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3. The Logic of Quantified Statements

3.1 Predicates and Quantified Statements |

e Predicate; domain; truth set

e Universal quantifier V, existential quantifiers 3 and 3!
e Universal conditional statements; Implicit quantification

3.2 Predicates and Quantified Statements I

e Negation of quantified statements; negation of universal conditional statements
e Vacuous truth of universal statements

e Variants of universal conditional statements (contrapositive, converse, inverse)
e Necessary and sufficient conditions, only if

3.3 Statements with Multiple Quantifiers

e Negations of multiply-quantified statements; order of quantifiers
e Prolog

3.4 Arguments with Quantified Statements

e Universal instantiation; universal modus ponens; universal modus tollens

Reference: Epp’s Chapter 3 The Logic of Quantified Statements
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3.1 Predicates and Quantified Statements |
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Proposition and Predicate

Proposition and Predicate

In the previous lecture, we introduced statements (or

propositions). A statement (or proposition) can be true
or false, but not both.

Examples: What about these?
= 2+3=5 = x+3 =5
« V5<2 " Vn<2

A statement’s (or proposition’s) truth value does not
depend on any variables. A predicate’s truth value
depends on the variable(s) in it.
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Predicates and Quantified Statements |

3.1.1. Predicates and Quantified Statements |

In logic, predicates can be obtained by removing some
or all of the nouns from a statement. For instance, let P
stand for “is a student at NUS” and let Q stand for “is a
student at.” Then both P and Q are predicate symbols.

Predicate variables:

P(x) = “x is a student at NUS”
Q(x, y) = “xis a student at y”’

When concrete values are substituted in place of
predicate variables, a statement results.
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Predicates and Quantified Statements |

For simplicity, we define a predicate to be a predicate
symbol together with suitable predicate variables.

In some treatments of logic, such objects are referred
to as propositional functions or open sentences.

Definition 3.1.1 (Predicate)

A predicate is a sentence that contains a finite number of
variables and becomes a statement when specific values are
substituted for the variables.

The domain of a predicate variable is the set of all values
that may be substituted in place of the variable.

n  u

“Domain” may also be known as “domain of discourse”, “universe of
discourse”, “universal set”, or simply “universe”. The last three
terms are usually used in set theory.
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Predicates and Quantified Statements |

When an element in the domain of the variable of a
one-variable predicate is substituted for the variable,
the resulting statement is either true or false. The set
of all such elements that make the predicate true is
called the truth set of the predicate.

Definition 3.1.2 (Truth set)

If P(x) is a predicate and x has domain D, the truth set is the
set of all elements of D that make P(x) true when they are

substituted for x.
The truth set of P(x) is denoted {x € D | P(x)}.

In set theory, the symbol | is used to mean “such that”.
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Predicates and Quantified Statements I: Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.”
Find the truth set of Q(n) if

a. the domainof nisthe set Z™.

{1, 2, 4, 8} because these are exactly the
positive integers that divide 8 evenly.

b. the domain of nis the set Z.
{1) 2) 4) 8) _1) _2) _41 _8}
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The Universal Quantifier: V

3.1.2. The Universal Quantifier: V

One sure way to change predicates into statements is
to assign specific values to all their variables.

Example: If x represents the number 35, the
sentence “x is divisible by 5” is a true
statement.

Another way to obtain statements from predicates is
to add quantifiers.
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The Universal Quantifier: V

Quantifiers are words that refer to quantities such as
“some” or “all” and tell for how many elements a

given predicate is true.

The symbol ¥V denotes “for all” (or “for any”, “for
every”, “for each”) and is called the universal quantifier.

Definition 3.1.3 (Universal Statement)

Let Q(x) be a predicate and D the domain of x. A universal
statement is a statement of the form “VxeD, Q(x)”.

" |tis defined to be true iff Q(x) is true for every x in D.

= |tis defined to be false iff Q(x) is false for at least one x in D.
A value for x for which Q(x) is false is called a counterexample.
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The Universal Quantifier: Truth and Falsity of Universal Statements

Truth and Falsity of Universal Statements
a. LetD=1{1, 2, 3, 4, 5}, and consider the statement
VxeD (x? = x).

Show that this statement is true.

Check that “x? > x” is true for each x in D.
12>1, 22>2, 32>3, 42> 4, 52> 5.
Hence “VxeD (x? > x)” is true.

This method is called the method of exhaustion.

11
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The Universal Quantifier: Truth and Falsity of Universal Statements

Truth and Falsity of Universal Statements
b. Consider the statement
VxelR (x% = x).

Find a counterexample to show that this statement
is false.

Take x =%. Then xisin R and
(B)2=%2%.
Hence “VxeR (x? > x)” is false.

12
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The Existential Quantifiers: : 3

3.1.3. The Existential Quantifier:

Example: “There is a student in CS1231S” can be written as
1 a person p such that p is a student in CS1231S.

Or, more formally,
dp €P such that p is a student in CS1231S.
where P is the set of all people.

* The words such that are inserted just before the predicate. If
the context is clear, sometimes the abbreviation s.t. is used.

= Some alternative expressions for “there exists” are “there is

”” ”

a”, “we can find a”, “there is at least one”, “for some”, and “for
at least one”.

13
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The Existential Quantifier: 3

Sentences that are quantified existentially are defined
as statements by giving them the truth values
specified in the following definition.

Definition 3.1.4 (Existential Statement)

Let Q(x) be a predicate and D the domain of x. An existential
statement is a statement of the form “dxeD such that Q(x)”.
= |tis defined to be true iff Q(x) is true for at least one x in D.
= |tis defined to be false iff Q(x) is false for all x in D.
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The Existential Quantifier: Truth and Falsity of Existential Statements

Truth and Falsity of Existential Statements
a. Show that the following statement is true.

AmeZ* such that m?2 = m.

Observe that 12 =1. Thus “m? = m” is true for at least one
integer m. Hence “ImeZ* such that m2=m” is true.

b. Let E={5, 6, 7, 8}. Show that the following statement is false.
dmeE such that m? = m.
Note that m? = m is not true for any integer m from 5
through 8:52=25%#5, 62=36%#6, 72=49%7,

82 =64 # 8.
Hence “IAmeE such that m? = m” is false.

15
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The Existential Quantifier: : 3!

3.1.3. The Existential Quantifier: !

The symbol 3! is used to denote “there exists a unique”
or “there is one and only one”.

Example: 3! x € Z* such that x is even and prime.

Can we re-write this using quantifiers and logical connectives?

16
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Formal Versus Informal Language

3.1.4. Formal Versus Informal Language

Rewrite the following formal statements in a variety of
equivalent but more informal ways. Do not use the
symbol V¥ or 4.

All real numbers have non-negative squares.
Every/Any real number has a non-negative square.

a. VxeR, x2>0.

b. VxelR, x2#-1. = All real numbers have squares that are not -1.
= No real numbers have squares equal to -1.

c. AmeZ™ such that m? = m.

= There is a positive integer whose square is itself.
= Some positive integer equals its own square.

With experience, you may omit commas and “such that”.
Eg: “VxeR x2>0" “VxeR (x2>0)”, “ImeZ* m?=m".

17
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Universal Conditional Statements

3.1.5. Universal Conditional Statements

A reasonable argument can be made that the most
important form of statement in mathematics is the
universal conditional statement:

Vx (if P(x) then Q(x)).

or

Vx (P(x) = Q(x)).

Familiarity with statements of this form is essential if
you are to learn to speak mathematics.

18
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Equivalent Forms of Universal and Existential Statements

3.1.6. Equivalent Forms of Universal and Existential Statements

Are these two statements the same?

Vv real numbers x, if xisan VYV integers x, x is rational.
integer then x is rational.

Yes, they have the same

informal translation: Al integers are rational.
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Equivalent Forms of Universal and Existential Statements

By narrowing U to be the domain D consisting of
all values of the variable x that make P(x) true,

vxeU (P > Qlx) IS

Rewrite the statement “All squares are rectangles” in
the two forms:

m Vx, (if xisasquare then xisarectangle ).

" VY squares X, Xisarectangle

20
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Equivalent Forms of Universal and Existential Statements

Similarly,

dxe U such that (P(x) and Q(x))

dxe D such that Q(x)

where D is the set of all x for which P(x) is true.

21
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Equivalent Forms of Universal and Existential Statements

A prime number is an integer whose only positive
integer factors are itself and 1. Consider the statement

“There is an integer that is both prime and even.”

Let Prime(n) be “n is prime” and Even(n) be “n is even”.
Use the notation Prime(n) and Even(n) to rewrite this
statement into the following two forms:

a. dnsuch that( Prime(n) A Even(n) ).

b. 3 aneven number nsuchthat Prime(n)

22
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Implicit Quantification

3.1.7. Implicit Quantification

Mathematical writing contains many examples of implicitly
guantified statements. Some occur, through the presence
of the word a or an. Others occur in cases where the
general context of a sentence supplies part of its meaning.

For example, in an algebra course in which the letter x is
always used to indicate a real number, the predicate

If x> 2 then x?>4
is interpreted to mean the same as the statement
Y real numbers x, (if x > 2 then x? > 4).

23
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Tarski’s World

3.1.8. Tarski’s World

Tarski’s World is a computer program developed by
information scientists Jon Barwise and John
Etchemendy to help teach the principles of logic.

It is described in their book The Language of First-
Order Logic, which is accompanied by a CD-ROM
containing the program Tarski’s World, named after
the great logician Alfred Tarski.

24
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Tarski’s World

The program for Tarski’s World provides pictures of
blocks of various sizes, shapes, and colors, which are

located on a grid.
= Shown in Figure 3.1.1 is a picture of an arrangement of
objects in a two-dimensional Tarski world.

A O

A | (2
-
A B
Bl

Figure 3.1.1 25
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Tarski’s World

The configuration can be described using logical
operators and — for the two-dimensional version —
notation such as:
" Triangle(x), meaning “x is a triangle,”
= Blue(y), meaning “y is blue,” and
= RightOf(x, y), meaning “x is to the right of y (but
possibly in a different row).”

Individual objects can be given names such as a, b, or c.

26



Statements with Multiple Quantifiers  Arguments with Quantified Statements

Predicates & Quantified Statement 1/ I

oleoloNoNoNoNON | OO OO0 O ool oNeoNoNoNO) oo oNoNoNoNoNo o)

Tarski’s World

Determine the truth or falsity of the
following statements. The domain for A ;
all variables is the set of objects in
the Tarski’s world shown on the right. '
a. Vt(Triangle(t) - Blue(t)). True A i
k

b. Vx (Blue(x) = Triangle(x)). False Figure 3.1.1

c. dysuch that (Square(y) A RightOf(d, y)). True

d. 3z such that (Square(z) A Gray(z)). False

27
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3.2 Predicates and Quantified Statements |

28
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Negations of Quantified Statements: Negation of a Universal Statement

3.2.1. Negations of Quantified Statements

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form
VX€ED, P(x)
is logically equivalent to a statement of the form
dx€D such that ~P(x)
Symbolically,
~(Vx€ED, P(x)) = dx€D such that ~P(x)
That is, the negation of a universal statement (“all are”)

is logically equivalent to an existential statement (“some
are not” or “there is at least one that is not”).

29
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Negations of Quantified Statements: Negation of an Existential Statement

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form
dx€D such that P(x)
is logically equivalent to a statement of the form
VXxED, ~P(x)
Symbolically,
~(dx€D such that P(x)) = Vx€D, ~P(x)

That is, the negation of an existential statement (“some are”

is logically equivalent to a universal statement (“none are” or
“all are not”).

30
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Negations of Quantified Statements: Quick Quiz

Write formal negations for the following statements:
a. V primesp, pisodd.

dJa prime p such that p is not odd.
b. datriangle T such that the sum of the angles of T equals
200°.

V triangles T, the sum of the angles of T does not
equal 200°.

31
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Negations of Universal Conditional Statements

3.2.2. Negations of Universal Conditional Statements

Of special importance in mathematics.

~(Vx (P(x) = Q(x))) B 3x such that ~(P(x) > Q(x)) Y
~(P(x) > Qlx)) & Px) A ~Q(x) .. (B)

Substituting (B) into (A):

~(Vx (P(x) > Q(x))) B2 Ix such that (P(x) A ~Q(x))

32
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Negations of Universal Conditional Statements: Quick Quiz

Write a formal negation for statement (a) and an
informal negation for statement (b):

a. V peoplep, if pis blond then p has blue eyes.

da person p such that p is blond and p does not have
blue eyes.

b. If a computer program has more than 100,000 lines, then it
contains a bug.

There is at least one computer program that has
more than 100,000 lines and does not contain a bug.
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The Relation among V, 3, A, and v

3.2.3. The Relation among Vv, 4, A, and v

V 4=

" Analogous to De Morgan’s laws, which state that
the negation of an and statement is an or statement
and that the negation of an or statement is an and
statement.

= This similarity is not accidental. In a sense, universal
statements are generalizations of and statements,
and existential statements are generalizations of or
statements.

34
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The Relation among V, 3, A, and v

If Q(x) is a predicate and the domain D of x is the set
{X1, X, ..., x,}, then

Qx) A Qxy) A ... AQ(x,)

Similarly,

= alx) vak,) v ... valx,)

35
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Vacuous Truth of Universal Statements

3.2.4. Vacuous Truth of Universal Statements

=  Suppose a bowl sits on a table and next to the
bowl is a pile of five blue and five gray balls, any
of which may be placed in the bowl.

= |f three blue balls and one gray ball are placed in
the bowl, as shown in Figure 3.2.1(a), the
statement “All the balls in the bowl are blue”
would be false (since one of the balls in the bowl

is gray).

Figure 3.2.1(a)

=  Now suppose that no balls at all are placed in
the bowl, as shown in Figure 3.2.1(b).

=  Consider the statement: (@

All the balls in the bowl are blue.

Figure 3.2.1(b)

36
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Vacuous Truth of Universal Statements

=  Now, is the statement “All the balls in the bowl are blue” true or
false? o

* The statement is false if, and only if, its negation is true. Figure3.210)
= And its negation is: There exists a ball in the bowl that is not blue.

"= But the only way this negation can be true is for there
actually to be a non-blue ball in the bowl.

= And there is not! Hence the negation is false, and so the
statement is true “by default”.

In general, a statement of the form

Vx € D (P(x) = Q(x))
is called vacuously true or true by default
if, and only if, P(x) is false for every x in D.

37
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Vacuous Truth of Universal Statements

= A vacuous truth is a conditional or universal statement that is only
true because the hypothesis (antecedent) cannot be satisfied.

= For this reason, sometimes we say a statement is vacuously true
only because it does not really say anything.

Va € X, P(a) is vacuously true if X is an empty set.
(Eg: All mooloomeelees are mammals.)

Definition: A set A is a subset of set B, denoted as A € B,
if every element in A is an element in B.

Proof that the empty set @ is a subset of every set.
Proof: Since Vx, (x € @), the argument holds vacuously.
(Alternatively can prove by contradiction, but is longer.)

38
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Variants of Universal Conditional Statements

3.2.5. Variants of Universal Conditional Statements

We have known that a conditional statement has a
contrapositive, a converse, and an inverse.

The definitions of these terms can be extended to
universal conditional statements.

Definition 3.2.1 (Contrapositive, converse, inverse)

Consider a statement of the form: VxeD (P(x) = Q(x)).
1. Its contrapositive is: VxeD (~Q(x) = ~P(x)).

2. lts converse is: VxeD (Q(x) = P(x)).

3. ltsinverse is: VxeD (~P(x) = ~Q(x)).
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Variants of Universal Conditional Statements

Write a formal and an informal contrapositive, converse, and
inverse for the following statement:

If a real number is greater than 2, then its square is greater than 4.
The formal version: VxeR (x > 2 — x% > 4).

Contrapositive:  VxeR (x2<4 - x<2).

If the square of a real number is less than or equal to 4, then the number is
less than or equal to 2.

Converse: VxeR (x2>4 - x> 2).
If the square of a real number is greater than 4, then the number is greater
than 2.

Inverse:

VxelR (x <2 - x2<4).

If a real number is less than or equal to 2, then the square of the number is
less than or equal to 4.
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Variants of Universal Conditional Statements

Let P(x) and Q(x) be any predicates, let D be the domain of x,
and consider the statement:

VxeD (P(x) = Q(x))
and its contrapositive

VxeD (~Q(x) = ~P(x))

Any particular x in D that makes “P(x) = Q(x)” true also makes
“~Q(x) = ~P(x)” true (by the logical equivalence between p — ¢
and ~q — ~p).

It follows that “P(x) = Q(x)” is true for all x in D iff “~Q(x) — ~P(x)”
is true for all x in D.

VxeD (P(x) —» Q(x)) Bl VxeD (~Q(x) — ~P(x))

41
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Variants of Universal Conditional Statements

Consider the statement:

VxelR (x> 2 — x? > 4) True
and its converse

VxeR (x2>4 - x> 2) False
Consider another statement:

VxelR (even(x) - 2 [ x) True
and its converse

VxeR (2 | x = even(x)) True

A universal conditional statement is not logically
equivalent to its converse.

VxeD (P(x) —» Q(x)) E VxeD (Q(x)— P(x)) .
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Necessary and Sufficient Conditions, Only if

3.2.6. Necessary and Sufficient Conditions, Only if

The definitions of necessary, sufficient, and only if can
also be extended to apply to universal conditional
statements.

Definition 3.2.2 (Necessary and Sufficient conditions, Only if)

= “VXx, r(x) is a sufficient condition for s(x)” means
““x (r(x) = s(x))”.

= “Vx, r(x) is a necessary condition for s(x)” means
““x (~r(x) = ~s(x))” or, equivalently, “Vx (s(x) = r(x))”.
= “Vx, r(x) only if s(x)” means “Vx (~s(x) = ~r(x))” or,
equivalently, “Vx (r(x) — s(x))” .
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Necessary and Sufficient Conditions, Only if

Rewrite the following statements as quantified
conditional statements. Do not use the word necessary

or sufficient:
a. Squareness is a sufficient condition for rectangularity.
Vx, if x is a square, then x is a rectangle.

Informal: If a figure is a square, then it is a rectangle.

b. Being at least 35 years old is a necessary condition for being
President of the United States.

Vpeople x, if x is younger than 35, then x cannot be

President of the United States.

or
Vpeople x, if x is President of the United States, then

x is at least 35 years old.



Common beginners’ mistakes

A\

Given the following predicates:
" Bird(x): x is a bird
" Fly(x): x can fly
1. Write a quantified statement for the following sentence:

All birds can fly.

Answer: Why? Bird(x) is a predicate; it
. evaluates to true or false. This is
VX; Fly(Bl rd (X)) X like writing Fly(true) or Fly(false)!

. Why? This is saying everything
VX’ (Bll'd (X) A FIy(x)) x must be a bird and it flies!

vx, (Bird() > Fiy(x) ./
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Common beginners’ mistakes

A\

2. Write a quantified statement for the following sentence:

There is a bird that can fly.

Answer:

What if there are no birds at all?

3x s.t. (Bird(x) — Fly(x)) x
dx s.t. (Bird(x) A Fly(x)) \/
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Common beginners’ mistakes

A\

3. Write a quantified statement for the following sentence
(do not begin with negated quantifier, such as ~V or ~3):

Not all birds can fly.

Answer:
VX, (Bird(x) = ~Fly(x)) x

' ~ Again, what if th
dx s.t. (Bird(x) — ~Fly(x)) x Again, what I there

3x s.t. (Bird(x) A ~Fly(x)) \/

Check: From Q1, “all birds can fly” = “Vx, (Bird(x) — Fly(x))”.
~ “Not all birds can fly” = “~(Vx, (Bird(x) = Fly(x)))” = “~(Vx, (~Bird(x) V Fly(x)))”
= “Ix s.t. ~(~Bird(x) V Fly(x))” = “3Ax s.t. (Bird(x) A~Fly(x))”.

This means all birds can’t fly!
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3.3 Statements with Multiple Quantifiers

48
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Statements with Multiple Quantifiers

Consider the Tarski’s world again.

Show that the following statement is true:

For all triangles x, there is a square y such
that x and y have the same color.

The statement says that no matter which
triangle someone gives you, you will be :
able to find a square of the same color.

. . Figure 3.3.1
There are only 3 triangles d, f, and i.

Given x = choose y = and check that y is the same color as x.

d e yes *

fori horg yes *
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Statements with Multiple Quantifiers

3.3.1. Interpreting Multiply-Quantified Statements

If you want to establish the truth of a statement of the form:
VxeD, Ay€E such that P(x, y)

your challenge is to allow someone else to pick whatever
element x in D they wish and then you must find an element y
in £ that “works” for that particular x.

If you want to establish the truth of a statement of the form:
AxeD such that Vy€E, P(x, y)

your job is to find one particular x in D that will “work” no
matter what y in £ anyone might choose to challenge you
with.
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Interpreting Multiply-Quantified Statements

A college cafeteria line has four stations: salads, main
courses, desserts, and beverages.

The salad station offers a choice of green salad or fruit
salad; the main course station offers spaghetti or fish; the
dessert station offers pie or cake; and the beverage
station offers milk, soda, or coffee. Three students, Uta,
Tim, and Yuen, go through the line and make the
following choices:

= Uta: green salad, spaghetti, pie, milk

= Tim: fruit salad, fish, pie, cake, milk, coffee

" Yuen: spaghetti, fish, pie, soda
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Interpreting Multiply-Quantified Statements

These choices are illustrated in Figure 3.3.2.
Salads

green salad
fruit salad

Uta .
Main courses

spaghetti
A fish
Desserts
1pie
1cake

Tim €=

Yuen
Beverages

N milk
soda
coffee

Figure 3.3.2
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Interpreting Multiply-Quantified Statements

Write each of following statements

i 4 informally and find its truth value.
Sdlads

green salad
~fruit salad

a. dan item / such that V students S,
S chose /.

Uta « There is an item that was

Main courses )
chosen by every student. True (pie).

spaghetti
- fish b. 3 a student S such that V items /, S
Desserts chose /.

Tim <

1 pie There is a student who
| cake chose every available item. False.

Yuen o :
Beverages c. d a student S such that V stations

“Nmilk Z,d anitem I in Z such that S chose
__|soda l.
N coffee

There is a student who chose at
least one item from every

Figure 3.3.2 station.  True (Uta and Tim).

d. V students S and V stations Z, 3 an
item /in Z such that S chose /.

For all students and stations, there is an item

such that every student chose that item.
& False. 53



Predicates & Quantified Statement | / II Statements with Multiple Quantifiers Arguments with Quantified Statements
oNoloNoNoNoNONO) (ool oNoNON®) (o} NeoNoNeolNoNe oJolNoNoNoNoNoXoNO

Translating from Informal to Formal Language

3.3.2. Translating from Informal to Formal Language

Most problems are stated in informal language, but solving them
often requires translating them into more formal terms.

Example: The reciprocal of a real number g is a real number b
such that ab = 1. The following 2 statements are true. Rewrite
them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.
Y nonzero real numbers u, 9 a real number v such that uv = 1.

b. Thereis areal number with no reciprocal.
4 a real numbers c such that V real number d, cd = 1.
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Ambiguous Language

3.3.3. Ambiguous Language

You are visiting a computer microchips factory. The factory guide

tells you:
There is a person supervising every detail of the

production process.

“there is” — existential quantifier; “every” — universal quantifier.

Which of the following best describes its meaning?

= There is one single person who supervises all the details of the
production process.

" For any particular production detail, there is a person who
supervises the detail, but there might be different supervisors
for different details.
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Ambiguous Language

Once you interpreted the sentence in one way, it may have been
hard for you to see that it could be understood in the other way.

Perhaps you had difficulty even though the two possible
meanings were explained.

Although statements written informally may be open to multiple
interpretations, we cannot determine their truth or falsity
without interpreting them one way or another.

Therefore, we have to use context to try to ascertain
their meaning as best we can.
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Order of Quantifiers

3.3.5. Order of Quantifiers

Context as the scope of variable!

Vx eEX3Ay eY P(x,y) Jy eYVx € X P(x,y)

for x in X: y <- choice(Y)
y <- choice(Y) for x in X:
P(x, y) P(x, Y)

They are not same!!!
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Negations of Multiply-Quantified Statements

3.3.4. Negations of Multiply-Quantified Statements

EIENHRIIE WA ~(\V/xED, P(x)) = 3xED such that ~P(x)

~(dx€D such that P(x)) = Vx€D, ~P(x)

(A) So, to find: ~(Vx€D, Iy€EE such that P(x, y))
=» 3x€D such that ~(3y€EE such that P(x, y))
=» 3x€ED such that Vy€e€E, ~P(x, y).

~(Vx € D, Ay€E such that P(x, y)) BBl 3Ix€D such that VyEE, ~P(x, y)

(B) Similarly, to find: ~(3Ix€D such that Vy€E, P(x, y))
2 VxeD, ~(Vy€E, P(x, y))
=>» Vx€ED, y€EE such that ~P(x, y).

~(3Ax€ED such that Vy€ E, P(x, y)) =8 Vx€D, Jy€EE such that ~P(x, y)
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Negations of Multiply-Quantified Statements

Refer to the Tarski’s world of Figure 3.3.1
again.

Write a negation for each of the
following statements, and determine
which is true, the given statement or

its negation.
a. Forall squares x, thereis a circle y ;
such that x and y have the same color. Figure 3.3.1
Negation:
4 a square x such that ~(d a circle y such that x and y have the
same color)

=>» 3 a square x such that V circles y, x and y do not have the

same color. TRUE (Square e is black and no circle is black).
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Negations of Multiply-Quantified Statements

Refer to the Tarski’s world of Figure 3.3.1
again.

Write a negation for each of the
following statements, and determine
which is true, the given statement or
its negation.

b. Thereis a triangle x such that for all i
squares y, x is to the right of y. Figure 3.3.1

Negation:
V triangles x, ~(V squares y, x is to the right of y)
=>» V triangles x, 3 a square y such that x is not to the right of y.

TRUE (No matter what triangle is chosen, it is
not to the right of square g or square j).
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Order of Quantifiers

3.3.5. Order of Quantifiers

V people x, 3 a person y such that x loves y.

3 a person y such that V people x, x loves y.

A
Except fonthe order of the quantifiers,
these statgments are identical.
Given any person, it is possible to find
someone whom that person loves.
They are not There is one amazing individual

logically who is loved by all people!
equivalent!
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Order of Quantifiers

In a statement containing both V and 5,
changing the order of the quantifiers usually
changes the meaning of the statement.

However, if one quantifier immediately follows
another quantifier of the same type, then the order
of the quantifiers does not affect the meaning.

Examples:
" Vx Vyisequivalent to Vy Vx (likewise for 3)
" Vx Vy may be written as Vx,y (likewise for 3)
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Order of Quantifiers

Refer to the Tarski’s world of Figure 3.3.1. What are the truth
values of the following two statements? o

a. For every square x, there is a triangle y
such that x and y have different colors. ’ ° A

TRUE B / .

b. There exists a triangle y such that for :
every square x, x and y have different
colors.

Figure 3.3.1
FALSE
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Formal Logical Notation

3.3.6. Formal Logical Notation

In some areas of computer science, logical statements
are expressed in purely symbolic notation.

The notation involves using predicates to describe all
properties of variables and omitting the words such as in
existential statements.

“Vx €D, P(x)” written as R4V E=RE=N=0Y)

“x e D s/ug:h that P(x)” written as B=RECE=EPINZ4)

We will follow this way of writing.
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Formal Logical Notation: Formalizing Statements in a Tarski’s World

Example:

=  Tarski’s world.

= Let the common domain D of all variables be the set of all the
objects in the Tarski’s world.

Triangle(x): “x is a triangle” | | Blue(x): “x is blue”
Circle(x): “x is a circle” Gray(x): “x is gray”
Square(x): “x is a square” Black(x): “x is black”

RightOf(x,y): “x is to the right of y”
Above(x,y): “x is above y”

SameColorAs(x,y): “x has the same color as y”
x=y: “xis equal to y”
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Formal Logical Notation: Formalizing Statements in a Tarski’s World

Use formal, logical notation to write the following statements,
and write a formal negation for each statement.

a. Forallcircles x, x is above f.
Statement:  Vx (Circle(x) — Above(x, f))

Negation: ~(Vx (Circle(x) —> Above(x, f)))
= dx ~(Circle(x) —»> Above(x, f)) = dx (Circle(x) A ~“Above(x, f))
b. There is a square x such that x is black.

Statement:  dx (Square(x) A Black(x))

Negation: ~(dx (Square(x) A Black(x)))
= Vx ~(Square(x) A Black(x)) = Vx (~Square(x) v ~Black(x))
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Formal Logical Notation: Formalizing Statements in a Tarski’s World

Use formal, logical notation to write the following statements,
and write a formal negation for each statement.

c. Forallcircles x, there is a square y such that x and y have the
same color.

Statement:  Vx(Circle(x) — dy(Square(y) A SameColor(x, y)))
Negation:  ~(Vx(Circle(x) — 3y(Square(y) A SameColor(x, y))))

= dx ~(Circle(x) > Jy(Square(y) A SameColor(x, y)))
= dx (Circle(x) A ~(3y (Square(y) A SameColor(x, y))))

dx (Circle(x) A Vy (~(Square(y) A SameColor(x, y))))

dx (Circle(x) A Vy (~“Square(y) v ~SameColor(x, y)))
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Formal Logical Notation: Formalizing Statements in a Tarski’s World

Use formal, logical notation to write the following statements,
and write a formal negation for each statement.

d. There is a square x such that for all triangles y, x is to right of y.

Statement:  dx (Square(x) A Vy (Triangle(y) — RightOf(x, y)))
Negation: ~(3x (Square(x) A Yy (Triangle(y) — RightOf(x, y))))

= Vx ~(Square(x) A Yy (Triangle(y) — RightOf(x, y)))
= Vx (~Square(x) v ~(Vy (Triangle(y) — RightOf(x, y))))

Vx (~Square(x) v 3y (~(Triangle(y) — RightOf(x, y))))

Vx (~ Square(x) v Ay (Triangle(y) A ~“RightOf(x, y)))
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Formal Logical Notation

Formal logical notation is used in branches of computer
science such as artificial intelligence, program
verification, and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables,
predicates, and logical connectives make up what is
known as the language of first-order logic.

Even though this language is simpler in many respects
than the language we use every day, learning it requires
the same kind of practice needed to acquire any foreign

language.
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Prolog

3.3.7. Prolog (Only for your reading)

The programming language Prolog (short for programming in logic)
was developed in France in the 1970s by A. Colmerauer and P.
Roussel to help programmers working in the field of artificial
intelligence.

A simple Prolog program consists of a set of statements describing
some situation together with questions about the situation. Built
into the language are search and inference techniques needed to
answer the questions by deriving the answers from the given
statements.

This frees the programmer from the necessity of having to write
separate programs to answer each type of question.
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Prolog: A Prolog Program

Consider the following picture, which shows colored blocks
stacked on a table.

g wH g | = gray block b5 | = blue block 3
b by b, |=blue block I w; | = white block 1
w bs by |=blueblock2 | w, |=whiteblock 2

The following are statements in Prolog that describe this picture
and ask two questions about it.
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Prolog: A Prolog Program

8 W)
isabove(g, b,) color(g, gray) color(b,, blue) b, b,
isabove(b,, w,)  color(b,, blue) color(w,, white) | - " ”
isabove(w,, b,)  color(b,, blue) color(w,, white)

isabove(b,, b;)  isabove(X, Z) if isabove(X, Y) and isabove(Y, 2)
?color(b,, blue) ?isabove(X, w,)

The statements “isabove(g, b,)” and “color(g, gray)” are to be
interpreted as “g is above b,” and “g is colored gray”.

The statement “isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)” is
to be interpreted as “For all X, Y, and Z, if X is above Yand Yis
above Z, then X is above 2.
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Prolog: A Prolog Program

The program statement
?color(b,, blue) Prolog answers this by writing

is a question asking whether Yes
block b, is colored blue.

The program statement Prolog answers this by giving a
?isabove(X, w,) list of all such blocks. In this

is a question asking for which case, the answer is

blocks X the predicate “X is X=b,, @

above w,” is true.. /

Infer the solution X = g from the following statements:
= isabove(g, b,)
= isabove(b,, w,)
= jsabove(X, Z) if isabove(X, Y) and isabove(Y, 2) .
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Prolog: Quick Quiz

Write the answers Prolog would give if the following

guestions were added to the program above. . "
a. ?Pisabove(b,, w,) “No”

b, b,
b. ?color(w,, X)  “X=white” w) bs
c. ?color(X, blue) “X=b,", “X=b,", “X=b;" “
isabove(g, b,) color(g, gray) color(b,, blue)
isabove(b,, w,) color(b,, blue) color(w,, white)
isabove(w,, b,) color(b,, blue) color(w,, white)
isabove(b,, b;)  isabove(X, Z) if isabove(X, Y ) and isabove(Y, Z)
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3.4 Arguments with Quantified Statements
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Universal Instantiation

3.4.1. Universal Instantiation

The rule of universal instantiation:

If some property is true of everything in the set,
then it is true of any particular thing in the set.

Universal instantiation is the fundamental tool of
deductive reasoning.
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Universal Modus Ponens

3.4.2. Universal Modus Ponens

The rule of universal instantiation can be combined with
modus ponens to obtain the valid form of argument
called universal modus ponens.

Universal Modus Ponens

Formal version Informal version
Vx (P(x) = Q(x)). If x makes P(x) true, then x makes Q(x) true.
P(a) for a particular a. a makes P(x) true.
e Q(a). e g makes Q(x) true.
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Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables,
and predicate symbols. Is this argument valid? Why?

If an integer is even, then its square is even.
k is a particular integer that is even.
e k?iseven.

Solution:
Premise: \/x if x is an even integer then x? is even.

Let E(x) be “x is an even integer”, let S(x) be “x? is even”, and
let k stand for a particular integer that is even.

Vx (E(x) = S(x)). This argument has the form of
E(k), for a particular k. universal modus ponens and
o S(k). is therefore valid.
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Use of Universal Modus Ponens in a Proof

3.4.3. Use of Universal Modus Ponens in a Proof

Proof: The sum of any two even integers is even.

Yintegers x, x is even iff 4 an integer k such that x = 2k.

Suppose m and n are particular but arbitrarily chosen
even integers, then m = 2r for some integer '), and n =
2s for some integer s{2).

Hence
m+n=2r+2s=2(r+s)®

Now (r + s) is an integer®), and so 2(r + s) is even®).
Thus m + n is even.
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Use of Universal Modus Ponens in a Proof

How universal modus ponens is used in the proof.

Suppose m and n are particular but arbitrarily chosen
even integers, then m = 2r for some integer '), and n =
2s for some integer s'2).

(1) If aninteger is even, then it equals twice some integer.
m is a particular even integer.
e m equals twice some integer r.

(2) Similar to (1).
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Use of Universal Modus Ponens in a Proof

How universal modus ponens is used in the proof.

Hence
m+n=2r+2s=2(r+s)

(3) If a quantity is an integer, then it is a real number.

rand s are particular integers. We want to show that if r and s are

e r and s are real numbers. integers, then they are real numbers,
so that we can apply distributive law

below (Appendix A, F3), which are
meant for real numbers.

For all a, b, and ¢, if g, b, and c are real numbers, then
ab +ac=a(b + c).
2, r, and s are particular real numbers.

® 2r+2s=2(r+s). .
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Use of Universal Modus Ponens in a Proof

How universal modus ponens is used in the proof.
Now (r + s) is an integer®), and so 2(r + s) is even®).
Thus m + nis even.

(4) Forall uand v, if uand v are integers, then (u + v) is an integer.
r and s are two particular integers.
e (r+s)is an integer.

(5) If a number equals twice some integer, then that number is
even.

2(r + s) equals twice the integer (r + s).

e 2(r+s)is even.
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Universal Modus Tollens

3.4.4. Universal Modus Tollens

Another crucially important rule of inference is universal
modus tollens. Its validity results from combining
universal instantiation with modus tollens.

Universal modus tollens is the heart of proof of
contradiction.

Universal Modus Tollens

Formal version Informal version
Vx, (P(x) = Q(x)). If x makes P(x) true, then x makes Q(x) true.
~Q(a) for a particular a. a does not make Q(x) true.
e ~P(a). e g does not makes P(x) true.
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Recognizing Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and
predicate symbols. Write the major premise in conditional form.
Is this argument valid? Why?

All human beings are mortal.
Zeus is not mortal.
e Zeus is not human.

Solution:
Premise: v, if x is human then x is mortal.

Let H(x) be “x is human”, let M(x) be “x is mortal”, and let Z
stand for Zeus.

Vx (H(x) = M(x)). This argument has the form of
~M(2). universal modus tollens and is
e “H(2). therefore valid.
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Proving Validity of Arguments with Quantified Statements

3.4.5. Proving Validity of Arguments with Quantified Statements

The intuitive definition of validity for arguments with
guantified statements is the same as for arguments with
compound statements.

An argument is valid if, and only if, the truth of its conclusion
follows necessarily from the truth of its premises.

Definition 3.4.1 (Valid Argument Form)

To say that an argument form is valid means the following:
No matter what particular predicates are substituted for the
predicate symbols in its premises, if the resulting premise
statements are all true, then the conclusion is also true.

An argument is called valid if, and only if, its form is valid.
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Using Diagrams to Test for Validity

3.4.6. Using Diagrams to Test for Validity

Consider the statement: All integers are rational numbers.

Yintegers n, n is a rational number.

rational numbers

Figure 3.4.1
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Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following

argument: .
All human beings are mortal.

Felix is mortal.
e Felix is a human being.

Major premise Minor premise

mortals

mortals
human beings
® Felix

Figure 3.4.4

87



Predicates & Quantified Statement | / Il Statements with Multiple Quantifiers ~ Arguments with Quantified Statements
oNoloNoNoNoNONO) (ool oNoNON®) (eNolNoNoNoNoNG oJoloNoNoN NeoXoNeo

Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following

argument: .
All human beings are mortal. Hence,

Felix is mortal. argument
e Felix is a human being. is invalid.

Conclusion
\ is false.

Conclusion
Is true.

mortals

mortals

human beings

human beings

~ @ Felix

(a) (b)
Figure 3.4.5
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Using Diagrams to Test for Validity

The argument of previous example would be valid if the
major premise were replaced by its converse. But since a
universal conditional statement is not logically equivalent to

its converse, such a replacement cannot, in general, be
made.

We say that this argument exhibit the converse error.

Converse Error (Quantified Form)

Formal version Informal version
Vx (P(x) = Q(x)). If x makes P(x) true, then x makes Q(x) true.
Q(a) for a particular a. a makes Q(x) true.
¢ P(a). e a makes P(x) true.
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Using Diagrams to Test for Validity

The following form of argument would be valid if a

conditional statement were logically equivalent to its inverse.
But it is not, and the argument form is invalid.

We say that this argument exhibit the inverse error.

Inverse Error (Quantified Form)

Formal version Informal version
Vx (P(x) = Q(x)). If x makes P(x) true, then x makes Q(x) true.
~P(a) for a particular a. a does not make P(x) true.
e ~Q(a).

e g does not make Q(x) true.
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An Argument with “No”

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.
e This function is not a polynomial function.

Hence argument
is valid.

functions with

polynomial functions horizontal asymptotes

® this function /

Figure 3.4.6
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An Argument with “No”

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.
e This function is not a polynomial function.

Alternatively, transform the first statement into:

Vx, if x is a polynomial function, then x does not have
a horizontal asymptote.

Then the argument has the form:

Vx (P(x) = Q(x)).
~Q(a), for a particular a.
e ~P(a).

This is valid by universal
modus tollens.
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Creating Additional Forms of Argument

3.4.7. Creating Additional Forms of Argument

We have seen:

Universal Universal
Modus ponens + . e
instantiation modus ponens
Universal Universal
Modus tollens + . .
instantiation modus tollens

In the same way, additional forms of arguments involving
universally quantified statements can be obtained by
combining universal instantiation with other of the valid
argument forms discussed earlier.
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Creating Additional Forms of Argument

Consider the following argument:

pP— q
qg—r
e p—>r

This can be combined with universal instantiation to
obtain a valid argument form.

Universal Transitivity

Formal version Informal version
Vx (P(x) — Q(x)). Any x that makes P(x) true makes Q(x) true.
Vx (Q(x) = R(x)). Any x that makes Q(x) true makes R(x) true.

o Vx (P(x) — R(x)). e Any x that makes P(x) true makes R(x) true.
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Evaluating an Argument for Tarski’s World

Consider the Tarski’s world:

Reorder and rewrite the premises to
show that the conclusion follows as a
valid consequence from the premises

All the triangles are blue. i

2. If an object is to the right of all the Figure 3.3.1
squares, then it is above all the circles.

3. If an object is not to the right of all the
squares, then it is not blue.

e All the triangles are above all the circles.
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Evaluating an Argument for Tarski’s World

Consider the Tarski’s world:

Reorder and rewrite the premises to
show that the conclusion follows as a
valid consequence from the premises

Step 1:
1. Vx, if xis a triangle, then x is blue. i
2. Vx, if xis to the right of all the squares, Figure 3.3.1
then x is above all the circles. >
3. Vx, if xis not to the right of all the
squares, then x is not blue. Should be same as

. : : — conclusion of the
e |V, if xis atriangle/|then x is above all “— .
: ~— last premise.
the circles. Should be same as hypothesis

of the first premise. o



Predicates & Quantified Statement | / II Statements with Multiple Quantifiers ~ Arguments with Quantified Statements
oNoloNoNoNoNONO) (ool oNoNON®) (eNolNoNoNoNoNG oJoloNoNoNoN JNoNo

Evaluating an Argument for Tarski’s World

Consider the Tarski’s world:

Reorder and rewrite the premises to
show that the conclusion follows as a
valid consequence from the premises

Step 2:

1. Vx, if xis a triangle, then x is blue. ;

2. VY, if xis not to the right of all the Figure 3.3.1
squares, then x is not blue. ‘\

3. Vx, if xis to the right of all the squares, Rewrite it in

then x is above all the circles. contrapositive form.

e VX, if xisatriangle, then x is above all
the circles.
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Evaluating an Argument for Tarski’s World

Consider the Tarski’s world:

Reorder and rewrite the premises to
show that the conclusion follows as a
valid consequence from the premises

Step 3:
1. Vx, if xis a triangle, then x is blue. i
2. Vx, if xis blue, then x is to the right of Figure 3.3.1

all the squares.
3. Vx, if xis to the right of all the squares,

then x is above all the circles. v
e VX, if xisatriangle, then x is above all
the circles.
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Remark on the Converser and Inverse Errors

3.4.8. Rules of Inference for Quantified Statements

Vx € D P(x)
~ P(a)ifa€eD
P(a) foreverya € D
. Vx € D P(x)

dx € D P(x)
~ P(a) forsomea € D

P(a) forsomea € D
s~ dx € D P(x)

Universal instantiation

Universal generalization

Existential instantiation

Existential generalization

99



Predicates & Quantified Statement | / Il Statements with Multiple Quantifiers ~ Arguments with Quantified Statements
oNoloNoNoNoNONO) (ool oNoNON®) (eNolNoNoNoNoNG oJolNoNoNoNoNoXOX |

Remark on the Converser and Inverse Errors

Only for
reading.

3.4.9. Remark on the Converse and Inverse Errors

A variation of the converse error is a very useful reasoning tool,
provided that it is used with caution.

It is the type of reasoning that is used by doctors to make medical
diagnoses and by auto mechanics to repair cars.

It is the type of reasoning used to generate explanations for
phenomena. It goes like this: If a statement of the form

For all x (P(x) — Q(x))
is true, and if

Q(a) is true, for a particular g,
then check out the statement P(a); it just might be true.
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Remark on the Converser and Inverse Errors

Only for

, reading.
For instance, suppose a doctor knows that

For all x, if x has pneumonia, then x has a fever and

chills, coughs deeply, and feels exceptionally tired
and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of
pneumonia is a strong possibility, though not a certainty.

This form of reasoning has been named abduction by
researchers working in artificial intelligence.
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