
Lab Tasks 1 – Solution

1. Exercise 3.16, page 97: Download the assignment project from
http://www.comp.nus.edu.sg/∼cs1102s/java/labtasks 01.zip.

Complete the class reverseIterator .MyArrayListWithReverse.java.

The given program MyArrayList.java is taken from the textbook.

The iterator function of MyArrayListWithReverse should handle the fol-
lowing exceptions:

• next() throws the exception java. util .NoSuchElementException,

• remove() throws the exception IllegalStateException if remove() is
called without an immediately preceding next().

(You may ignore exceptions arising from concurrent modification
java. util .ConcurrentModificationException.)

Solution: The implementation of the list ADT in MyArrayListWithReverseis
the same as in MyArraList, the difference is only in the iterator:

• The “normal” iterator initialized to start at the front element and
traverses to the end of the list. The reverse iterator is initialized to
the end of the list (array index size()-1) and traverses the list to the
front.

• The boolean flag okToRemove ensures that remove() can only be
called after a preceding next() call.

p r i v a t e c l a s s ArrayL i s tRever se I t e r a to r
implements java . u t i l . I t e r a t o r <AnyType> {

p r i v a t e i n t cu r r en t = s i z e ()−1;
boolean okToRemove = f a l s e ;

pub l i c boolean hasNext (){
r e tu rn cur ren t >= 0 ;

}

pub l i c AnyType next () {
i f (! hasNext ())

throw new java . u t i l . NoSuchElementException () ;
okToRemove = true ;
r e tu rn theItems [current−−] ;

}

pub l i c void remove () {
i f (! okToRemove) {

throw new java . lang . I l l e g a l S t a t eEx c e p t i o n () ;
}
okToRemove = f a l s e ;
MyArrayListWithReverse . t h i s . remove (++curren t) ;

1

http://www.comp.nus.edu.sg/~cs1102s/java/labtasks_01.zip
http://www.comp.nus.edu.sg/~cs1102s/java/labtasks_01.zip

}
}

2. Exercise 3.21 (b), page 98: Implement class balancing.CheckBalanced.java.
Note the following facts about Java comments:

• When the compiler reads /∗, it skips any text until the next character
sequence ∗/ (ignore all brackets between these two “tokens”).

• When the compiler reads //, it skips any text until the next newline
character (ignore all brackets in between).

You may assume that the given Java program has no strings.

Solution:

The first thing the program has to do is to parse the input into a sequence
of tokens that can be processed to check whether all parentheses and
comments are well balanced or not. There are multiple ways to implement
the parsing step. In my solution, I use a simple tokenizer that reads ahead
one character and checks whether it found any of the two symbol comment
tokens (// , /* , */). If so, it return the two symbol token, otherwise it
returns one character at a time.

To keep track of whether we are inside a comment or not, we can simulate
a finite state automata (FSA) with three states:

// FSA s t a t e s to parse java comments
p r i v a t e f i n a l s t a t i c i n t NOCOMMENT = 0 ;
p r i v a t e f i n a l s t a t i c i n t SLASHSLASHCOMMENT = 1 ;
p r i v a t e f i n a l s t a t i c i n t SLASHSTARCOMMENT = 2 ;
p r i v a t e s t a t i c i n t s t a t e ;

The transitions of the FSA (the rules how to change from one state to
another) are as follows:

//FSA ru l e s to parse java comments
i f ((s t a t e == NOCOMMENT) && (”//” . equa l s (token)))

s t a t e = SLASHSLASHCOMMENT;
e l s e i f ((s t a t e == NOCOMMENT) && (”/∗” . equa l s (token))) {

s t a t e = SLASHSTARCOMMENT;
myStack . push (”/∗”) ;

} e l s e i f ((s t a t e == SLASHSLASHCOMMENT) && ((”\n ” . equa l s (token)) | |
(”\ r ” . equa l s (token))))

s t a t e = NOCOMMENT;
e l s e i f ((s t a t e == SLASHSTARCOMMENT) && (”∗/” . equa l s (token)))

s t a t e = NOCOMMENT;

The next thing is to check whether all expression in the input are balanced.
This can be implemented using a stack ADT as you have seen during the
lecture. Whenever the FSA sees an opening token (/*, (or [), it pushes
the symbol on the stack. Whenever it sees a closing token (*/,),]),

2

it checks whether there is a matching opening item on top of the stack.
If not, the Java program is surely not well balanced. If yes, remove the
top item from the stack and continue. If the FSA reads the whole input
successfully and the stack is empty at the end of the execution, the input
is well balanced.

// check f o r balanced exp r e s s i on s
i f ((s t a t e == NOCOMMENT) && (”{” . equa l s (token) | | ” (” . equa l s (token)

| | ” [” . equa l s (token))){
// token i s opening paren these s
myStack . push (token) ;

} e l s e i f ((s t a t e == NOCOMMENT) && (”}” . equa l s (token) | | ”) ” . equa l s (token)
| | ”] ” . equa l s (token) | | ”∗/”. equa l s (token))){

// token i s c l o s i n g paren these s
i f (myStack . isEmpty ()) {

// unbalanced number o f opening and c l o s i n g paren these s
r e tu rn f a l s e ;

}
boolean matches = checkPar (myStack . pop () , token) ;
i f (! matches) {

r e tu rn f a l s e ;
}

}

If the program reads the complete input without returning false early, then
the expression is balanced if and only if the stack is empty, i.e. if there is
a matching closing token for every opening token.

Note that there are many other syntax requirements for real Java code
that our program does not check, e.g. curly parenthesis, string literals,
etc.

3. Exercise 3.24, page 98: Implement the class twoStacks.MyTwoStacksArray.java.

Solution:

Because a stack can only grow in one direction, you can easily implement
two stacks in one array by letting them start at the opposite ends of the
array: one stack grows from the front of the array to the back, the other
one from the back to the front. To keep track of the top element in each
stack, you need two pointers.

p r i v a t e f i n a l i n t theS i ze = 10 ;
p r i v a t e Any [] myArray = (Any []) new Object [1 0] ;
p r i v a t e i n t top1 = −1;
p r i v a t e i n t top2 = theS ize ;

The stack operations push, pop, top, empty behave as before, only that
you have each operation for each of the two stacks, e.g. pop1 and pop2.

pub l i c Any push1 (Any item) {
top1 += 1 ;

3

i f (top1 == top2) {
throw new StackOverflowError () ;

}
myArray [top1] = item ;
re tu rn item ;

}

pub l i c Any push2 (Any item) {
top2 −= 1 ;
i f (top2 == top1) {

throw new StackOverflowError () ;
}
myArray [top2] = item ;
re tu rn item ;

}

4. Implement a queue data structure as described in the textbook, using
arrays, where the front and back pointers wrap around. When enqueue(..)
is attempted on a queue whose array is full with queue elements, resize
the array as with ArrayList.

Implement the class queues.MyArrayQueue.java.

Solution:

The main difference between a queue and a stack is that a stack is a LIFO
(last in first out) buffer and a queue is a FIFO (first in first out) buffer.
Because a queue can be manipulated at both ends (enqueue at the back,
dequeue at the front), you need to keep two indexes to the both ends of
the queue.

p r i v a t e i n t f r on t ;
p r i v a t e i n t back ;
p r i v a t e Any [] theItems ;

The size of the queue can be calculated as the back index minus the
front index. However be careful that the index can “wrap around” and
the size suddenly becomes negative or larger than array length -1. In
that case, we need to add the length of the array. This corresponds to
a modulo operation % theItems.length. (Java’s modulo operator does
behave different for negative numbers, that is why it is not used here)

pub l i c i n t s i z e () {
// the s i z e o f the queue i s
// (back index − f r on t index + 1) % array . l ength
in t s i z e = (back − f r on t + 1) ;
i f (s i z e < 0) {

s i z e += theItems . l ength ;
} e l s e i f (s i z e >= theItems . l ength) {

s i z e −= theItems . l ength ;
}

4

r e tu rn s i z e ;
}

When the a new element is added to the queue, the operation first checks
whether the underlying array is full and has to be enlarged. We will see
later how this is done. Otherwise, the back index is increased by one
modulo the array length and the new item is added at the back position.

pub l i c void enqueue (Any item) {
i f (s i z e () == theItems . l ength −1) {

// en large array s i z e
ensureCapac ity (s i z e () ∗ 2 + 1) ;

}
back = (back + 1) % theItems . l ength ;
theItems [back] = item ;

}

When the an element is removed from the queue, the operation first checks
whether the queue is empty. If so, it throws an exception. Otherwise, the
front index is increased by one modulo the array length.

pub l i c Any dequeue () {
i f (empty ()) {

throw new NoSuchElementException () ;
} e l s e {

Any theItem = theItems [f r on t] ;
f r on t = (f r on t + 1) % theItems . l ength ;
r e tu rn theItem ;

}
}

The last thing we need to do is ensure that the arrays is always big enough
to hold the queue. The idea is the same as for the MyArrayList in the
book: whenever the arrays is full, create a new array of double the size
and copy the elements from the old array over. In the case of the queue,
we can do this by starting from the front index and copying the first size()
elements over. Note the modulo old.length operation that wraps the index
around if necessary.

pub l i c void ensureCapac ity (i n t newCapacity) {

i f (newCapacity < theItems . l ength)
r e tu rn ;

Any [] o ld = theItems ;
i n t o l dS i z e = s i z e () ;
theItems = (Any []) new Object [newCapacity] ;
// copy items in to the new array
f o r (i n t i = 0 ; i < o ldS i z e ; i++)

theItems [i] = old [(f r on t + i) % old . l ength] ;

5

f r on t = 0 ;
back = oldS ize −1;
i f (back < 0) {

back += theItems . l ength ;
}

}

6

