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Example: Hamiltonian Cycles

Given Input

An undirected connected graph

Desired Output

A path that starts and ends in the same vertex and contains all
other vertices exactly once.

No efficient algorithm known

We do not know if there is a k such that the problem can be
solved in O(Nk ).
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Our Last Question

Question

If we do not have a polynomial algorithm, can we always prove
that there is none?

Answer

No: we cannot (at this moment) prove that there is no
polynomial algorithm for the Hamiltonian cycle problem
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Verifying Solutions

Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can
easily check that it is correct.
Simply check that the last vertex in the cycle is that same as the
first, and that every vertex of the graph is contained in the cycle.

Definition

We call the class of problems for which solution candidates can
be checked in polynomial time NP.
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NP-Complete Problems

Other problems in NP

Boolean satisfiability problem (SAT)

Graph coloring problem

Clique problem

Reducibility

All these problems can be transformed into each other in
polynomial time! Thus if we can solve one, we can solve all.

NP-Complete Problems

The class of problems that can be transformed into the
Hamiltonian path problem in polynomial time is called the class
of NP-complete problems.
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Nonpreemptive Scheduling

Input

A set of jobs with a running time for each

Desired output

A sequence for the jobs to execute on on single machine,
minimizing the average completion time
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Example

Some schedule:

The optimal schedule:
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The Multiprocessor Case

N processors

Now we can run the jobs on N identical machines. What is a
schedule that minimizes the average completion time?
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A “Slight” Variant

Miniming final completion time

If we want to minimize the final completion time (completion
time of the last task), the problem becomes NP-complete!
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Standard Coding Scheme
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Representation in a Tree
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A Slightly Better Representation
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Optimal Prefix Code in Tree Form
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Optimal Prefix Code in Table Form
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Huffman’s Algorithm: An Example
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Sorting using Divide and Conquer

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two, using pivot (linear); sort the two (recursively);
merge (trivial)
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Running Time of Divide and Conquer Algorithms

Merge Sort: T (N) = 2T (N/2) + O(N)

O(N log N)

Generalization: T (N) = aT (N/b) + Θ(Nk )

T (N) = O(N logb a) if a > bk

T (N) = O(Nk log N) if a = bk

T (N) = O(Nk ) if a < bk
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Closest-Points Problem

Input

Set of points in a plane

Euclidean distance between p1 and p2

[(x1 − x2)
2 + (y1 − y2)

2]1/2

Required output

Find the closest pair of points
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Naive Algorithm

Exhaustive search

Compute the distance between each two points and keep the
smallest

Run time

There are N2 pairs to check, thus O(N2)
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Idea

Preparation

Sort points by x coordinate; O(N log N)

Divide and Conquer

Split point set into two halves, PL and PR.
Recursively find the smallest distance in each half.
Find the smallest distance of pairs that cross the separation
line.
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Partitioning with Shortest Distances Shown
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Two-lane Strip
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Better Idea

Sort points by y coordinate

This allows a scan of the strip.

Sort points by y coordinate

This allows a scan of the strip.
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Only p4 and p5 Need To Be Considered
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Refined Calculation of min(δ, dC)
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At Most Eight Points Fit in Rectangle
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Inefficient Algorithm

public s t a t i c i n t f i b ( i n t n ) {
i f ( n <= 1)

return 1;
else

return f i b ( n − 1) + f i b ( n − 2 ) ;
}
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Memoization

i n t [ ] f i b s = new i n t [ 1 0 0 ] ;
public s t a t i c i n t f i b ( i n t n ) {

i f ( f i b s [ n ] ! = 0 ) return f i b s [ n ] ;
i f ( n <= 1) return 1;
i n t new f ib = f i b ( n − 1) + f i b ( n − 2 ) ;
f i b s [ n ] = new f ib ;
return new f ib ;

}
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A Simple Loop for Fibonacci Numbers

public s t a t i c i n t f i b ( i n t n ) {
i f ( n <= 1) return 1;
i n t l a s t = 1 , nextToLast = 1 ; answer = 1;
for ( i n t i = 2 ; i <= n ; i ++) {

answer = l a s t + nextToLast ;
nextToLast = l a s t ;
l a s t = answer ;

}
return answer ;

}
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Comparison of the Three Trees
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Idea

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization

For each range, store optimal tree for later retrieval
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Computation of Optimal Binary Search Tree
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Run Time

For each cell of table

Consider all possible roots

Overall runtime

O(N3)
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