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Interesting Theorem

All positive integers are interesting.

Proof:

1. Suppose not.

2. Then by the Well Ordering Principle, there exists a smallest
positive integer that is non-interesting.

3. But, hey, that’s pretty interesting!

4. Contradiction.

5. Therefore all positive integers are interesting.

Reading

Chapter 8.1 — 8.5 of Epp.
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Definition 8.2.7

Let Si , for i = 1 to n, be n sets. An n-ary relation on the sets Si ,
denoted R, is a subset of the Cartesian product

∏n
i=1 Si . We call n

the arity or degree of the relation.

This is the generalization of the binary relation. It forms the
mathematical basis for Relational Calculus and Relational
Databases, such as mySQL and SQL Server, commonly used in
web applications.

For CS1231, we will focus on binary relations.
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Definition 8.2.8

Let S , T and U be sets. Let R ⊆ S × T be a relation. Let
R′ ⊆ T × U be a relation. The composition of R with R′,
denoted R′ ◦ R, is the relation from S to U such that:

∀x ∈ S , ∀z ∈ U (x R′ ◦ R z ↔ (∃y ∈ T (x R y ∧ y R′ z))).

In other words, x ∈ S and z ∈ U are related iff there is a “path”
from x to z via some intermediate element y ∈ T .
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Example:

  CS1010 

  CS1231 

 IS1103 

  MA1101 

  CS2100 

take 

 Dedi Santoso   

Deepak Srivastava  

Peter Ho  

 Gerard Kurtz 

Students Course 

  LT15 

  i-cube 

  COM1 210 

Classroom 

held in 

 Dedi Santoso   

Deepak Srivastava  

Peter Ho  

 Gerard Kurtz 

Students 

  LT15 

  i-cube 

  COM1 210 

Classroom 

go to 
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Proposition 8.2.9 (Composition is Associative)

Let S ,T ,U,V be sets. Let R ⊆ S × T be a relation. Let
R′ ⊆ T × U be a relation. Let R′′ ⊆ U × V be a relation.

R′′ ◦ (R′ ◦ R) = (R′′ ◦ R′) ◦ R = R′′ ◦ R′ ◦ R.

Proposition 8.2.10

Let S , T and U be sets. Let R ⊆ S × T be a relation. Let
R′ ⊆ T × U be a relation.

(R′ ◦ R)−1 = R−1 ◦ R′−1

Proofs omitted.
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8.3. Properties of Relations on a Set

Let A be a set, and R ⊆ A× A be a relation. We say that R is a
relation on A.

Definition 8.3.1

R is said to be reflexive iff ∀x ∈ A (x R x).

Definition 8.3.2

R is said to be symmetric iff ∀x , y ∈ A (x R y → y R x).

Definition 8.3.3

R is said to be transitive iff
∀x , y , z ∈ A ((x R y ∧ y R z)→ x R z).
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Example

Let A = {2, 3, 4, 6, 7, 9} and define a relation R on A by:

∀x , y ∈ A (x R y ↔ (x − y) is divisible by 3).

2 

7 

4 

6 

9 

3 
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Drawing it out

• Denote each element by a dot.

• Draw an arrow from x to y whenever x R y .

• Reflexive means that all dots must have a self-loop.

• Symmetric means that every outgoing arrow to a dot must
have an incoming arrow from that same dot.

• Transitive means that if an arrow goes from one dot to a
second dot, and another arrow goes from the second to a
third, then there must be an arrow going from the first to the
third dot.
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Is this relation reflexive? symmetric? transitive?

a 

c 

d 

b 

10 / 42



Basics Properties More on Equivalence Relations Additional definitions Partial and Total Orders Summary

Definition 8.3.4

Let R be a relation on a set A.
R is called an equivalence relation iff R is reflexive, symmetric,
and transitive.

The example on slide 8 was an equivalence relation.

Please verify that it is reflexive, symmetric and transitive.
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Let R be an equivalence relation on a set A.

Definition 8.3.5

Let x ∈ A. The equivalence class of x , denoted [x ], is the set of all
elements y ∈ A that are in relation with x .

[x ] = {y ∈ A | x R y}
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For the example on slide 8,

• The equivalence class of 2 is: [2] = {2}.
• The equivalence class of 4 is: [4] = [7] = {4, 7}.
• The set of distinct equivalence classes is:

{ [2], [3], [4] } = { {2}, {3, 6, 9}, {4, 7} }

13 / 42



Basics Properties More on Equivalence Relations Additional definitions Partial and Total Orders Summary

8.4. Equivalence Relations

Example: Congruence modulo n

Given a positive integer n, define a binary relation R on the set of
integers Z as follows:

∀x , y ∈ Z (x R y ↔ n | (x − y))

This relation is called congruence modulo n.

It is easy to prove that R is an equivalence relation.
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Proof

1. Reflexive: Clearly, ∀x ∈ Z, n | (x − x). Thus x R x .

2. Symmetric: Again, it is obvious that ∀x , y ∈ Z,
if n | (x − y) then n | (y − x). Thus x R y → y R x .

3. Transitive: Given any x , y , z ∈ Z, if n | (x − y) ∧ n | (y − z),
then ∃k1, k2 ∈ Z such that x − y = k1n and y − z = k2n.

4. Thus (x − y) + (y − z) = k1n + k2n, which simplifies to
x − z = (k1 + k2)n. This means n | (x − z) since k1 + k2 is an
integer. Thus x R z whenever x R y ∧ y R z .

5. Hence, R is an equivalence relation. �
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Equivalence classes of congruence modulo n

Since n | (x − y) → ∃k ∈ Z, x − y = kn, we may re-write:

x = kn + y

Let’s write y = qn + r , where q is the quotient, and r is the
remainder when y is divided by n. Note that 0 ≤ r < n.

Thus, x = kn + qn + r

= (k + q)n + r

This shows that x and y have the same remainder r . The distinct
equivalence classes are those formed by all the possible values of r :

{ [0], [1], [2], . . . , [n − 1] }
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Theorem 8.3.4 (Epp): Partition induced by an equivalence
relation

Let R be an equivalence relation on a set A. Then the set of
distinct equivalence classes form a partition of A.

Proof Sketch

Our proof will require three steps:

1. Two elements that are related are in the same equivalence
class.

2. Two equivalence classes are either disjoint, or they are equal.

3. The union of all equivalence classes is A.
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Lemma 8.3.2 (Epp)

Let R be an equivalence relation on a set A, and let a, b be two
elements in A. If a R b then [a] = [b].

Proof: see page 468 of Epp.
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Lemma 8.3.3 (Epp)

If R is an equivalence relation on a set A, and a, b are elements in A,
then either [a] ∩ [b] = ∅ or [a] = [b].

Proof Sketch

The statement to be proven has the form:

if p then (q ∨ r).

We will prove the logically equivalent statement (why?):

if p ∧ (∼q) then r .

That is, we will prove:

If R is an equivalence relation on a set A, and a, b are elements in A, and
[a] ∩ [b] 6= ∅, then [a] = [b].
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Proof

1. Given any set A and an equivalence relation R on A:

2. If [a] ∩ [b] 6= ∅:

3. ∃x (x ∈ [a] ∩ [b]), since the intersection is not empty.

4. ∃x (x ∈ [a] ∧ x ∈ [b]) by definition of intersection.

5. So a R x ∧ b R x , by def. of equiv. class.

6. Now, x R b, because R is symmetric.

7. So a R b, by Lines 5, 6 and because R is transitive.

8. Hence [a] = [b], by Lemma 8.3.2 (Epp). �
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Proof of Theorem 8.3.4 (Epp)

Let E denote the set of distinct equivalence classes of A given
binary relation R on A.

(We need to prove that A =
⋃
E .)

1. For any element x in A:

2. Clearly, x R x , because R is reflexive.

3. Then x ∈ [x ], by definition of equiv. class.

4. Thus [x ] ∈ E , by definition of E .

5. Thus x ∈
⋃

E , by definition of union.

6. So A ⊆
⋃

E , by definition of subset.

· · ·
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Proof cont’d

7. For any element x in
⋃

E :

8. ∃S ∈ E (x ∈ S), by definition of union.

9. (That is, x must belong to one of the sets being unioned.)

10. Thus ∃y ∈ A (S = [y ]), by def. of equiv. class.

11. But [y ] ⊆ A, because an equiv. class is a subset of A.

12. So x ∈ [y ]→ x ∈ A.

13. Thus
⋃
E ⊆ A, by definition of subset.

14. Hence A =
⋃

E .

· · ·
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Proof cont’d

(We need to prove that distinct equiv. classes are mutually
disjoint.)

15. Take any two distinct equivalence classes, [u], [v ].

16. Then ∃u, v ∈ A (u ∈ [u] ∧ v ∈ [v ]), by def. of equiv. class.

17. Hence either [u] ∩ [v ] = ∅ or [u] = [v ], by Lemma 8.3.3
(Epp).

18. Since [u] 6= [v ] (they are distinct), we conclude that
[u] ∩ [v ] = ∅. �
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Theorem 8.3.1 (Epp) Equivalence relation induced by a
partition

Given a partition S1,S2, . . . of a set A, there exists an equivalence
relation R on A whose equivalence classes make up precisely that
partition.

Proof Sketch

Proof by Construction: we create the relation that satisfies the
necessary property, and then show that it is an equivalennce
relation.

Define R as:

∀x , y ∈ A (x R y ↔ there is a set Si in the partition

such that x ∈ Si ∧ y ∈ Si ).

· · ·
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Proof Sketch cont’d

Then R is an equivalence relation. Furthermore, the set of distinct
equivalence classes = {S1,S2, . . .}.

It is straightforward to show that R is reflexive, symmetric and
transitive, i.e. it is indeed an equivalence relation. Moreover, each
Si is indeed an equivalence class of those elements it contains.

For the detailed proof, see pages 461 and 462 of Epp.
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Taken together, Theorems 8.3.1 (Epp) and 8.3.4 (Epp) say that
every time you see an equivalence relation on a set, that set is
partitioned (by the equivalence classes), and every time you see a
partition of a set, an equivalence relation is implied.

Real-life examples of partitions (and therefore equivalence
relations) are not hard to find. Examples:

• NUS has 16 Faculties (some are called Schools), e.g. SOC,
FoE, FASS, SDE, that partition all its students.

• When buying a laptop, the salesperson may ask you to choose
from: notebook, ultrabook, business model, gaming machine,
high performance laptop.

• Human languages may be categorized (partitioned) into
families: e.g. Indo-European, Sino-Tibetan, Niger-Congo.
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8.5. Additional Definitions

Definition 8.5.1

Let A be a set. Let R be a relation on A. The transitive closure of
R, denoted Rt , is a relation that satisfies these three properties:

(1) Rt is transitive.

(2) R ⊆ Rt .

(3) If S is any other transitive relation such that R ⊆ S, then
Rt ⊆ S.
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Remarks

• Thus we can say that the transitive closure is the smallest
superset that is transitive, where “smallest” is in the subset
sense as defined above.

• Similar definitions can be made for reflexive closure and
symmetric closure of a relation.

28 / 42



Basics Properties More on Equivalence Relations Additional definitions Partial and Total Orders Summary

Repeated compositions

Let R be a relation on a set A. We adopt the following notation
for the composition of R with itself.

• We define R1 , R.

• We define R2 , R ◦R.

• We define Rn , R ◦ ... ◦ R︸ ︷︷ ︸
n

=
⊙

i=1 to nR.
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Proposition 8.5.2

Let R be a relation on a set A. Then,

Rt =
∞⋃
i=1

Ri

Proof omitted.
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8.6. Partial and Total Orders

Let R be a relation on a set A.

Definition 8.6.1

R is said to be anti-symmetric iff

∀x ∈ A, ∀y ∈ A ((x R y ∧ y R x)→ x = y).

Definition 8.6.2

R is said to be a partial order iff it is reflexive, anti-symmetric, and
transitive.

We usually denote a partial order by the symbol “�”. A set A is
called a partially ordered set (or poset) with respect to a relation �
iff � is a partial order relation on A.
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Example 1

The subset relation “⊆” between two sets is a partial order.

Proof Sketch

1. For any set S , clearly S ⊆ S , so it is reflexive.

2. For any sets S ,T , if S ⊆ T and T ⊆ S , then S = T by
Proposition 6.3.3. But this is exactly what it means to be
anti-symmetric.

3. For any sets S ,T ,U, it is easy to show that
(S ⊆ T ∧ T ⊆ U)→ S ⊆ U. Thus “⊆” is transitive.

4. Hence “⊆” is a partial order.
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Example 2

Consider the usual “less than or equal to” relation, ≤, on the set
of real numbers, R. Its usual definition is:

∀x , y ∈ R, (x ≤ y ↔ x < y or x = y)

Show that “≤” is a partial order.

Proof omitted. You try!
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Example 3

The English dictionary lists words in a certain order, called the
lexicographic order. Examples:

• “chicken” appears before “dog”

• “runner” appears after “run” but before “runway”

This lexicographic order is really a partial order on the set of
strings defined over the English alphabet.

Of course, the lexicographic order owes its property to another
partial order, i.e. the one that defines the order of letters in the
alphabet.
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Hasse Diagrams

Let A = {1, 2, 3, 9, 18}, and consider the “divides” relation on A:

∀a, b ∈ A, (a | b ↔ ∃k ∈ Z (b = ka))

The “|” relation can be shown
to be a partial order. (You try.)
Its diagram is:
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The previous diagram can be simplified by:

1. Draw the directed graph
so that all arrows point
upwards.

2. Eliminate all self-loops.

3. Eliminate all arrows
implied by the transitive
property.

4. Remove the direction of
the arrows.

This is called a Hasse diagram.
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Definition 8.6.3 (Comparable)

Let � be a partial order on a set A. Elements a, b of A are said to be
comparable iff either a � b or b � a. Otherwise, a and b are called
noncomparable.

Definition 8.6.4 (Total Order)

Let � be a partial order on a set A. � is said to be a total order iff

∀x , y ∈ A (x � y ∨ y � x)

In other words, � is a total order if � is a partial order and all x , y are
comparable.

Examples

(Z,≤) is a total order.
The Hasse diagram on slide 36 is not a total order. (Why?)
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Let � be a partial order on a set A.

Definition 8.6.5 (Maximal)

An element x is a maximal element iff

∀y ∈ A (x � y → x = y).

Definition 8.6.6 (Maximum)

An element, usually noted >, is the maximum element (or the
maximum1) iff

∀x ∈ A (x � >).

1Some authors say greatest element.
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Let � be a partial order on a set A.

Definition 8.6.7 (Minimal)

An element x is a minimal element iff

∀y ∈ A (y � x → x = y).

Definition 8.6.8 (Minimum)

An element, usually noted ⊥, is the minimum element (or the
minimum2) iff

∀x ∈ A (⊥ � x).

2Some authors say least element.
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For the example shown in slide 36, there is only one maximal
element, 18, which is also the maximum. The only minimal
element is 1, which is also the minimum.

For the Hasse diagram on the
left, the only maximal element
is g , which is also the
maximum. The minimal
elements are: c , d , i , and there
is no minimum element.
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Definition 8.6.9

Let � be a total order on a set A. A is well ordered iff every
non-empty subset of A contains a minimum element, formally:

∀S ∈ P(A) (S 6= ∅→ (∃x ∈ S ∀y ∈ S (x � y))).

Examples

(N,≤) is well-ordered.
(Z,≤) is not well-ordered.
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8.7. Summary

• Relations allow us to model and study many real-world relationships.

• Relations may be inverted and composited.

• Important properties are: reflexivity, symmetry, transitivity,
anti-symmetry.

• An Equivalance Relation is the generalization of the notion of
“equality”.

• A partition of a set and an equivalence relation are two sides of the
same coin.

• A Partial Order is the generalization of the notion of “less than or
equal to”.

• Maximal and minimal elements are generalizations of upper and
lower bounds.
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