
NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

11 A: Algorithm Design Techniques

CS1102S: Data Structures and Algorithms

Martin Henz

March 31, 2010

Generated on Tuesday 6th April, 2010, 14:22

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 1

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

1 NP-Complete Problems

2 Greedy Algorithms

3 Divide and Conquer

4 Dynamic Programming

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 2

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Example: Hamiltonian Cycles

Given Input

An undirected connected graph

Desired Output

A path that starts and ends in the same vertex and contains all
other vertices exactly once.

No efficient algorithm known

We do not know if there is a k such that the problem can be
solved in O(Nk).

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 3

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Our Last Question

Question

If we do not have a polynomial algorithm, can we always prove
that there is none?

Answer

No: we cannot (at this moment) prove that there is no
polynomial algorithm for the Hamiltonian cycle problem

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 4

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Verifying Solutions

Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can
easily check that it is correct.
Simply check that the last vertex in the cycle is that same as the
first, and that every vertex of the graph is contained in the cycle.

Definition

We call the class of problems for which solution candidates can
be checked in polynomial time NP.

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 5

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

NP-Complete Problems

Other problems in NP

Boolean satisfiability problem (SAT)

Graph coloring problem

Clique problem

Reducibility

All these problems can be transformed into each other in
polynomial time! Thus if we can solve one, we can solve all.

NP-Complete Problems

The class of problems that can be transformed into the
Hamiltonian path problem in polynomial time is called the class
of NP-complete problems.

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 6

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

1 NP-Complete Problems

2 Greedy Algorithms
Scheduling
Huffman Codes

3 Divide and Conquer

4 Dynamic Programming

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 7

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Nonpreemptive Scheduling

Input

A set of jobs with a running time for each

Desired output

A sequence for the jobs to execute on on single machine,
minimizing the average completion time

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 8

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Example

Some schedule:

The optimal schedule:

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 9

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

The Multiprocessor Case

N processors

Now we can run the jobs on N identical machines. What is a
schedule that minimizes the average completion time?

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 10

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 11

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

A “Slight” Variant

Miniming final completion time

If we want to minimize the final completion time (completion
time of the last task), the problem becomes NP-complete!

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 12

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Standard Coding Scheme

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 13

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Representation in a Tree

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 14

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

A Slightly Better Representation

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 15

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Optimal Prefix Code in Tree Form

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 16

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Optimal Prefix Code in Table Form

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 17

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 18

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 19

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 20

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 21

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 22

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 23

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Scheduling
Huffman Codes

Huffman’s Algorithm: An Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 24

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

1 NP-Complete Problems

2 Greedy Algorithms

3 Divide and Conquer
Sorting
Running Time
Closest-Points Problem

4 Dynamic Programming

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 25

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Sorting using Divide and Conquer

Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge
(linear)

Idea of Quicksort

Split array in two, using pivot (linear); sort the two (recursively);
merge (trivial)

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 26

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Running Time of Divide and Conquer Algorithms

Merge Sort: T (N) = 2T (N/2) + O(N)

O(N log N)

Generalization: T (N) = aT (N/b) + Θ(Nk)

T (N) = O(N logb a) if a > bk

T (N) = O(Nk log N) if a = bk

T (N) = O(Nk) if a < bk

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 27

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Closest-Points Problem

Input

Set of points in a plane

Euclidean distance between p1 and p2

[(x1 − x2)
2 + (y1 − y2)

2]1/2

Required output

Find the closest pair of points

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 28

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 29

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Naive Algorithm

Exhaustive search

Compute the distance between each two points and keep the
smallest

Run time

There are N2 pairs to check, thus O(N2)

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 30

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Idea

Preparation

Sort points by x coordinate; O(N log N)

Divide and Conquer

Split point set into two halves, PL and PR.
Recursively find the smallest distance in each half.
Find the smallest distance of pairs that cross the separation
line.

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 31

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Partitioning with Shortest Distances Shown

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 32

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Two-lane Strip

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 33

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Brute Force Calculation of min(δ, dC)

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 34

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Better Idea

Sort points by y coordinate

This allows a scan of the strip.

Sort points by y coordinate

This allows a scan of the strip.

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 35

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Only p4 and p5 Need To Be Considered

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 36

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

Refined Calculation of min(δ, dC)

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 37

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Sorting
Running Time
Closest-Points Problem

At Most Eight Points Fit in Rectangle

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 38

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

1 NP-Complete Problems

2 Greedy Algorithms

3 Divide and Conquer

4 Dynamic Programming
Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 39

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Inefficient Algorithm

public s t a t i c i n t f i b (i n t n) {
i f (n <= 1)

return 1;
else

return f i b (n − 1) + f i b (n − 2) ;
}

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 40

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Trace of Recursion

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 41

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Memoization

i n t [] f i b s = new i n t [1 0 0] ;
public s t a t i c i n t f i b (i n t n) {

i f (f i b s [n] ! = 0) return f i b s [n] ;
i f (n <= 1) return 1;
i n t new f ib = f i b (n − 1) + f i b (n − 2) ;
f i b s [n] = new f ib ;
return new f ib ;

}

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 42

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

A Simple Loop for Fibonacci Numbers

public s t a t i c i n t f i b (i n t n) {
i f (n <= 1) return 1;
i n t l a s t = 1 , nextToLast = 1 ; answer = 1;
for (i n t i = 2 ; i <= n ; i ++) {

answer = l a s t + nextToLast ;
nextToLast = l a s t ;
l a s t = answer ;

}
return answer ;

}

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 43

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Sample Input

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 44

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Three Possible Binary Search Trees

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 45

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Comparison of the Three Trees

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 46

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Structure of Optimal Binary Search Tree

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 47

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Idea

Proceed in order of growing tree size

For each range of words, compute optimal tree

Memoization

For each range, store optimal tree for later retrieval

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 48

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Computation of Optimal Binary Search Tree

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 49

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Run Time

For each cell of table

Consider all possible roots

Overall runtime

O(N3)

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 50

NP-Complete Problems
Greedy Algorithms

Divide and Conquer
Dynamic Programming

Fibonacci Numbers
Optimal Binary Search Tree
All-pairs Shortest Path

Example

CS1102S: Data Structures and Algorithms 11 A: Algorithm Design Techniques 51

	NP-Complete Problems
	Greedy Algorithms
	Scheduling
	Huffman Codes

	Divide and Conquer
	Sorting
	Running Time
	Closest-Points Problem

	Dynamic Programming
	Fibonacci Numbers
	Optimal Binary Search Tree
	All-pairs Shortest Path

