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3. The Logic of Quantified Statements

3.1 Predicates and Quantified Statements I
• Predicate; domain; truth set
• Universal quantifier , existential quantifiers  and !
• Universal conditional statements; Implicit quantification

3.2 Predicates and Quantified Statements II
• Negation of quantified statements; negation of universal conditional statements
• Vacuous truth of universal statements
• Variants of universal conditional statements  (contrapositive, converse, inverse)
• Necessary and sufficient conditions, only if

3.3 Statements with Multiple Quantifiers
• Negations of multiply-quantified statements; order of quantifiers
• Prolog

3.4 Arguments with Quantified Statements
• Universal instantiation; universal modus ponens; universal modus tollens

Predicates & Quantified Statement I / II Statements with Multiple Quantifiers Arguments with Quantified Statements

Reference: Epp’s Chapter 3 The Logic of Quantified Statements
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3.1 Predicates and Quantified Statements I
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Proposition and Predicate

In the previous lecture, we introduced statements (or 
propositions). A statement (or proposition) can be true 
or false, but not both.
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Proposition and Predicate

Examples:
 2 +  3 =  5

 5 < 2

What about these?
 𝑥 +  3 =  5

 𝑛 < 2

A statement’s (or proposition’s) truth value does not 
depend on any variables. A predicate’s truth value 
depends on the variable(s) in it.
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Predicates and Quantified Statements I

In logic, predicates can be obtained by removing some 
or all of the nouns from a statement. For instance, let P
stand for “is a student at NUS” and let Q stand for “is a 
student at.” Then both P and Q are predicate symbols.
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3.1.1. Predicates and Quantified Statements I

Predicate variables:

When concrete values are substituted in place of 
predicate variables, a statement results.

P(x) = “x is a student at NUS”
Q(x, y) = “x is a student at y”
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Predicates and Quantified Statements I

For simplicity, we define a predicate to be a predicate 
symbol together with suitable predicate variables.
In some treatments of logic, such objects are referred 
to as propositional functions or open sentences.
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Definition 3.1.1 (Predicate)

A predicate is a sentence that contains a finite number of 
variables and becomes a statement when specific values are 
substituted for the variables.
The domain of a predicate variable is the set of all values 
that may be substituted in place of the variable. 

“Domain” may also be known as “domain of discourse”, “universe of 
discourse”, “universal set”, or simply “universe”. The last three 
terms are usually used in set theory.
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Predicates and Quantified Statements I

When an element in the domain of the variable of a 
one-variable predicate is substituted for the variable, 
the resulting statement is either true or false. The set 
of all such elements that make the predicate true is 
called the truth set of the predicate.
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Definition 3.1.2 (Truth set)

If P(x) is a predicate and x has domain D, the truth set is the 
set of all elements of D that make P(x) true when they are 
substituted for x.
The truth set of P(x) is denoted {x  D | P(x)}.

In set theory, the symbol | is used to mean “such that”.
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Predicates and Quantified Statements I: Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.”
Find the truth set of Q(n) if
a. the domain of n is the set ℤା.

b. the domain of n is the set ℤ.

8


{1, 2, 4, 8} because these are exactly the 
positive integers that divide 8 evenly.

{1, 2, 4, 8, -1, -2, -4, -8}
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The Universal Quantifier: 

One sure way to change predicates into statements is 
to assign specific values to all their variables.
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3.1.2. The Universal Quantifier: 

Example: If x represents the number 35, the 
sentence “x is divisible by 5” is a true 
statement.

Another way to obtain statements from predicates is 
to add quantifiers.
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The Universal Quantifier: 

Quantifiers are words that refer to quantities such as 
“some” or “all” and tell for how many elements a 
given predicate is true.
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The symbol  denotes “for all” (or “for any”, “for 
every”, “for each”) and is called the universal quantifier.

Definition 3.1.3 (Universal Statement)

Let Q(x) be a predicate and D the domain of x. A universal 
statement is a statement of the form “xD, Q(x)”.
 It is defined to be true iff Q(x) is true for every x in D.
 It is defined to be false iff Q(x) is false for at least one x in D.
A value for x for which Q(x) is false is called a counterexample.
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The Universal Quantifier: Truth and Falsity of Universal Statements
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Truth and Falsity of Universal Statements
a. Let D = {1, 2, 3, 4, 5}, and consider the statement

xD (x2  x).
Show that this statement is true.

Check that “x2  x” is true for each x in D.
12  1, 22  2, 32  3, 42  4, 52  5.

Hence “xD (x2  x)” is true.

This method is called the method of exhaustion.
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The Universal Quantifier: Truth and Falsity of Universal Statements
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Truth and Falsity of Universal Statements
b. Consider the statement

xℝ (x2  x).
Find a counterexample to show that this statement 
is false.



Take x = ½. Then x is in ℝ and
(½)2 = ¼  ½ .

Hence “xℝ (x2  x)” is false.
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The Existential Quantifiers: : 

Example: “There is a student in CS1231S” can be written as
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3.1.3. The Existential Quantifier: 

 a person p such that p is a student in CS1231S.

Or, more formally,
p P such that p is a student in CS1231S.

where P is the set of all people.

 The words such that are inserted just before the predicate. If 
the context is clear, sometimes the abbreviation s.t. is used.

 Some alternative expressions for “there exists” are “there is 
a”, “we can find a”, “there is at least one”, “for some”, and “for 
at least one”. 
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The Existential Quantifier: 

Sentences that are quantified existentially are defined 
as statements by giving them the truth values 
specified in the following definition.
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Definition 3.1.4 (Existential Statement)

Let Q(x) be a predicate and D the domain of x. An existential 
statement is a statement of the form “xD such that Q(x)”.
 It is defined to be true iff Q(x) is true for at least one x in D.
 It is defined to be false iff Q(x) is false for all x in D.
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The Existential Quantifier: Truth and Falsity of Existential Statements
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Truth and Falsity of Existential Statements
a. Show that the following statement is true.

mℤା such that m2 = m.

b. Let E = {5, 6, 7, 8}. Show that the following statement is false.
mE such that m2 = m.

Observe that 12 = 1. Thus “m2 = m” is true for at least one 
integer m. Hence “mℤା such that m2 = m” is true.

Note that m2 = m is not true for any integer m from 5 
through 8: 52 = 25  5, 62 = 36  6, 72 = 49  7,

82 = 64  8.
Hence “mE such that m2 = m” is false.
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The Existential Quantifier: : !
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3.1.3. The Existential Quantifier: !

The symbol ! is used to denote “there exists a unique” 
or “there is one and only one”.
Example: ∃! 𝑥 ∈ ℤା such that 𝑥 is even and prime.

Can we re-write this using quantifiers and logical connectives?
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Formal Versus Informal Language

Rewrite the following formal statements in a variety of 
equivalent but more informal ways. Do not use the 
symbol  or .
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3.1.4. Formal Versus Informal Language

a. xℝ, x2  0.
 All real numbers have non-negative squares.
 Every/Any real number has a non-negative square.

b. xℝ, x2  -1.  All real numbers have squares that are not -1.
 No real numbers have squares equal to -1.

c. mℤା such that m2 = m.
 There is a positive integer whose square is itself.
 Some positive integer equals its own square.

With experience, you may omit commas and “such that”.
Eg: “xℝ x2  0”, “xℝ (x2  0)”, “mℤା m2 = m”.
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Universal Conditional Statements

A reasonable argument can be made that the most 
important form of statement in mathematics is the 
universal conditional statement:
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3.1.5. Universal Conditional Statements

Familiarity with statements of this form is essential if 
you are to learn to speak mathematics.

x (if P(x) then Q(x)). 

x (P(x) → Q(x)). 
or
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Equivalent Forms of Universal and Existential Statements
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3.1.6. Equivalent Forms of Universal and Existential Statements

 real numbers x, if x is an 
integer then x is rational.

 integers x, x is rational.

Are these two statements the same?



Yes, they have the same 
informal translation: All integers are rational.
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Equivalent Forms of Universal and Existential Statements
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xU (P(x) → Q(x)) xD, Q(x) 

By narrowing U to be the domain D consisting of 
all values of the variable x that make P(x) true,



Rewrite the statement “All squares are rectangles” in 
the two forms:
 x, (if                               then                                 ).

  x,                                               .

x is a square x is a rectangle

squares x is a rectangle
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Equivalent Forms of Universal and Existential Statements
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Similarly, 
xU such that (P(x) and Q(x)) 

xD such that Q(x) 

where D is the set of all x for which P(x) is true.
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Equivalent Forms of Universal and Existential Statements
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A prime number is an integer whose only positive 
integer factors are itself and 1. Consider the statement 

“There is an integer that is both prime and even.” 

Let Prime(n) be “n is prime” and Even(n) be “n is even”. 
Use the notation Prime(n) and Even(n) to rewrite this 
statement into the following two forms:

a. n such that (                         ).

b.  n such that                      .



Prime(n) Even(n)

an even number Prime(n)
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Implicit Quantification

Mathematical writing contains many examples of implicitly 
quantified statements. Some occur, through the presence 
of the word a or an. Others occur in cases where the 
general context of a sentence supplies part of its meaning.
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3.1.7. Implicit Quantification

For example, in an algebra course in which the letter x is 
always used to indicate a real number, the predicate

If x > 2 then x2 > 4
is interpreted to mean the same as the statement

 real numbers x, (if x > 2 then x2 > 4).
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Tarski’s World

Tarski’s World is a computer program developed by 
information scientists Jon Barwise and John 
Etchemendy to help teach the principles of logic.

24

3.1.8. Tarski’s World

It is described in their book The Language of First-
Order Logic, which is accompanied by a CD-ROM 
containing the program Tarski’s World, named after 
the great logician Alfred Tarski.
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Tarski’s World

The program for Tarski’s World provides pictures of 
blocks of various sizes, shapes, and colors, which are 
located on a grid. 
 Shown in Figure 3.1.1 is a picture of an arrangement of 

objects in a two-dimensional Tarski world.

25Figure 3.1.1
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Tarski’s World

The configuration can be described using logical 
operators and — for the two-dimensional version —
notation such as:
 Triangle(x), meaning “x is a triangle,”
 Blue(y), meaning “y is blue,” and 
 RightOf(x, y), meaning “x is to the right of y (but 

possibly in a different row).” 
Individual objects can be given names such as a, b, or c. 
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Tarski’s World

Determine the truth or falsity of the 
following statements. The domain for 
all variables is the set of objects in 
the Tarski’s world shown on the right.
a. ∀t (Triangle(t) → Blue(t)).

b. ∀x (Blue(x) → Triangle(x)). 

27


True

False

True

False

Figure 3.1.1

c. ∃y such that (Square(y) ∧ RightOf(d, y)).

d. ∃z such that (Square(z) ∧ Gray(z)).
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3.2 Predicates and Quantified Statements II
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Negations of Quantified Statements: Negation of a Universal Statement
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3.2.1. Negations of Quantified Statements

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form
x∈D, P(x)

is logically equivalent to a statement of the form
x∈D such that ~P(x)

Symbolically, 
~(x∈D, P(x))  x∈D such that ~P(x)

That is, the negation of a universal statement (“all are”) 
is logically equivalent to an existential statement (“some 
are not” or “there is at least one that is not”).
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Negations of Quantified Statements: Negation of an Existential Statement
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Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form
x∈D such that P(x)

is logically equivalent to a statement of the form
x∈D, ~P(x)

Symbolically, 
~(x∈D such that P(x))  x∈D, ~P(x)

That is, the negation of an existential statement (“some are”) 
is logically equivalent to a universal statement (“none are” or 
“all are not”).
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Negations of Quantified Statements: Quick Quiz
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

Write formal negations for the following statements:
a.  primes p, p is odd.

b.  a triangle T such that the sum of the angles of T equals 
200.

a prime p such that p is not odd.

 triangles T, the sum of the angles of T does not 
equal 200.
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Negations of Universal Conditional Statements
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3.2.2. Negations of Universal Conditional Statements

Of special importance in mathematics.

Substituting (B) into (A):

… (A)~(x (P(x)  Q(x))) ≡ x such that ~(P(x)  Q(x))   

… (B)~(P(x)  Q(x)) ≡ P(x)  ~Q(x)   

~(x (P(x)  Q(x))) ≡ x such that (P(x)  ~Q(x))   
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Negations of Universal Conditional Statements: Quick Quiz
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

Write a formal negation for statement (a) and an 
informal negation for statement (b):
a.  people p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines, then it 
contains a bug.

a person p such that p is blond and p does not have 
blue eyes.

There is at least one computer program that has 
more than 100,000 lines and does not contain a bug.
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The Relation among , , , and 

34

3.2.3. The Relation among , , , and 

 Analogous to De Morgan’s laws, which state that 
the negation of an and statement is an or statement 
and that the negation of an or statement is an and
statement.

 This similarity is not accidental. In a sense, universal 
statements are generalizations of and statements, 
and existential statements are generalizations of or 
statements.

Negate
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The Relation among , , , and 
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If Q(x) is a predicate and the domain D of x is the set 
{x1, x2 ,…, xn}, then

Similarly,

xD, Q(x) Q(x1)  Q(x2)   Q(xn)≡

xD, Q(x) ≡ Q(x1)  Q(x2)   Q(xn)
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Vacuous Truth of Universal Statements
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3.2.4. Vacuous Truth of Universal Statements

 Suppose a bowl sits on a table and next to the 
bowl is a pile of five blue and five gray balls, any 
of which may be placed in the bowl.

 If three blue balls and one gray ball are placed in 
the bowl, as shown in Figure 3.2.1(a), the 
statement “All the balls in the bowl are blue” 
would be false (since one of the balls in the bowl 
is gray).

Figure 3.2.1(a)

 Now suppose that no balls at all are placed in 
the bowl, as shown in Figure 3.2.1(b).

 Consider the statement: 

All the balls in the bowl are blue.
Figure 3.2.1(b)
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Vacuous Truth of Universal Statements
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 Now, is the statement “All the balls in the bowl are blue” true or 
false? 

 The statement is false if, and only if, its negation is true.
 And its negation is: There exists a ball in the bowl that is not blue.

 But the only way this negation can be true is for there 
actually to be a non-blue ball in the bowl.

 And there is not! Hence the negation is false, and so the 
statement is true “by default”.

In general, a statement of the form
x ∈ D (P(x) → Q(x))

is called vacuously true or true by default 
if, and only if, P(x) is false for every x in D.

Figure 3.2.1(b)
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Vacuous Truth of Universal Statements
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 A vacuous truth is a conditional or universal statement that is only 
true because the hypothesis (antecedent) cannot be satisfied.

 For this reason, sometimes we say a statement is vacuously true 
only because it does not really say anything.

∀𝑎 ∈ 𝑋, 𝑃(𝑎) is vacuously true if 𝑋 is an empty set. 
(Eg: All mooloomeelees are mammals.)

Definition: A set 𝐴 is a subset of set 𝐵, denoted as 𝐴 ⊆ 𝐵, 
if every element in 𝐴 is an element in 𝐵.
Proof that the empty set ∅ is a subset of every set.
Proof: Since ∀𝑥, (𝑥 ∉ ∅), the argument holds vacuously.
(Alternatively can prove by contradiction, but is longer.)
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Variants of Universal Conditional Statements
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3.2.5. Variants of Universal Conditional Statements

We have known that a conditional statement has a 
contrapositive, a converse, and an inverse.
The definitions of these terms can be extended to 
universal conditional statements.

Definition 3.2.1 (Contrapositive, converse, inverse)

Consider a statement of the form: xD (P(x) → Q(x)).
1. Its contrapositive is: xD (~Q(x) → ~P(x)).
2. Its converse is: xD (Q(x) → P(x)).
3. Its inverse is: xD (~P(x) → ~Q(x)).
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Variants of Universal Conditional Statements



Write a formal and an informal contrapositive, converse, and 
inverse for the following statement:
If a real number is greater than 2, then its square is greater than 4.
The formal version: xℝ (x > 2 → x2 > 4).

Contrapositive:

Converse:

Inverse:

xℝ (x2  4 → x  2).
If the square of a real number is less than or equal to 4, then the number is 
less than or equal to 2.

xℝ (x2 > 4 → x > 2).
If the square of a real number is greater than 4, then the number is greater 
than 2.

xℝ (x  2 → x2  4).

40

If a real number is less than or equal to 2, then the square of the number is 
less than or equal to 4.
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Variants of Universal Conditional Statements

Let P(x) and Q(x) be any predicates, let D be the domain of x, 
and consider the statement:

xD (P(x) → Q(x))
and its contrapositive

xD (~Q(x) → ~P(x))

Any particular x in D that makes “P(x) → Q(x)” true also makes 
“~Q(x) → ~P(x)”  true (by the logical equivalence between p  q
and ~q  ~p).

It follows that “P(x) → Q(x)” is true for all x in D iff “~Q(x) → ~P(x)” 
is true for all x in D.

41

xD (P(x) → Q(x)) xD (~Q(x) → ~P(x))≡
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Variants of Universal Conditional Statements

Consider the statement:
xℝ (x > 2 → x2 > 4)

and its converse
xℝ (x2 > 4 → x > 2)

True

False

A universal conditional statement is not logically 
equivalent to its converse.

42
xD (P(x) → Q(x)) xD (Q(x) → P(x))≢

Consider another statement:
xℝ (even(x) → 2 | x)

and its converse
xℝ (2 | x → even(x))

True

True
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Necessary and Sufficient Conditions, Only if
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3.2.6. Necessary and Sufficient Conditions, Only if

The definitions of necessary, sufficient, and only if can 
also be extended to apply to universal conditional 
statements.

Definition 3.2.2 (Necessary and Sufficient conditions, Only if)

 “x, r(x) is a sufficient condition for s(x)” means 
“x (r(x) → s(x))”.

 “x, r(x) is a necessary condition for s(x)” means 
“x (~r(x) → ~s(x))” or, equivalently, “x (s(x) → r(x))”.

 “x, r(x) only if s(x)” means “x (~s(x) → ~r(x))” or, 
equivalently, “x (r(x) → s(x))” .
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Necessary and Sufficient Conditions, Only if
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Rewrite the following statements as quantified 
conditional statements. Do not use the word necessary
or sufficient:
a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being 
President of the United States.

x, if x is a square, then x is a rectangle.

people x, if x is younger than 35, then x cannot be 
President of the United States.

Informal: If a figure is a square, then it is a rectangle.

people x, if x is President of the United States, then 
x is at least 35 years old.

or


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Common beginners’ mistakes

Given the following predicates:
 Bird(x): x is a bird
 Fly(x): x can fly

1. Write a quantified statement for the following sentence: 
All birds can fly.

Answer:



∀x, Fly(Bird(x))

∀x, (Bird(x) ∧ Fly(x)) 

Why? Bird(x) is a predicate; it 
evaluates to true or false. This is 
like writing Fly(true) or Fly(false)!

Why? This is saying everything
must be a bird and it flies!

∀x, (Bird(x) → Fly(x)) 
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2. Write a quantified statement for the following sentence:

There is a bird that can fly.

Answer:



∃x s.t. (Bird(x) → Fly(x)) What if there are no birds at all?

∃x s.t. (Bird(x) ∧ Fly(x))

Common beginners’ mistakes
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3. Write a quantified statement for the following sentence 
(do not begin with negated quantifier, such as ~∀ or ~∃):

Not all birds can fly.



Common beginners’ mistakes

Answer:

∀x, (Bird(x) → ~Fly(x)) This means all birds can’t fly!

∃x s.t. (Bird(x) → ~Fly(x)) Again, what if there 
are no birds?

∃x s.t. (Bird(x) ∧ ~Fly(x)) 

Check: From Q1, “all birds can fly” ≡ “∀x, (Bird(x) → Fly(x))”.
∴ “Not all birds can fly” ≡ “~(∀x, (Bird(x) → Fly(x)))” ≡ “~(∀x, (~Bird(x) ∨ Fly(x)))” 
≡ “∃x s.t. ~(~Bird(x) ∨ Fly(x))” ≡ “∃x s.t. (Bird(x) ∧~Fly(x))”. 
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3.3 Statements with Multiple Quantifiers
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Consider the Tarski’s world again.
Show that the following statement is true:
For all triangles x, there is a square y such 
that x and y have the same color.

Figure 3.3.1

The statement says that no matter which 
triangle someone gives you, you will be 
able to find a square of the same color.
There are only 3 triangles d, f, and i.
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3.3.1. Interpreting Multiply-Quantified Statements

If you want to establish the truth of a statement of the form:
∀x∈D, ∃y∈E such that P(x, y)

your challenge is to allow someone else to pick whatever 
element x in D they wish and then you must find an element y
in E that “works” for that particular x. 

If you want to establish the truth of a statement of the form:
∃x∈D such that ∀y∈E, P(x, y)

your job is to find one particular x in D that will “work” no 
matter what y in E anyone might choose to challenge you 
with. 
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A college cafeteria line has four stations: salads, main 
courses, desserts, and beverages.
The salad station offers a choice of green salad or fruit 
salad; the main course station offers spaghetti or fish; the 
dessert station offers pie or cake; and the beverage 
station offers milk, soda, or coffee. Three students, Uta, 
Tim, and Yuen, go through the line and make the 
following choices:
 Uta: green salad, spaghetti, pie, milk
 Tim: fruit salad, fish, pie, cake, milk, coffee
 Yuen: spaghetti, fish, pie, soda
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These choices are illustrated in Figure 3.3.2.

Figure 3.3.2
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Write each of following statements 
informally and find its truth value.



a.  an item I such that  students S, 
S chose I.

b.  a student S such that  items I, S
chose I.

c.  a student S such that  stations 
Z,  an item I in Z such that S chose 
I.

d. ∀ students S and ∀ stations Z, ∃ an 
item I in Z such that S chose I.

There is an item that was 
chosen by every student. 

There is a student who 
chose every available item.

There is a student who chose at 
least one item from every 
station. 

True (pie).

False.

True (Uta and Tim).

False.

Figure 3.3.2

For all students and stations, there is an item 
such that every student chose that item. 
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3.3.2. Translating from Informal to Formal Language

Most problems are stated in informal language, but solving them 
often requires translating them into more formal terms.

Example: The reciprocal of a real number a is a real number b
such that ab = 1. The following 2 statements are true. Rewrite 
them formally using quantifiers and variables:
a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.

 nonzero real numbers u,  a real number v such that uv = 1.

 a real numbers c such that  real number d, cd  1.
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3.3.3. Ambiguous Language

You are visiting a computer microchips factory. The factory guide 
tells you:

There is a person supervising every detail of the 
production process.

“there is” – existential quantifier; “every” – universal quantifier.

Which of the following best describes its meaning?
 There is one single person who supervises all the details of the 

production process.
 For any particular production detail, there is a person who 

supervises the detail, but there might be different supervisors 
for different details.
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Once you interpreted the sentence in one way, it may have been 
hard for you to see that it could be understood in the other way.

Perhaps you had difficulty even though the two possible 
meanings were explained.

Although statements written informally may be open to multiple 
interpretations, we cannot determine their truth or falsity 
without interpreting them one way or another. 

Therefore, we have to use context to try to ascertain 
their meaning as best we can.
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Order of Quantifiers
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3.3.5. Order of Quantifiers

∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑃 𝑥, 𝑦

for x in X:
y <- choice(Y)
P(x, y)

∃𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 𝑃 𝑥, 𝑦

y <- choice(Y)
for x in X:
P(x, y)

They are not same!!!

Context as the scope of variable!
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3.3.4. Negations of Multiply-Quantified Statements

~(x∈D, P(x))  x∈D such that ~P(x)

~(x∈D such that P(x))  x∈D, ~P(x)

Recall in 3.2.1:

(A) So, to find: ∼(∀x∈D, ∃y∈E such that P(x, y))
 ∃x∈D such that ∼(∃y∈E such that P(x, y))
 ∃x∈D such that ∀y∈E, ∼P(x, y).

(B) Similarly, to find: ∼(∃x∈D such that ∀y∈E, P(x, y))
 ∀x∈D, ∼(∀y∈E, P(x, y))
 ∀x∈D, ∃y∈E such that ∼P(x, y).

∼(∀x ∈ D, ∃y∈E such that P(x, y)) ≡ ∃x∈D such that ∀y∈E, ∼P(x, y)

≡∼(∃x∈D such that ∀y∈ E, P(x, y)) ∀x∈D, ∃y∈E such that ∼P(x, y)



Negations of Multiply-Quantified Statements

Predicates & Quantified Statement I / II Statements with Multiple Quantifiers Arguments with Quantified Statements 

59

Refer to the Tarski’s world of Figure 3.3.1 
again.

Figure 3.3.1

Write a negation for each of the 
following statements, and determine 
which is true, the given statement or 
its negation.

a. For all squares x, there is a circle y
such that x and y have the same color.

Negation: 
 a square x such that ~( a circle y such that x and y have the 
same color)
 a square x such that  circles y, x and y do not have the 

same color. TRUE (Square e is black and no circle is black).
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Refer to the Tarski’s world of Figure 3.3.1 
again.

Figure 3.3.1

Write a negation for each of the 
following statements, and determine 
which is true, the given statement or 
its negation.

b. There is a triangle x such that for all 
squares y, x is to the right of y.



Negation: 
∀ triangles x, ~(∀ squares y, x is to the right of y)
∀ triangles x, ∃ a square y such that x is not to the right of y.

TRUE (No matter what triangle is chosen, it is 
not to the right of square g or square j).
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3.3.5. Order of Quantifiers

Except for the order of the quantifiers, 
these statements are identical. 

∀ people x, ∃ a person y such that x loves y.

∃ a person y such that ∀ people x, x loves y.

Given any person, it is possible to find 
someone whom that person loves.

There is one amazing individual 
who is loved by all people!

They are not 
logically 
equivalent!



Order of Quantifiers

Predicates & Quantified Statement I / II Statements with Multiple Quantifiers Arguments with Quantified Statements 

62

In a statement containing both  and , 
changing the order of the quantifiers usually 
changes the meaning of the statement.

However, if one quantifier immediately follows 
another quantifier of the same type, then the order 
of the quantifiers does not affect the meaning.

Examples: 
 x y is equivalent to y x (likewise for ∃)
 x y may be written as x,y (likewise for ∃)
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Refer to the Tarski’s world of Figure 3.3.1. What are the truth 
values of the following two statements?

a. For every square x, there is a triangle y
such that x and y have different colors.

Figure 3.3.1



TRUE 

b. There exists a triangle y such that for 
every square x, x and y have different 
colors.

FALSE
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3.3.6. Formal Logical Notation

In some areas of computer science, logical statements 
are expressed in purely symbolic notation.
The notation involves using predicates to describe all 
properties of variables and omitting the words such as in 
existential statements.

“x ∈ D, P(x)” written as x (x ∈ D  P(x))

“∃x ∈ D such that P(x)” written as x (x ∈ D  P(x))

We will follow this way of writing.
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Example: 
 Tarski’s world.
 Let the common domain D of all variables be the set of all the 

objects in the Tarski’s world.

Triangle(x): “x is a triangle”
Circle(x): “x is a circle”
Square(x): “x is a square”

Blue(x): “x is blue”
Gray(x): “x is gray”
Black(x): “x is black”

RightOf(x,y): “x is to the right of y”
Above(x,y): “x is above y”
SameColorAs(x,y): “x has the same color as y”
x = y: “x is equal to y”
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Use formal, logical notation to write the following statements, 
and write a formal negation for each statement. 
a. For all circles x, x is above f.

b. There is a square x such that x is black.

Statement:

Negation:

x (Circle(x)  Above(x, f))

~(x (Circle(x)  Above(x, f)))

x ~(Circle(x)  Above(x, f)) x (Circle(x)  ~Above(x, f))

Statement:

Negation:

x (Square(x)  Black(x))

~(x (Square(x)  Black(x)))

x ~(Square(x)  Black(x)) x (~Square(x)  ~Black(x))
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Use formal, logical notation to write the following statements, 
and write a formal negation for each statement. 
c. For all circles x, there is a square y such that x and y have the 

same color.

Statement:

Negation:

∀x(Circle(x)  ∃y(Square(y)  SameColor(x, y)))

~(∀x(Circle(x)  ∃y(Square(y)  SameColor(x, y))))

x ~(Circle(x)  ∃y(Square(y)  SameColor(x, y)))

x (Circle(x)  ~(∃y (Square(y)  SameColor(x, y))))



x (Circle(x)  ∀y (~(Square(y)  SameColor(x, y))))

x (Circle(x)  ∀y (~Square(y)  ~SameColor(x, y)))
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Use formal, logical notation to write the following statements, 
and write a formal negation for each statement. 
d. There is a square x such that for all triangles y, x is to right of y.



Statement:

Negation:

∃x (Square(x)  ∀y (Triangle(y)  RightOf(x, y)))

~(∃x (Square(x)  ∀y (Triangle(y)  RightOf(x, y))))

∀x ~(Square(x)  ∀y (Triangle(y)  RightOf(x, y)))

∀x (~Square(x)  ~(∀y (Triangle(y)  RightOf(x, y))))

∀x (~Square(x)  ∃y (~(Triangle(y)  RightOf(x, y))))

∀x (~ Square(x)  ∃y (Triangle(y)  ~RightOf(x, y)))
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Formal logical notation is used in branches of computer 
science such as artificial intelligence, program 
verification, and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, 
predicates, and logical connectives make up what is 
known as the language of first-order logic.

Even though this language is simpler in many respects 
than the language we use every day, learning it requires 
the same kind of practice needed to acquire any foreign 
language.
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3.3.7. Prolog (Only for your reading)

The programming language Prolog (short for programming in logic) 
was developed in France in the 1970s by A. Colmerauer and P. 
Roussel to help programmers working in the field of artificial 
intelligence. 

A simple Prolog program consists of a set of statements describing 
some situation together with questions about the situation. Built 
into the language are search and inference techniques needed to 
answer the questions by deriving the answers from the given 
statements. 

This frees the programmer from the necessity of having to write 
separate programs to answer each type of question. 
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Consider the following picture, which shows colored blocks 
stacked on a table.

The following are statements in Prolog that describe this picture 
and ask two questions about it.
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isabove(g, b1) color(g, gray) color(b3, blue)

isabove(b1, w1) color(b1, blue) color(w1, white)

isabove(w2, b2) color(b2, blue) color(w2, white)

isabove(b2, b3) isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)

?color(b1, blue) ?isabove(X, w1)

The statements “isabove(g, b1)” and “color(g, gray)” are to be 
interpreted as “g is above b1” and “g is colored gray”. 
The statement “isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)” is 
to be interpreted as “For all X, Y, and Z, if X is above Y and Y is 
above Z, then X is above Z.”



Prolog: A Prolog Program

Predicates & Quantified Statement I / II Statements with Multiple Quantifiers Arguments with Quantified Statements 

73

The program statement
?color(b1, blue)

is a question asking whether 
block b1 is colored blue. 

Prolog answers this by writing

Yes

The program statement
?isabove(X, w1)

is a question asking for which 
blocks X the predicate “X is 
above w1” is true.. 

Prolog answers this by giving a 
list of all such blocks. In this 
case, the answer is

X = b1, X = g.

Infer the solution X = g from the following statements:
 isabove(g, b1)
 isabove(b1, w1)
 isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)
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Write the answers Prolog would give if the following 
questions were added to the program above. 
a. ?isabove(b2, w1)

b. ?color(w1, X)

c. ?color(X, blue)

isabove(g, b1) color(g, gray) color(b3, blue)

isabove(b1, w1) color(b1, blue) color(w1, white)

isabove(w2, b2) color(b2, blue) color(w2, white)

isabove(b2, b3) isabove(X, Z ) if isabove(X, Y ) and isabove(Y, Z)

“No”

“X = white”

“X = b1”, “X = b2”, “X = b3”
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3.4 Arguments with Quantified Statements
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The rule of universal instantiation:

If some property is true of everything in the set, 
then it is true of any particular thing in the set. 

Universal instantiation is the fundamental tool of 
deductive reasoning.

3.4.1. Universal Instantiation



Universal Modus Ponens

Predicates & Quantified Statement I / II Statements with Multiple Quantifiers Arguments with Quantified Statements 

77

The rule of universal instantiation can be combined with 
modus ponens to obtain the valid form of argument 
called universal modus ponens.

3.4.2. Universal Modus Ponens

Universal Modus Ponens
Formal version Informal version

x (P(x) → Q(x)). If x makes P(x) true, then x makes Q(x) true.
P(a) for a particular a. a makes P(x) true.
Q(a).  a makes Q(x) true.
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Rewrite the following argument using quantifiers, variables, 
and predicate symbols. Is this argument valid? Why?

If an integer is even, then its square is even.
k is a particular integer that is even.

 k2 is even.

Solution:
x, if x is an even integer then x2 is even.

Let E(x) be “x is an even integer”, let S(x) be “x2 is even”, and 
let k stand for a particular integer that is even. 

x (E(x) → S(x)).
E(k), for a particular k.

 S(k).

This argument has the form of 
universal modus ponens and 
is therefore valid.

Premise:
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Proof: The sum of any two even integers is even.

3.4.3. Use of Universal Modus Ponens in a Proof

integers x, x is even iff  an integer k such that x = 2k.

Suppose m and n are particular but arbitrarily chosen 
even integers, then m = 2r for some integer r(1), and n = 
2s for some integer s(2).
Hence

m + n = 2r + 2s = 2(r + s) (3)

Now (r + s) is an integer(4), and so 2(r + s) is even(5).
Thus m + n is even.
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How universal modus ponens is used in the proof.
Suppose m and n are particular but arbitrarily chosen 
even integers, then m = 2r for some integer r(1), and n = 
2s for some integer s(2).

(1) If an integer is even, then it equals twice some integer.
m is a particular even integer.
 m equals twice some integer r.

(2) Similar to (1).
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How universal modus ponens is used in the proof.
Hence

m + n = 2r + 2s = 2(r + s) (3)

(3) If a quantity is an integer, then it is a real number.
r and s are particular integers.
 r and s are real numbers.

We want to show that if r and s are 
integers, then they are real numbers, 
so that we can apply distributive law 
below (Appendix A, F3), which are 
meant for real numbers.

For all a, b, and c, if a, b, and c are real numbers, then 
ab + ac = a(b + c).
2, r, and s are particular real numbers.
 2r + 2s = 2(r + s).
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How universal modus ponens is used in the proof.
Now (r + s) is an integer(4), and so 2(r + s) is even(5).
Thus m + n is even.

(4) For all u and v, if u and v are integers, then (u + v) is an integer.
r and s are two particular integers.
 (r + s) is an integer.

(5) If a number equals twice some integer, then that number is 
even.
2(r + s) equals twice the integer (r + s).
 2(r + s) is even.
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3.4.4. Universal Modus Tollens

Another crucially important rule of inference is universal 
modus tollens. Its validity results from combining 
universal instantiation with modus tollens.
Universal modus tollens is the heart of proof of 
contradiction.

Universal Modus Tollens
Formal version Informal version

x, (P(x) → Q(x)). If x makes P(x) true, then x makes Q(x) true.
~Q(a) for a particular a. a does not make Q(x) true.
 ~P(a).  a does not makes P(x) true.
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Rewrite the following argument using quantifiers, variables, and 
predicate symbols. Write the major premise in conditional form. 
Is this argument valid? Why?

All human beings are mortal.
Zeus is not mortal.

 Zeus is not human.
Solution:

x, if x is human then x is mortal.

Let H(x) be “x is human”, let M(x) be “x is mortal”, and let Z
stand for Zeus. 

x (H(x) → M(x)).
~M(Z).

 ~H(Z).

This argument has the form of 
universal modus tollens and is 
therefore valid.

Premise:
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3.4.5. Proving Validity of Arguments with Quantified Statements

The intuitive definition of validity for arguments with 
quantified statements is the same as for arguments with 
compound statements. 
An argument is valid if, and only if, the truth of its conclusion 
follows necessarily from the truth of its premises. 

Definition 3.4.1 (Valid Argument Form)

To say that an argument form is valid means the following: 
No matter what particular predicates are substituted for the 
predicate symbols in its premises, if the resulting premise 
statements are all true, then the conclusion is also true.
An argument is called valid if, and only if, its form is valid.
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3.4.6. Using Diagrams to Test for Validity

Consider the statement: All integers are rational numbers.
integers n, n is a rational number.

Figure 3.4.1
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Use a diagram to show the invalidity of the following 
argument:

All human beings are mortal.
Felix is mortal.

 Felix is a human being.

Figure 3.4.4

Major premise Minor premise
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Use a diagram to show the invalidity of the following 
argument:

All human beings are mortal.
Felix is mortal.

 Felix is a human being.

Figure 3.4.5

Conclusion 
is true.

Conclusion 
is false.

Hence, 
argument 
is invalid.
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The argument of previous example would be valid if the 
major premise were replaced by its converse. But since a 
universal conditional statement is not logically equivalent to 
its converse, such a replacement cannot, in general, be 
made.

We say that this argument exhibit the converse error.

Converse Error (Quantified Form)
Formal version Informal version

x (P(x) → Q(x)). If x makes P(x) true, then x makes Q(x) true.
Q(a) for a particular a. a makes Q(x) true.
 P(a).  a makes P(x) true.
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The following form of argument would be valid if a 
conditional statement were logically equivalent to its inverse. 
But it is not, and the argument form is invalid.

We say that this argument exhibit the inverse error.

Inverse Error (Quantified Form)
Formal version Informal version

x (P(x) → Q(x)). If x makes P(x) true, then x makes Q(x) true.
~P(a) for a particular a. a does not make P(x) true.
 ~Q(a).  a does not make Q(x) true.
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Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.

• This function is not a polynomial function.

Figure 3.4.6

Hence argument 
is valid.
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Alternatively, transform the first statement into:

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.

• This function is not a polynomial function.

x, if x is a polynomial function, then x does not have 
a horizontal asymptote.

Then the argument has the form:
x (P(x) → Q(x)).
~Q(a), for a particular a.

• ~P(a).

This is valid by universal 
modus tollens.
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3.4.7. Creating Additional Forms of Argument

We have seen:

Modus ponens + 
Universal 

instantiation
Universal 

modus ponens

Modus tollens + 
Universal 

instantiation
Universal 

modus tollens

In the same way, additional forms of arguments involving 
universally quantified statements can be obtained by 
combining universal instantiation with other of the valid 
argument forms discussed earlier.
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Consider the following argument:

p  q
q  r

 p  r

This can be combined with universal instantiation to 
obtain a valid argument form.

Universal Transitivity
Formal version Informal version

x (P(x)  Q(x)). Any x that makes P(x) true makes Q(x) true.
x (Q(x)  R(x)). Any x that makes Q(x) true makes R(x) true.
x (P(x)  R(x)).  Any x that makes P(x) true makes R(x) true.
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Consider the Tarski’s world:

Figure 3.3.1

Reorder and rewrite the premises to 
show that the conclusion follows as a 
valid consequence from the premises

1. All the triangles are blue.
2. If an object is to the right of all the 

squares, then it is above all the circles.
3. If an object is not to the right of all the 

squares, then it is not blue.
 All the triangles are above all the circles.
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Consider the Tarski’s world:

Figure 3.3.1

Reorder and rewrite the premises to 
show that the conclusion follows as a 
valid consequence from the premises

1. x, if x is a triangle, then x is blue.
2. x, if x is to the right of all the squares, 

then x is above all the circles.
3. x, if x is not to the right of all the 

squares, then x is not blue.
 x, if x is a triangle, then x is above all 

the circles. Should be same as hypothesis 
of the first premise.

Should be same as 
conclusion of the 
last premise.

Step 1:
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Consider the Tarski’s world:

Figure 3.3.1

Reorder and rewrite the premises to 
show that the conclusion follows as a 
valid consequence from the premises

1. x, if x is a triangle, then x is blue.
2. x, if x is not to the right of all the 

squares, then x is not blue.
3. x, if x is to the right of all the squares, 

then x is above all the circles.
 x, if x is a triangle, then x is above all 

the circles.

Rewrite it in 
contrapositive form.

Step 2:
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Consider the Tarski’s world:

Figure 3.3.1

Reorder and rewrite the premises to 
show that the conclusion follows as a 
valid consequence from the premises

1. x, if x is a triangle, then x is blue.
2. x, if x is blue, then x is to the right of 

all the squares.
3. x, if x is to the right of all the squares, 

then x is above all the circles.
 x, if x is a triangle, then x is above all 

the circles.

Step 3:
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3.4.8. Rules of Inference for Quantified Statements

NameRule of Inference

Universal instantiation∀𝑥 ∈ 𝐷 𝑃 𝑥
∴ 𝑃(𝑎) if 𝑎 ∈ 𝐷

Universal generalization𝑃 𝑎 for every 𝑎 ∈ 𝐷
∴ ∀𝑥 ∈ 𝐷 𝑃 𝑥

Existential instantiation∃𝑥 ∈ 𝐷 𝑃 𝑥
∴ 𝑃(𝑎) for some 𝑎 ∈ 𝐷

Existential generalization𝑃 𝑎 for some 𝑎 ∈ 𝐷
∴ ∃𝑥 ∈ 𝐷 𝑃 𝑥
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3.4.9. Remark on the Converse and Inverse Errors

A variation of the converse error is a very useful reasoning tool, 
provided that it is used with caution. 
It is the type of reasoning that is used by doctors to make medical 
diagnoses and by auto mechanics to repair cars.

It is the type of reasoning used to generate explanations for 
phenomena. It goes like this: If a statement of the form

For all x (P(x)  Q(x))
is true, and if

Q(a) is true, for a particular a,
then check out the statement P(a); it just might be true.

Only for 
reading.
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For instance, suppose a doctor knows that 

For all x, if x has pneumonia, then x has a fever and
chills, coughs deeply, and feels exceptionally tired
and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of 
pneumonia is a strong possibility, though not a certainty.

Only for 
reading.

This form of reasoning has been named abduction by 
researchers working in artificial intelligence. 



102

END OF FILE


