09 B: Graph Algorithms II

CS1102S: Data Structures and Algorithms

Martin Henz

March 19, 2010

Generated on Thursday 18th March, 2010, 00:21

- Review: Graphs, Shortest Path
- Unweighted Shortest Paths
- Oijkstra's Algorithm
- Correctness and Complexity of Dijkstra's Algorithm

- Review: Graphs, Shortest Path
- Unweighted Shortest Paths
- Dijkstra's Algorithm
- Correctness and Complexity of Dijkstra's Algorithm

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Directed graph

If the pairs are ordered, then the graph is directed.

Graph

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E.

Edge

Each *edge* is a pair (v, w), where $v, w \in V$.

Directed graph

If the pairs are ordered, then the graph is directed.

Weight

Sometimes the edges have a third component, knows as either a *weight* or a *cost*. Such graphs are called *weighted graphs*.

Paths

Path

A *path* in a graph is a sequence of vertices $w_1, w_2, w_3, \ldots, w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i < N$. It is said to lead from w_1 of w_N .

The Shortest Path Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

The Shortest Path Problem

Input

Weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge.

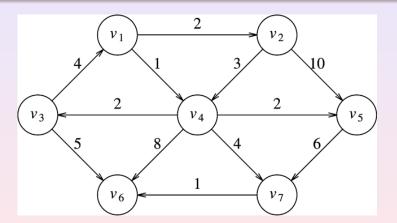
Weighted path length

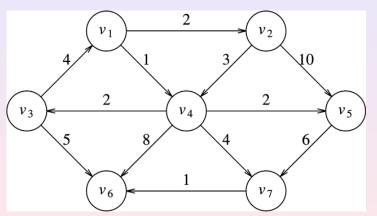
Cost of path $v_1 v_2 \cdots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$.

Single-Source Shortest-Path Problem

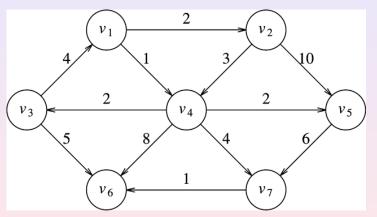
Problem

Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.



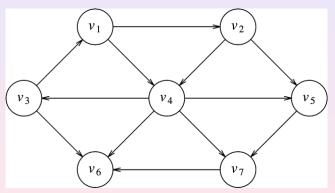


Shortest path from v_1 to v_6



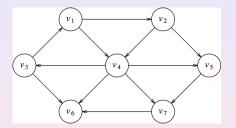
Shortest path from v_1 to v_6 has a cost of 6 and goes from v_1 to v_4 to v_7 to v_6 .

Unweighted Shortest Paths: Example



Find the shortest path from v_3 to all other vertices

Idea



Level-order traversal

Start with s (distance 0) and proceed in phases currDist, each time going through all vertices. If vertex is "known" and has distance currDist, set the distance of its neighbors to currDist ± 1 .

Implementation

```
void unweighted( Vertex s )
 for each Vertex v
    v.dist = INFINITY;
    v.known = false:
s.dist = 0;
 for( int currDist = 0; currDist < NUM VERTICES; currDist++ )
     for each Vertex v
         if( !v.known && v.dist == currDist )
             v.known = true;
             for each Vertex w adjacent to v
                 if( w.dist == INFINITY )
                     w.dist = currDist + 1:
                     w.path = v;
```

Inefficiency

Careless loop

In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

Inefficiency

Careless loop

In each phase, we go through all vertices. We can remember the "known" vertices in a data structure.

Suitable data structure

Queue: will contain the vertices in order of increasing distance

Implementation

```
void unweighted( Vertex s )
Oueue<Vertex> g = new Oueue<Vertex>():
for each Vertex v
    v.dist = INFINITY;
s.dist = 0;
q.enqueue(s);
while(!q.isEmpty())
    Vertex v = q.dequeue();
    for each Vertex w adjacent to v
        if( w.dist == INFINITY )
            w.dist = v.dist + 1;
            w.path = v;
            q.enqueue( w );
```

Dijkstra's Algorithm: Idea

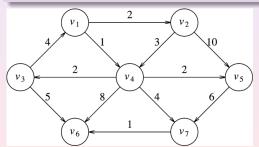
Idea

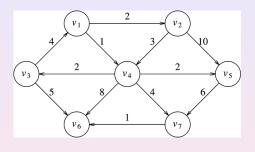
Treat nodes in the order of shortest distance

Dijkstra's Algorithm: Idea

Idea

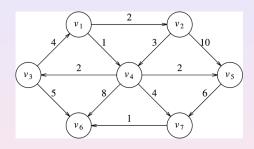
Treat nodes in the order of shortest distance





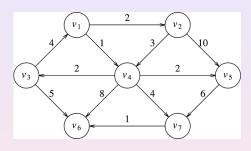
Initial configuration:

ν	known	d_{ν}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
v_3	F	∞	0
v_4	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
v_7	F	∞	0



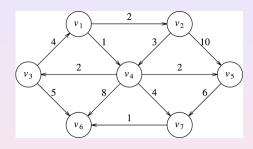
After v_1 is declared known:

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	∞	0
v_4	F	1	v_1
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0



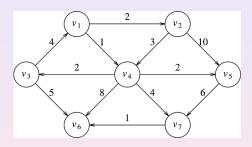
After v_4 is declared known:

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	F	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
v_5	F	3	v_4
v_6	F	9	v_4
v_7	F	5	v_4



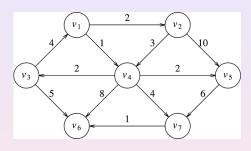
After v_2 is declared known:

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	F	3	v_4
v_4	T	1	v_1
v_5	F	3	v_4
v_6	F	9	v_4
v_7	F	5	v_4



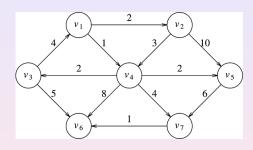
After v_5 and then v_3 are declared known:

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
v_5	T	3	v_4
v_6	F	8	v_3
v_7	F	5	v_4



After v_7 is declared known:

INTO WITE			
ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
v_5	T	3	v_4
v_6	F	6	v_7
v_7	T	5	v_4



After v_6 is declared known:

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
ν ₅	T	3	v_4
v_6	T	6	v_7
v_7	T	5	v_4

Pseudocode for Dijkstra's Algorithm

```
void dijkstra( Vertex s )
 for each Vertex v
    v.dist = INFINITY;
    v.known = false:
s.dist = 0:
for(;;)
    Vertex v = smallest unknown distance vertex:
     if( v == NOT A VERTEX )
         break:
    v.known = true;
     for each Vertex w adjacent to v
         if(!w.known)
            if( v.dist + cvw < w.dist )
                // Update w
                decrease( w.dist to v.dist + cvw );
                w.path = v;
```

Shortest Subpath

Lemma

Any subpath of a shortest path must also be a shortest path.

Shortest Subpath

Lemma

Any subpath of a shortest path must also be a shortest path.

Proof

By contradiction: Assume that a subpath $p = v_i \cdots v_j$ of the shortest path $q = v_1 \cdots p \cdots v_k$ is not a shortest path. Then there is a shorter path p' from v_i to v_j . Plug p' into q to get $q' = v_1 \cdots p' \cdots v_k$ shorter than q!

Definition of Shortest Distance

Notation

We use the notation

$$\delta(\mathbf{v}, \mathbf{w})$$

to denote the length of the shortest path from *v* to *w*.

Definition of Shortest Distance

Notation

We use the notation

$$\delta(\mathbf{v}, \mathbf{w})$$

to denote the length of the shortest path from v to w.

Distance

We call $\delta(v, w)$ the *distance* between v and w.

dist is a Relaxation

Lemma

At any point in time and for any vertex v, we have

$$v. dist \geq \delta(s, v)$$

dist is a Relaxation

Lemma

At any point in time and for any vertex v, we have

$$v. dist \geq \delta(s, v)$$

Proof Idea

We show this by proving that whenever we set v. dist to a finite value, there exists a path of that length.

Lemma

At any point in time and for any vertex v, we have

$$v$$
 . $dist \geq \delta(s, v)$

Lemma

At any point in time and for any vertex v, we have

$$v. dist \geq \delta(s, v)$$

Proof

By induction over the number of iterations of outer loop.

Lemma

At any point in time and for any vertex v, we have

$$v$$
. $dist \geq \delta(s, v)$

Proof

By induction over the number of iterations of outer loop.

Start: claim holds for s (distance 0) and all other vertices (distance ∞)

Lemma

At any point in time and for any vertex v, we have

$$v. dist \geq \delta(s, v)$$

Proof

By induction over the number of iterations of outer loop.

Start: claim holds for s (distance 0) and all other vertices (distance ∞)

Hypothesis: claim holds for previous iterations.

Lemma

At any point in time and for any vertex v, we have

$$v$$
. $dist \geq \delta(s, v)$

Proof

By induction over the number of iterations of outer loop.

Start: claim holds for s (distance 0) and all other vertices (distance ∞)

Hypothesis: claim holds for previous iterations.

Induction step: Updates are done such that an edge weight is added to a previously computed dist value

Order of Adding Vertices

Observation

Vertices are becoming known in order of increasing dist values.

Order of Adding Vertices

Observation

Vertices are becoming known in order of increasing dist values.

Observation

Once a vertex becomes known, its dist value does not change.

```
void dijkstra( Vertex s )
 for each Vertex v
    v.dist = INFINITY;
    v.known = false:
s.dist = 0:
for(;;)
    Vertex v = smallest unknown distance vertex:
     if( v == NOT A VERTEX )
         break:
    v.known = true;
     for each Vertex w adjacent to v
         if(!w.known)
            if( v.dist + cvw < w.dist )
                // Update w
                decrease( w.dist to v.dist + cvw );
                w.path = v;
```

Main Correctness Lemma

Lemma

When we set v.known = **true** then v. dist = $\delta(s, v)$.

Main Correctness Lemma

Lemma

When we set v.known = **true** then v. dist = $\delta(s, v)$.

Correctness of Dijkstra's algorithm

Each iteration through the outer loop makes one vertex known. At the end every vertex v is known and thus, according to the lemma, its dist value is $\delta(s, v)$.

Proving the Main Lemma

Proof by contradiction

Assume that there is a vertex v for which the claim does not hold.

Proving the Main Lemma

Proof by contradiction

Assume that there is a vertex v for which the claim does not hold.

Therefore, using relaxation property, when we set v.known = true then v. dist $> \delta(s, v)$.

Proving the Main Lemma

Proof by contradiction

Assume that there is a vertex v for which the claim does not hold.

Therefore, using relaxation property, when we set v.known = true then v. dist $> \delta(s, v)$.

Then, there must be a vertex *u* for which this is the case for the *first time* in the algorithm.

Situation

Analysis

Situation just before u.known = true: The value u. dist reflects the length of the path given by u.path.

Situation

Analysis

Situation just before u.known = true: The value u. dist reflects the length of the path given by u.path.

The real shortest path

The real shortest path from s to u is shorter than u. dist. Consider the real shortest path $s \cdots u$.

Situation

Jumping into "unknown"

Since u. known still false, and s. known=true, there must be a pair of two neighboring vertices r and t in the real shortest path such that r. known=true and t. known=false.

First pair

There must be a first pair *x* and *y* where this is the case.

Analysis of x and y

Processing of x

We have processed x, but not yet y. Since y's dist value is decreased by decrease (...), we know that

$$y$$
. $dist \leq x$. $dist + c_{x,y}$

Correctness and Complexity of Dijkstra's Algorithm

Analysis of x and y

Processing of x

We have processed x, but not yet y. Since y's dist value is decreased by decrease (...), we know that

$$y$$
. $dist \leq x$. $dist + c_{x,y}$

Using hypothesis

Since x becomes known earlier than u, we have

$$x. dist = \delta(s, x)$$

Analysis of x and y

Correctness and Complexity of Dijkstra's Algorithm

Processing of x

We have processed x, but not yet y. Since y's dist value is decreased by decrease (...), we know that

$$y. dist \leq x. dist + c_{x,y}$$

Using hypothesis

Since *x* becomes known earlier than *u*, we have

$$x. dist = \delta(s, x)$$

Shortest subpath

 $s \cdots xy$ is subpath of shortest path, thus

$$\delta(s, y) = \delta(s, x) + c_{x,y} = x \cdot dist + c_{x,y}$$

Recap

We have

$$y$$
. $dist \leq x$. $dist + c_{x,y}$

and

$$\delta(s,y) = \delta(s,x) + c_{x,y} = x \cdot dist + c_{x,y}$$

Recap

We have

$$y$$
. $dist \leq x$. $dist + c_{x,y}$

and

$$\delta(s,y) = \delta(s,x) + c_{x,y} = x \cdot dist + c_{x,y}$$

and thus: y dist $\leq \delta(s, y)$

Recap

We have

$$y. dist \leq x. dist + c_{x,y}$$

and

$$\delta(s,y) = \delta(s,x) + c_{x,y} = x \cdot dist + c_{x,y}$$

and thus: y. dist $\leq \delta(s, y)$ and therefore y. dist $= \delta(s, y)$

Correctness and Complexity of Dijkstra's Algorithm

Finale

Since y dist = $\delta(s, y)$, we have $y \neq u$.

Finale

Since y dist = $\delta(s, y)$, we have $y \neq u$.

Edge costs between y and u are non-negative, thus

$$\delta(\mathbf{s},\mathbf{y}) \leq \delta(\mathbf{s},\mathbf{u})$$

and thus

$$y$$
. $dist = \delta(s, y) \le \delta(s, u) < u$. $dist$

Finale

Since y dist = $\delta(s, y)$, we have $y \neq u$.

Edge costs between y and u are non-negative, thus

$$\delta(\mathbf{s},\mathbf{y}) \leq \delta(\mathbf{s},\mathbf{u})$$

and thus

$$y$$
. $dist = \delta(s, y) \le \delta(s, u) < u$. $dist$

If y dist < u dist, and since vertices become known in order of increasing distance, y would have become known before u, which contradicts the assumption that u is next vertex to become known!