NP-Complete Problems Greedy Algorithms Divide and Conquer Dynamic Programming

### 11 A: Algorithm Design Techniques

CS1102S: Data Structures and Algorithms

Martin Henz

March 31, 2010

Generated on Tuesday 6<sup>th</sup> April, 2010, 14:22



NP-Complete Problems Greedy Algorithms Divide and Conquer Dynamic Programming

- NP-Complete Problems
- 2 Greedy Algorithms
- 3 Divide and Conquer
- Opnomic Programming

## Example: Hamiltonian Cycles

### Given Input

An undirected connected graph

### Example: Hamiltonian Cycles

#### Given Input

An undirected connected graph

### **Desired Output**

A path that starts and ends in the same vertex and contains all other vertices exactly once.

### **Example: Hamiltonian Cycles**

#### Given Input

An undirected connected graph

#### **Desired Output**

A path that starts and ends in the same vertex and contains all other vertices exactly once.

### No efficient algorithm known

We do not know if there is a k such that the problem can be solved in  $O(N^k)$ .

NP-Complete Problems Greedy Algorithms Divide and Conquer Dynamic Programming

### **Our Last Question**

#### Question

If we do not have a polynomial algorithm, can we always prove that there is none?

### **Our Last Question**

#### Question

If we do not have a polynomial algorithm, can we always prove that there is none?

#### **Answer**

No: we cannot (at this moment) prove that there is no polynomial algorithm for the Hamiltonian cycle problem

## Verifying Solutions

### Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can easily check that it is correct.

## **Verifying Solutions**

### Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can easily check that it is correct.

Simply check that the last vertex in the cycle is that same as the first, and that every vertex of the graph is contained in the cycle.

## **Verifying Solutions**

### Example: Hamiltonian cycle problem

If we have a candidate of a solution to the problem, we can easily check that it is correct.

Simply check that the last vertex in the cycle is that same as the first, and that every vertex of the graph is contained in the cycle.

#### **Definition**

We call the class of problems for which solution candidates can be checked in polynomial time *NP*.

### NP-Complete Problems

### Other problems in NP

- Boolean satisfiability problem (SAT)
- Graph coloring problem
- Clique problem

### **NP-Complete Problems**

### Other problems in NP

- Boolean satisfiability problem (SAT)
- Graph coloring problem
- Clique problem

### Reducibility

All these problems can be transformed into each other in polynomial time! Thus if we can solve one, we can solve all.

### **NP-Complete Problems**

### Other problems in NP

- Boolean satisfiability problem (SAT)
- Graph coloring problem
- Clique problem

### Reducibility

All these problems can be transformed into each other in polynomial time! Thus if we can solve one, we can solve all.

### **NP-Complete Problems**

The class of problems that can be transformed into the Hamiltonian path problem in polynomial time is called the class of *NP-complete problems*.

- NP-Complete Problems
- ② Greedy Algorithms
  - Scheduling
  - Huffman Codes
- Divide and Conquer
- Dynamic Programming

### Nonpreemptive Scheduling

#### Input

A set of jobs with a running time for each

## Nonpreemptive Scheduling

#### Input

A set of jobs with a running time for each

### Desired output

A sequence for the jobs to execute on on single machine, minimizing the average completion time

### Example

| Job            | Time |
|----------------|------|
| $j_1$          | 15   |
| j <sub>2</sub> | 8    |
| j <sub>3</sub> | 3    |
| j <sub>4</sub> | 10   |

Some schedule:



The optimal schedule:

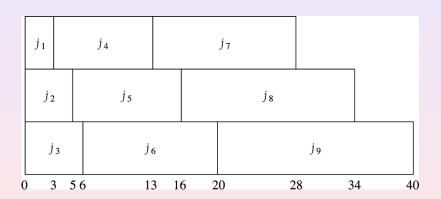


## The Multiprocessor Case

#### N processors

Now we can run the jobs on *N* identical machines. What is a schedule that minimizes the average completion time?

### Example



## A "Slight" Variant

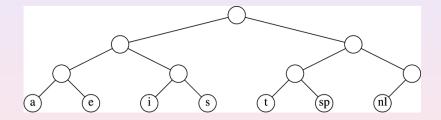
### Miniming final completion time

If we want to minimize the *final* completion time (completion time of the last task), the problem becomes NP-complete!

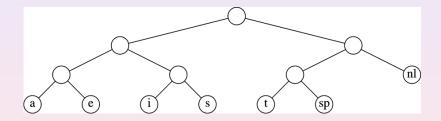
# Standard Coding Scheme

| Character | Code | Frequency | Total Bits |
|-----------|------|-----------|------------|
| а         | 000  | 10        | 30         |
| е         | 001  | 15        | 45         |
| i         | 010  | 12        | 36         |
| S         | 011  | 3         | 9          |
| t         | 100  | 4         | 12         |
| space     | 101  | 13        | 39         |
| newline   | 110  | 1         | 3          |
| Total     |      |           | 174        |

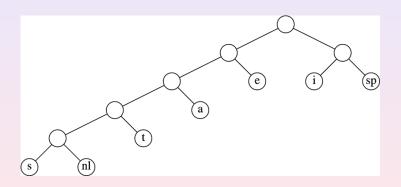
### Representation in a Tree



### A Slightly Better Representation



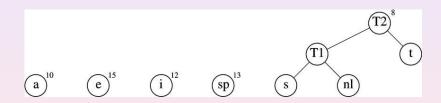
### Optimal Prefix Code in Tree Form

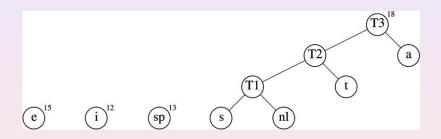


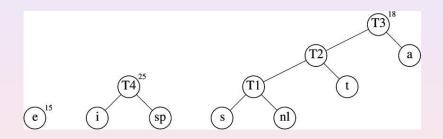
## Optimal Prefix Code in Table Form

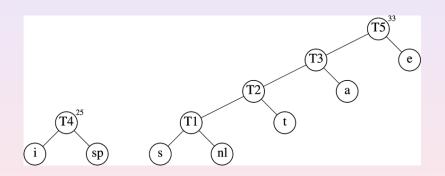
| Character | Code  | Frequency | Total Bits |
|-----------|-------|-----------|------------|
| а         | 001   | 10        | 30         |
| е         | 01    | 15        | 30         |
| i         | 10    | 12        | 24         |
| S         | 00000 | 3         | 15         |
| t         | 0001  | 4         | 16         |
| space     | 11    | 13        | 26         |
| newline   | 00001 | 1         | 5          |
| Total     |       |           | 146        |

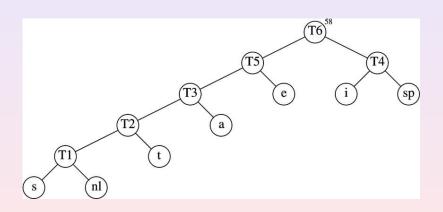












- NP-Complete Problems
- Greedy Algorithms
- Oivide and Conquer
  - Sorting
  - Running Time
  - Closest-Points Problem
- Opposite Programming

## Sorting using Divide and Conquer

### Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge (linear)

### Sorting using Divide and Conquer

### Idea of Mergesort

Split array in two (trivial); sort the two (recursively); merge (linear)

#### Idea of Quicksort

Split array in two, using pivot (linear); sort the two (recursively); merge (trivial)

# Running Time of Divide and Conquer Algorithms

Merge Sort: 
$$T(N) = 2T(N/2) + O(N)$$

 $O(N \log N)$ 

# Running Time of Divide and Conquer Algorithms

Merge Sort: 
$$T(N) = 2T(N/2) + O(N)$$

 $O(N \log N)$ 

Generalization: 
$$T(N) = aT(N/b) + \Theta(N^k)$$

$$T(N) = O(N^{\log_b a})$$
 if  $a > b^k$ 

$$T(N) = O(N^k \log N)$$
 if  $a = b^k$ 

$$T(N) = O(N^k)$$
 if  $a < b^k$ 

#### Closest-Points Problem

Input

Set of points in a plane

### **Closest-Points Problem**

#### Input

Set of points in a plane

Euclidean distance between  $p_1$  and  $p_2$ 

$$[(x_1-x_2)^2+(y_1-y_2)^2]^{1/2}$$

### Closest-Points Problem

#### Input

Set of points in a plane

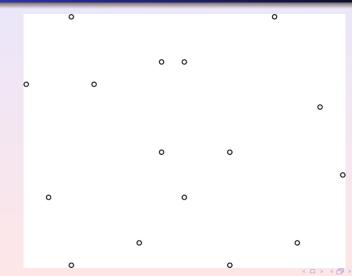
Euclidean distance between  $p_1$  and  $p_2$ 

$$[(x_1-x_2)^2+(y_1-y_2)^2]^{1/2}$$

#### Required output

Find the closest pair of points

## Example



## Naive Algorithm

#### Exhaustive search

Compute the distance between each two points and keep the smallest

# Naive Algorithm

#### Exhaustive search

Compute the distance between each two points and keep the smallest

#### Run time

There are  $N^2$  pairs to check, thus  $O(N^2)$ 

#### Preparation

Sort points by *x* coordinate;

#### Preparation

Sort points by x coordinate;  $O(N \log N)$ 

#### Preparation

Sort points by x coordinate;  $O(N \log N)$ 

### Divide and Conquer

Split point set into two halves,  $P_L$  and  $P_R$ .

#### Preparation

Sort points by x coordinate;  $O(N \log N)$ 

#### Divide and Conquer

Split point set into two halves,  $P_L$  and  $P_R$ . Recursively find the smallest distance in each half.

#### Preparation

Sort points by x coordinate;  $O(N \log N)$ 

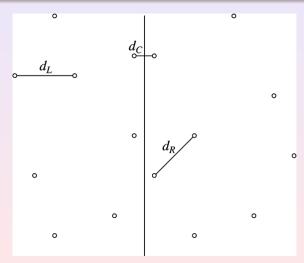
#### Divide and Conquer

Split point set into two halves,  $P_L$  and  $P_R$ .

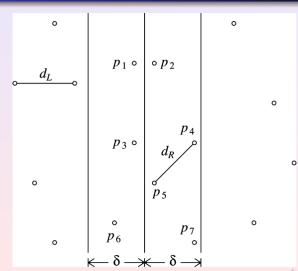
Recursively find the smallest distance in each half.

Find the smallest distance of pairs that *cross* the separation line.

# Partitioning with Shortest Distances Shown



# Two-lane Strip



# Brute Force Calculation of $min(\delta, d_C)$

#### Better Idea

Sort points by y coordinate

This allows a scan of the strip.

#### Better Idea

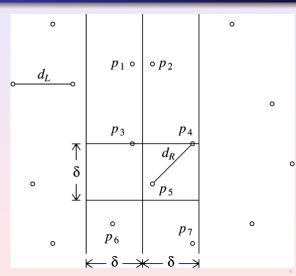
#### Sort points by y coordinate

This allows a *scan* of the strip.

#### Sort points by y coordinate

This allows a scan of the strip.

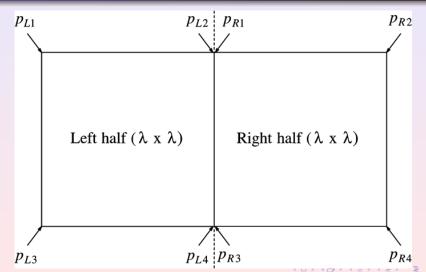
# Only $p_4$ and $p_5$ Need To Be Considered



# Refined Calculation of $min(\delta, d_C)$

```
// Points are all in the strip and sorted by y-coordinate for( i = 0; i < numPointsInStrip; i++ ) for( j = i + 1; j < numPointsInStrip; j++ ) if( p_i and p_j's y-coordinates differ by more than \delta ) break; // Go to next p_i. else if( dist(p_i, p_j) < \delta ) \delta = dist(p_i, p_j);
```

# At Most Eight Points Fit in Rectangle

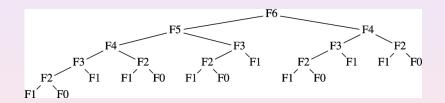


- NP-Complete Problems
- 2 Greedy Algorithms
- Divide and Conquer
- Opnomic Programming
  - Fibonacci Numbers
  - Optimal Binary Search Tree
  - All-pairs Shortest Path

# Inefficient Algorithm

```
public static int fib(int n) {
  if (n <= 1)
    return 1;
  else
    return fib(n - 1) + fib(n - 2);
}</pre>
```

#### Trace of Recursion



### Memoization

```
int[] fibs = new int[100];
public static int fib(int n) {
   if (fibs[n]!=0) return fibs[n];
   if (n <= 1) return 1;
   int new_fib = fib(n - 1) + fib(n - 2);
   fibs[n] = new_fib;
   return new_fib;
}</pre>
```

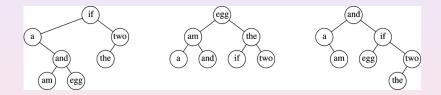
## A Simple Loop for Fibonacci Numbers

```
public static int fib(int n) {
  if (n \le 1) return 1;
  int last = 1, nextToLast = 1; answer = 1;
  for (int i = 2; i \le n; i++) {
    answer = last + nextToLast;
    nextToLast = last:
    last = answer;
  return answer;
```

# Sample Input

| Word | Probability |
|------|-------------|
| a    | 0.22        |
| am   | 0.18        |
| and  | 0.20        |
| egg  | 0.05        |
| if   | 0.25        |
| the  | 0.02        |
| two  | 0.08        |
|      |             |

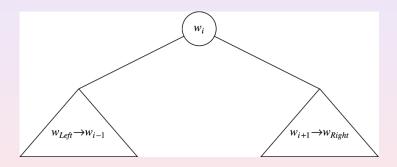
## Three Possible Binary Search Trees



# Comparison of the Three Trees

| Input               |                   | Ti          | ree #1               | T           | ree #2               | Tree #3                      |      |  |
|---------------------|-------------------|-------------|----------------------|-------------|----------------------|------------------------------|------|--|
| Word w <sub>i</sub> | Probability $p_i$ | Acc<br>Once | ess Cost<br>Sequence | Acc<br>Once | ess Cost<br>Sequence | Access Cost<br>Once Sequence |      |  |
| a                   | 0.22              | 2           | 0.44                 | 3           | 0.66                 | 2                            | 0.44 |  |
| am                  | 0.18              | 4           | 0.72                 | 2           | 0.36                 | 3                            | 0.54 |  |
| and                 | 0.20              | 3           | 0.60                 | 3           | 0.60                 | 1                            | 0.20 |  |
| egg                 | 0.05              | 4           | 0.20                 | 1           | 0.05                 | 3                            | 0.15 |  |
| if                  | 0.25              | 1           | 0.25                 | 3           | 0.75                 | 2                            | 0.50 |  |
| the                 | 0.02              | 3           | 0.06                 | 2           | 0.04                 | 4                            | 0.08 |  |
| two                 | 0.08              | 2           | 0.16                 | 3           | 0.24                 | 3                            | 0.24 |  |
| Totals              | 1.00              |             | 2.43                 |             | 2.70                 |                              | 2.15 |  |

# Structure of Optimal Binary Search Tree



Proceed in order of growing tree size

For each range of words, compute optimal tree

### Proceed in order of growing tree size

For each range of words, compute optimal tree

#### Memoization

For each range, store optimal tree for later retrieval

# Computation of Optimal Binary Search Tree

|             | Left=1  |     | Left=2 Left=3 |     | Left=4 |        | Left=5 |       | Left=6 |        | Left=7 |     |        |     |
|-------------|---------|-----|---------------|-----|--------|--------|--------|-------|--------|--------|--------|-----|--------|-----|
| Iteration=1 | aa      |     | amam          |     | andand |        | eggegg |       | ifif   |        | thethe |     | twotwo |     |
| iteration=1 | .22     | a   | .18           | am  | .20    | and    | .05    | egg   | .25    | if     | .02    | the | .08    | two |
| Iteration=2 | aam     |     | amand andegg  |     | .egg   | eggif  |        | ifthe |        | thetwo |        |     |        |     |
| iteration=2 | .58     | a   | .56           | and | .30    | and    | .35    | if    | .29    | if     | .12    | two |        |     |
| Iteration=3 | aand    |     | amegg andif   |     | eggthe |        | iftwo  |       |        |        |        |     |        |     |
|             | 1.02    | am  | .66           | and | .80    | if     | .39    | if    | .47    | if     |        |     |        |     |
| Iteration=4 | aegg    |     | amif andthe   |     | .the   | eggtwo |        |       |        |        |        |     |        |     |
|             | 1.17    | am  | 1.21          | and | .84    | if     | .57    | if    |        |        |        |     |        |     |
| Iteration=5 | aif     |     | amthe andtwo  |     |        |        | •      |       |        |        |        |     |        |     |
|             | 1.83    | and | 1.27          | and | 1.02   | if     |        |       |        |        |        |     |        |     |
| Iteration=6 | athe am |     | two           |     |        |        |        |       |        |        |        |     |        |     |
|             | 1.89    | and | 1.53          | and |        |        |        |       |        |        |        |     |        |     |
| Iteration=7 | atwo    |     |               |     |        |        |        |       |        |        |        |     |        |     |
| iteration=7 | 2.15    | and |               |     |        |        |        |       |        |        |        |     |        |     |

### Run Time

For each cell of table

Consider all possible roots

### Run Time

#### For each cell of table

Consider all possible roots

Overall runtime

 $O(N^3)$ 

## Example

