) to comment out the stub class in the PrintRectangularDriver file, and create a separate file with its own public RectangularDriver class. This class should include two methods, the draw method called by PrintRectangleDriver’s main method and another drawLine method. In this step, flesh out and complete the draw method, so that it includes the three inputting activities in the original prototype. It should also contain a loop with one statement calling the drawLine method, with two arguments (double width, char printCharacter). The drawLine method should be a stub, which contains nothing but a print statement that confirms that the drawLine method was called and displays the values of the arguments passed to it.

Sample session:

Enter height: 4
Enter width: 3
Enter character: <
in drawLine, width = 3 character = <

in drawLine, width = 3 character = <

in drawLine, width = 3 character = <

in drawLine, width = 3 character = <

4. Replace the stub version of drawLine by a fleshed out version that performs the line print.

Sample session:

Enter height: 4
Enter width: 3
Enter character: <
<<<

<<<

<<<

<<<

4. The suggested OOP structure does not include any instance variables. Since height and width are fundamental properties of a rectangle, it’s reasonable to make them instance variables. This would mean changing PrintRectangle to the extent of including the instance variables. What is the least amount of change that would be required of the draw method? Would including these instance variables require any change in the top-level module, class PrintRectangularDriver? Would including these instance variables require any change in the lowest-level drawLine method?

AverageValueDriver

+main(args : String[]) : void

AverageValue

-cumulativeValue : double = 0

-count : int = 0

+accumulate() : void

+printAverage() : void

-inputValue(MIN : double, MAX : double) : double

HVACLoadDriver

+main(args : String[]) : void

HVACLoad

-roofArea : double = 1500.0

-perimeter : double = 140.0

-height : double = 18.0

-windowArea : double = 400.0

-westWindowArea : double = 80.0

-roofU : double = 0.04

-wallU : double = 0.10

-windowU : double = 0.5

-winterOutdoorTemperature : double = 2.0

-summerOutdoorTemperature : double = 100.

-summerOutdoorHumidity : double = 0.013

-infiltration : double = 200

-people : double = 3

-electrical : double = 1500

+getInputs() : void

+findHeatingLoad() : double

+findCoolingLoad() : double

+findCoolingSensibleLoad() : double

+printCapacities(heating : double, cooling : double) : void

-findCoolingLatentLoad() : double

-netWallArea() : double

� U-value is a measure of heat flow. The lower the U-value, the more slowly the material transfers heat in and out of your home.

� BTU = British Thermal Unit = amount of heat required to raise one pound of water by one degree Fahrenheit (oF).

