(CS1102S Data Structures and Algorithms

Assignment 02:

Lists and Iteration

For this assignment, use the following submission procedure:
e Solve your assignment.

e Copy the files

MySchemelList. java
SchemeListUtil. java
MyLinkedList. java
Generator. java

to your account on sunfire to a folder (let’s say cs1102s/assignment?2).

e Go to that folder and execute the submit program:

% cd cs1102s/assignment?2

% ls *.java

MySchemelist. java
SchemeListUtil. java
MyLinkedList. java

Generator. java

% /home/course/cs1102s/bin/submit

You will get a message that tells you whether the file has been submitted
successfully. The script submit can be run several times, and you can
remove submitted files later. For details on how to use the submit script,

type
/home/course/cs1102s/bin/submit -h

Please note all file names are case sensitive and have to conform to the assign-
ment questions.

Submission is activated 5 days before the submission deadline, which is on 9/2,
6:00PM and will be de-activated at that time.

1. (5 marks) Download the assignment project from
http://www.comp.nus.edu.sg/~cs1102s/java/assignment 02.zip.

http://www.comp.nus.edu.sg/~cs1102s/java/assignment_02.zip
http://www.comp.nus.edu.sg/~cs1102s/java/assignment_02.zip

Extact the zip file and create a Java project in Eclipse, as usual.

Look at the package playingWithLists. The interface SchemeList contains
functions that should remind you of what can be done to lists in Scheme.
You are given a class MySchemeList that implements SchemeList.

Complete this class (body of many methods is missing), and test it using
MySchemeListTest.java.

Make sure that car, cdr, setCar, and setCdr throw a java. util .NoSuchElementException
exception if applied to an empty list.

Submit the completed class MySchemeList.java.

. (5 marks) Implement the functions given in class SchemeListUtil.java.

Test the functions using class SchemeListUtilTest.java. Note that the
types of arguments and the return types of the functions use the interface
type SchemeList whereas the functions are called in SchemeListUtilTest.java
with arguments of type MySchemeList.

Submit the completed class SchemeListUtil.java.

. (6 marks) The given interface

package playingWithLists;
public interface List<Any> extends Iterable <Any>{

// get returns the element at position idzx
// throws IndexOutOfBoundsFExzception if

// idz < 0 || idx >= size of list

Any get(int idx);

// set returns the current value at position idx,
// and replaces it by a newVal.

// throws IndexOutOfBoundsFExzception if

// idx < 0 || idx >= size of list

Any set (int idx, Any newVal);

// add inserts an element x at a given position idz.
// all subsequent elements’ index increases by 1.
// throws IndexOutOfBoundsFExzception if

// idz < 0 || idz > size of list

void add(int idx, Any x);

// remove removes the element at a given position idz.
// all subsequent elements’ index decreases by 1.

// throws IndexOutOfBoundsFEzception if

// idx < 0 || idx >= size of list

void remove (int idx);

}

follows the textbook closely. Implement a class MyLinkedList, which ex-
tends the class MySchemeList and implements this interface List. Make
sure that the List functions throw the exception IndexOutOfBoundsException
as indicated in List.java, that the iterator function next() throws the ex-
ception java. util .NoSuchElementException, and that the iterator func-
tion remove() throws the exception IllegalStateException as described in
the textbook. (You may ignore exceptions arising from concurrent modi-
fication java. util . ConcurrentModificationException.)

Submit the completed class MyLinkedList.java.

. (4 marks) Let us say that you are a huge fan of enhanced for loops in Java
5. You would like to write:

for (Integer i : First100Integers) {
System .out. println (i);
}

Unfortunately, the enhanced for loop needs an Iterable object after the
“:”. So let us make one.

First, we need an iterator:

class Mylterator implements java.util.Iterator<Integer> {
Integer current = 0;
public boolean hasNext() {
return current.intValue () <= 100;
}

public Integer next() {
return current++;
}

public void remove () {
throw new java.util.NoSuchElementException();
}

}s
Now we can use this iterator in an Iterable class:

class Mylterable implements Iterable<Integer> {
public java.util.Iterator<Integer> iterator () {
return new Mylterator ();
}

}

This is how to use it:

Iterable<Integer> First100Integers = new Mylterable ();

for (Integer i : First100Integers)
System .out.println (i);

In Java, you can create classes “inline”, i.e. whenever you need the class.
For example, you can write the class directly after new. This is called an
“anonymous inner class”, because you don’t even need to give the class a
name. You only need to specify what class it extends:

Iterable<Integer> First200Integers
= new Iterable<Integer >(){
public java.util.Iterator<Integer> iterator () {
return
new java.util.Iterator<Integer >() {
Integer current = 0;
public boolean hasNext() {
return current <= 200;
}

public Integer next() {
return current+-+;
}

public void remove() {
throw new java.util.NoSuchElementException();
}

b
}s

for (Integer i : First200Integers)
System .out.println (i);

Now this still is quite lengthy. Instead of specifying the next and hasNext
methods, we could specify how to get from one value to the next using an
op method, and when we are done. These two operations are passed to a
Generator object (which is of course Iterable) in form of anonymous inner
classes, along with an initial value (here 0):

Generator<Integer> First300Integers
= new Generator<Integer >(
Oa
new Operator<Integer >() { public Integer op(Integer i) {
return i+1; } },
new Terminator<Integer >() {public boolean done(Integer i) {
return i>300; } });

for (Integer i : First300Integers)
System .out.println (i);

Your job is to complete the class Generator.java such that iteration works
as expected.

Here are a couple of other uses of our fancy iterators. First, we iterate
through all long powers of 2

Generator<Long> AllLongPowersOf2
= new Generator<Long>(
new Long(1),
new Operator<Long>() { Long op(Long i) {
return ix*x2; } },
new Terminator<Long>() { boolean done(Long i) {
return i<0; } });

for (Long i : AllLongPowersOf2)
System .out.println (i);

Here is a method to generate larger and larger strings out of “ab”.

Generator<String> SomeStrings
= new Generator<String>(
new Operator<String >() { String op(String s) {
return s+7ab”; } },
new Terminator<String >() { boolean done(String s) {
return s.length()>100; } });

for (String s : SomeStrings)
System .out.println (s);

Submit the completed class Generator.java.

