
NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
EXAMINATION FOR

SEMESTER 2 2007/2008

CS1102S—Data Structures and Algorithms

April 2008 Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

This is an open book examination. Any written and printed material may be
used during the examination.

Please observe the following items:

1. Enter your matriculation number here:

2. Enter the answers to the questions in this answer book in the provided
spaces.

3. This examination booklet has 16 pages, including this cover page, and con-
tains 8 questions.

4. Answer all questions.

5. The maximal marks achievable is indicated for each question. Overall, the
maximal number of marks is 100.

Good Luck !

Do not write below this line

Question 1 2 3 4 5 6 7 8 Total

Maximal Score 26 9 15 9 10 11 8 12 100

Student Score

CS1102S 2

Question 1: (26 marks) A vegetable vendor is ordering a software program to
keep track of the kinds of vegetables available in his store, including the name of
the vegetable, the supplier name, purchase price per kg and sales price per kg.

1. (10 marks) Design an ADT for Vegetable by listing the operations, including
parameters and return values, that allow for creating a Vegetable object with
a given name, to access and change the supplier name, to access and change
the purchase price per kg, and to access and change the sales price per kg.

Answer:

c r ea teVegetab l e (in name : s t r i n g)
// c r ea t e v e g e t a b l e wi th g iven name
ge tSupp l i e r () : s t r i n g {query}
// r e t r i e v e s the s u p p l i e r
s e t Supp l i e r (in name : s t r i n g)
// change s u p p l i e r to name
getPurchasePr ice () : i n t e g e r {query}
// r e t r i e v e s the purchase p r i c e
s e tPurchasePr i ce (in pp : i n t e g e r)
// change purchase p r i c e to pp
g e tSa l e sP r i c e () : i n t e g e r {query}
// r e t r i e v e s the s a l e s p r i c e
s e t S a l e sP r i c e (in sp : i n t e g e r)
// change purchase p r i c e to sp

CS1102S 3

2. (10 marks) Write an implementation of the ADT Vegetable using a Java class
Vegetable. Make sure you follow the recommendation of keeping data items
in private fields. Represent names using String and prices using int, denoting
Singapore cents.

Answer:

class Vegetable {
private St r ing name , s upp l i e r ;
private int s a l e sP r i c e , purchasePr ice ;
public Vegetable (S t r ing n) {

name = n ;
}
public St r ing ge tSupp l i e r () {

return s upp l i e r ;
}
void s e t Supp l i e r (S t r ing s) {

s upp l i e r = s ;
}
public int getPurchasePr ice () {

return purchasePr i ce ;
}
public void s e tPurchasePr i ce (int pp) {

purchasePr i ce = pp ;
}
public int g e tSa l e sP r i c e () {

return s a l e sP r i c e ;
}
public void s e t S a l e sP r i c e (int sp) {

s a l e sP r i c e = sp ;
}

CS1102S 4

3. (6 marks) Assume the following Java interface:

interface ProductWithProf it {
public int p r o f i t () ;

}

Write a Java class VegetableWithProfit that makes use of your class Vegetable

of the previous question, but also implements the interface ProductWithProfit.
Objects of class VegetableWithProfit have all operations of class Vegetable, and
provide an additional non-static method profit with no parameters, that re-
turns the profit per kg, calculated as the difference between sales price per
kg and purchase price per kg.

Answer:

class VegetableWithProf i t extends Vegetable implements ProductWithProf it {
public int p r o f i t () {

return g e tSa l e sP r i c e () − getPurchasePr ice () ;
}

}

CS1102S 5

Question 2: (9 marks) Instances of classes that implement the interface

interface ProductWithProf it {
public int p r o f i t () ;

}

all have a way to access the sales profit by calling the method profit . In this
question, you need to provide a method to sort a list of such instances in order
of increasing profit. For this purpose, the JCF class Collections defines a method

stat ic <T> void s o r t (L i s t<T> l i s t , Comparator<? super T> c)

which destructively sorts a given List<T> in ascending order. Recall that the
interface Comparator<T> requires the method

public int compare (T o1 , T o2)

which compares its two parameters for order. The method compare is supposed to
return a negative integer, zero, or a positive integer as the first parameter is less
than, equal to, or greater than the second.
Define a static method sortProductWithProfitList that destructively sorts a given List

of ProductWithProfit instances, using the mentioned sort method of Collections, in
order of increasing profit. Give the code of the method, including parameter type
declarations and of the additional class that you need to define in order to apply
the static method sort in the JCF class Collections.

Answer:

stat ic void so r tProductWithPro f i tL i s t (L i s t<ProductWithProfit> l i s t){
Co l l e c t i o n s . s o r t (l i s t ,new ProductWithProfitComparator ()) ;

}

class ProductWithProfitComparator
implements Comparator<ProductWithProfit> {
public compare (ProductWithProf it p1 , ProductWithProf it p2) {

i f (p1 . g e tP r o f i t () < p2 . g e tP r o f i t ())
return −1;

else i f (p1 . g e tP r o f i t () == p2 . g e tP r o f i t ())
return 0 ;

else return 1 ;
}

}

CS1102S 6

Question 3: (15 marks) Let us say a merchant needs to keep track of Product

objects in his store, using a data structure. In order to easily identify the products,
the Product class implements the KeyedItem<Integer> interface; a call p.getKey() returns
the Integer product number of product p. To illustrate the situation, consider:

class Product implements KeyedItem<Integer> {
. . .

}
interface KeyedItem<KT extends Comparable<?super KT>> {

public KT getKey () ;
}

There are at most 10000 products in the store, and the product numbers range
from 0 to 9999. Furthermore, for any two distinct products, the product numbers
are distinct.
The merchant will need the following operations:

• Create an empty data structure,

• insert a new Product into the data structure, whose product number is a
given Integer pn, raising an exception if there is already a product with product
number pn,

• retrieve the Product with a given product number, returning null if there is
no such Product, and

• delete the Product with a given product number pn, returning true if there
was a Product with product number pn, and false otherwise.

1. (2 marks) What is the name of an ADT that provides these operations?
(simply give the name, without explanation)

Answer: Table

CS1102S 7

2. (6 marks) Consider the following implementation of the ADT:

class UnsortedProductArray {
stat ic private MaxSize = 10000 ;
private int cu r r en tS i z e ;
private Product [] products ;
public UnsortedProductArray () {

cu r r en tS i z e = 0 ;
products = new Product [MaxSize] ;

}
public void i n s e r t (Product p) throws Exception {

i f (r e t r i e v e (p . getKey ()) != null)
throw new Exception (” dup l i c a t e item”) ;

else products [cu r r en tS i z e++] = p ;
}
public Product r e t r i e v e (In t eg e r pn) {

Product foundProduct = null ;
for (int i =0; i < cu r r en tS i z e ; i++)

i f (products [i] . getKey () . equa l s (pn)) {
foundProduct = products [i] ;
break ;

}
return foundProduct ;

}
public boolean de l e t e (In t eg e r pn) {

boolean foundFlag=fa l se ;
for (int i =0; i < cu r r en tS i z e ; i++)

i f (products [i] . getKey () . equa l s (pn)) {
foundFlag = true ;
products [i] = products [cu r r en tS i z e − 1] ;
c u r r en tS i z e = cu r r en tS i z e − 1 ;
break ;

}
return foundFlag ;

}
}

What is the worst-case complexity of the operations insert , retrieve , and delete

in relation to the current number n of items currently stored in the data
structure, using the O(. . .) notation?

Answer:

• insert: O(n)

• retrieve: O(n)

• delete: O(n)

CS1102S 8

3. (7 marks) Let us say insertion, deletion and retrieval are very frequent op-
erations. Give an implementation that you would recommend for this data
structure in pseudo-code or Java, and give the worst-case complexity of the
operations insert , retrieve , and delete in relation to the current number n of
items currently stored in the data structure, using the O(. . .) notation!

Important Note

The marks you get for this part depends on the correctness of your program
and on the worst-case complexity of the insert , retrieve , and delete operations.
The lower the complexity, the higher your marks.

CS1102S 9

(additional space for Question 3)

Answer: Idea: Use an array of size 10000 and use the given product number
(ranging from 0 to 9999) as index.

class ProductTable {
private int MaxSize = 10001 ;
private Product [] products ;
public ProductTable () {

products = new Product [MaxSize] ;
}
public void i n s e r t (Product p) throws Exception {

i f (products [p . getKey ()] == null)
products [p . getKey ()] = p ;

else throw Exception (. . .) ;
}
public Product r e t r i e v e (In t eg e r pn) {

return products [pn] ;
}
public boolean de l e t e (In t eg e r pn) {

boolean foundFlag = (products [pn] != null) ;
products [pn] = null ;
return foundFlag ;

}
}

All 3 operations have O(1) complexity. Also permissible is a binary search tree
with the the usual logarithmic times, but with less marks.

CS1102S 10

Question 4: (9 marks) Let us say you create a repository of all known animal
species. There are millions of species and for each species, you want to store
possibly large amounts of data, including photos and videos. Overall, the required
memory will by far exceed the main memory of your computer. On the other
hand, you have access to a large external storage in form of random access files,
organized in blocks, which can easily hold all data.
You will have to perform many retrieve and insert operations, but never any dele-
tion or traversal. For the retrieve and insert operations, the String that represents
the name of the species is used as key.

1. (2 marks) The module covered two alternative implementations of data
structures that provide these operations under the mentioned memory re-
quirements. What are the alternatives?

Answer:

• External hash table

• External B-Tree

2. (2 mark) Which implementation of the data structure would you recom-
mend? (simply name the implementation)

Answer: External hash table

3. (5 marks) Give a careful argument for your recommendation, compared to
the alternative, using at most three English sentences.

Answer: External hash table is best because hashing using strings works
well; will be faster than accessing B-tree (log n time)

CS1102S 11

Question 5: (10 marks) Assume that you represent binary trees, whose nodes
hold Integer values, using instances of the following class.

public class BinaryTree {
private I n t eg e r va lue ;
private BinaryTree l e f tCh i l d ;
private BinaryTree r i gh tCh i l d ;
public BinaryTree (In t eg e r v , BinaryTree l e f t , BinaryTree r i gh t) {

value = v ;
l e f tCh i l d = l e f t ;
r i gh tCh i l d = r i gh t ;

}
public I n t eg e r getValue () { return value ; }
public BinaryTree getRight () { return r i gh tCh i l d ; }
public BinaryTree ge tLe f t () { return l e f tCh i l d ; }
public List<Integer> breadthF i r s t () {

// to be prov ided
}

}

Note that the constructor may be called using null as a subtree. Therefore,

new BinaryTree (new I n t eg e r (4) , null ,
new BinaryTree (new I n t eg e r (5) , null , null))

represents a binary tree whose root with value 4, and which only has one child,
the right child, which is a leaf with value 5.
Give a complete implementation of the method breadthFirst(), which should return a
List<Integer> that contains all items, listed in breadth-first order. For the resulting
list, subsequent calls of poll should return items of nodes at a given level l1 before
items of nodes at a level l2 if l1 < l2.

Note

You may use a private helper function.

Hints

• You may use a LinkedList implementation of List<E>, which implements the
following methods:

void addFirs t (E e) // i n s e r t s e lement e at beg inn ing o f t h i s l i s t
void addLast (E e) // i n s e r t s e lement e at end o f t h i s l i s t
E po l l () // r e t r i e v e s and removes e lement from beg inn ing o f t h i s l i s t

• You may need an additional position-oriented ADT...

Use the next page for your solution to this question!

CS1102S 12

(space for Question 5)

Answer:

public List<Integer> breadthF i r s t () {
List<BinaryTree> toBeHandled = new List<BinaryTree >() ;
L i s t<Integer> va lue s = new List<Integer >() ;
toBeHandled . addLast (this) ;
while (toBeHandled . peek () != null) {

BinaryTree nextTree = toBeHandled . p o l l () ;
va lue s . addFirs t (nextTree . getValue ()) ;
i f (nextTree . g e tLe f t () != null)

toBeHandled . addLast (nextTree . g e tLe f t ()) ;
i f (nextTree . getRight () != null)

toBeHandled . addLast (nextTree . getRight ()) ;
}
return va lue s ;

}

CS1102S 13

Question 6: (11 marks) A heap of integers is a data structure that allows for
efficient insertion of arbitrary integers, and deletion of the largest integer inserted
so far. Internally, the heap keeps a complete binary tree, represented by an array
that contains the nodes in breadth-first order. Thus, the following heap

6

3

9 2

5

10

is represented by the array {6,3,5,9,2,10}. Consider the following textbook
implementation of an integer heap, where ArrayList<Integer> items is protected.

public class IntegerHeap {
protected ArrayList<Integer> i tems ;
public Heap () {

i tems = new ArrayList<Integer >() ;
}
public boolean heapIsEmpty () {

return i tems . s i z e ()==0;
}
public void heapInse r t (In t eg e r newItem)

throws HeapException , ClassCastExcept ion {
// d e t a i l s not shown here

}
public T heapDelete () {

I n t eg e r rootItem = null ;
int l o c ;
i f (! heapIsEmpty ()) {

rootItem = items . get (0) ;
l o c = items . s i z e ()−1;
i tems . s e t (0 , i tems . get (l o c)) ;
i tems . remove (l o c) ;
heapRebuild (0) ;

}
return rootItem ;

}
protected void heapRebuild (int root) {

// turns semi−heap rooted at ‘ ‘ roo t ’ ’ i n t o heap
// d e t a i l s not show here

}
}

Let us assume that occasionally, you need to remove an integer from the heap
that is not the largest inserted so far.

1. (5 marks) Add a method void cancel(Integer i), that removes the integer i from
the heap, if it exists, and does nothing otherwise. Do not change the imple-
mentation of the existing heap operations.

public class IntegerHeapWithCancel extends IntegerHeap {
public void cance l (I n t eg e r i) {

// to be prov ided
}

}

CS1102S 14

(space for answer to Part 1)

Answer:

public void cance l (I n t eg e r i) {
// look f o r entry
int i = 0 ;
for (; i < i tems . s i z e () ; i++) {

i f (i tems . get (i)) break ;
}
i f (i != items . s i z e ()) {

int l a s t Index = items . s i z e ()−1;
i tems . s e t (i , i tems . get (l a s t Index)) ;
i tems . remove (l a s t Index) ;
heapRebuild (i) ;

}
}

2. (2 marks) What is the worst-case complexity of your cancel in IntegerHeapWithCancel

with respect to the current heap size n?

Answer: O(n)

3. (4 marks) Could the worst-case complexity of cancel in IntegerHeapWithCancel be
improved without overriding the methods heapInsert and heapDelete? Explain
your answer with at most three sentences.

Answer: Cannot be improved, because the items in the heap are not sorted.
In the worst case, the entire heap needs to be searched in order to find the item
to be deleted.

CS1102S 15

Question 7: (8 marks) Consider an empty 2-3 tree of integers, on which the
following operations are performed in the given order:

1. insert 30,

2. insert 50,

3. insert 100,

4. insert 40,

5. insert 20,

6. insert 90,

7. insert 80,

8. insert 70,

9. delete 80.

Draw the resulting 2-3 tree.

CS1102S 16

Question 8: (12 marks) Assume that you want to represent all living Singa-
porean citizens and the “parent-of” relationship between them as a graph. That
means that there is an edge from Citizen a to Citizen b if and only if a is a parent
of b (father or mother).

• (3 marks) Will this graph be connected? Give an explanation in one complete
sentence.

Answer: The graph will not be connected, because I know two living
Singaporeans (S.R. Nathan and Lee Kuan Yew) that are not related via
living persons.

• (3 marks) Is it best to use a directed graph or an undirected graph? Give
an explanation in one complete sentence.

Answer: A directed graph is best because the “parent-of” relation is not
symmetric; we can express the relationship properly only using a directed
graph.

• (3 marks) Estimate the length of the longest path in the graph. Give an
explanation in one complete sentence.

Answer: I estimate the longest path to have a length of 5, although it is
well possible to have a length of 6, with the youngest just born, followed by
his/her parent (age 20), grand-parent (age 40), great grand parent (age 60),
great-great grand parent (age 80), and great-great-great grand parent (age
100).

• (3 marks) For an implementation of this graph, you have the choice between
an adjacency list and an adjacency matrix. Which alternative is best in this
case? Give an explanation in one complete sentence.

Answer: The graph will contain more than 3 million vertices, but each
vertex has very few (estimated maximum about 13) neighbors. Therefore,
an adjacency list will be much more space-efficient than an adjacency matrix
implementation.

END OF QUESTIONS

