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4. Methods of Proof

4.1 Direct Proof and Counterexample

e Definitions: even and odd numbers; prime and composite.

e Proving existential statements by constructive proof.

e Disproving universal statements by counterexample.

e Proving universal statements by exhaustion.

* Proving universal statements by generalizing from the generic particular.

4.2 Proofs on Rational Numbers

e Every integer is a rational number.
e Sum of any two rational numbers is rational.

4.3 Proofs on Divisibility

e Positive divisor of a positive integer; divisors of 1; transitivity of divisibility.

4.4 Indirect Proof

e Proof by contradiction; proof by contraposition.

Reference: Epp’s Chapter 4 Elementary Number Theory and
Methods of Proof ,
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4.1 Definitions
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Definitions

4.1.1. Definitions

Assumptions

e In this text we assume a familiarity with the laws of basic algebra, which are listed
in Appendix A.

e We also use the three properties of equality: For all objects A, B, and C,
(hDA=A,2)if A=BthenB=A,and (3)ifA=Band B =C,then A = C.

e In addition, we assume that there is no integer between 0 and 1 and that the set of
all integers is closed under addition, subtraction, and multiplication. This means
that sums, differences, and products of integers are integers.

e Of course, most quotients of integers are not integers. For example, 3 — 2, which
equals 3/2, is not an integer, and 3 = 0O is not even a number.

Appendix A has been uploaded onto “LumiNUS > Files > Lecture slides and notes”
and the CS1231S website.
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Definitions: Even and Odd Integers

Recall from Lecture #2:

Definitions: Even and Odd Integers

An integer n is even if, and only if, n equals twice some integer.
An integer n is odd if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then
niseven < 3k € Z such thatn = 2k.

nisodd < 3k € Zsuchthatn = 2k + 1.
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Definitions: Prime and Composite

Definitions: Prime and Composite

An integer n is prime iff n > 1 and for all positive integers r and s, if
n = rs, then either r or s equals n.

An integer n is composite iff n > 1 and n = rs for some integers r and
swithl<r<nandl<s<n.

In symbols:
nis prime: (n > 1)AVr,s € Z%,
(n=rs—>(r= 1/\5=n)v(r=n/\s=1)).
n is composite: Ir,s € Z* (n =rsANI<r<nA(l<s< n)).

There are other ways of defining prime.
For example:

nis prime: (n > 1)/\(‘v’r,s € Z((r >1DA(>1)>rs # n))
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2 512315 Midterm Test (AY2019/20 Sem1)

Given the following predicate:

Px)=(x#1D)AVy,z(x=yz->(y=x)V(y=1)))
and that the domain of x, y and z is Z*, what is P(x)?

[ A. P(x) istrueiff x is a prime number. ]

P(x) is true iff x is a number other than 1.
P(x) is always true irrespective of the value of x.
. P(x) is true if x has exactly two factors other than 1 and x.

mo O ®

None of the above.
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Proving Existential Statements: Constructive Proof

4.1.2. Proving Existential Statements by Constructive Proof

An existential statement:
dx € D Q(x)
is true iff Q(x) is true for at least one x in D.

To prove such statement, we may use constructive

proofs of existence:
* Find an x in D that makes Q(x) true; or

= Give a set of directions for finding such an x.
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Proving Existential Statements: Constructive Proof

Example #1

a. Prove that there exists an even integer n that can be written
in two ways as a sum of two prime numbers.

b. Suppose r and s are integers. Prove that there is an integer
k such that 22r + 18s = 2k.

a. Letn=10.Then1l0=5+5=3+7, where 3,5and 7 are

all prime numbers. \
Note that the question does not

say that the two prime numbers
must be distinct.

b. Letk = 11r 4+ 9s. Then k is an integer because it is a
sum of products of integers (by closure property); and
2k = 2(11r + 9s) = 22r + 18s (by distributive law).



Divisibility Indirect Proof

Direct Proof and Counterexample Rational Numbers
O O

(OOl NoJe o oNe OO

Disproving Universal Statements: Counterexample

4.1.3. Disproving Universal Statements by Counterexample

Given a universal (conditional) statement:

Vx €D (P(x) — Q(x)).
Showing this statement is false is equivalent to showing
that its negation is true.

The negation of the above statement is an existential
statement:

Jx € D (P(x) A ~Q(x)).

10
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Disproving Universal Statements: Counterexample

To prove that an existential statement is true, we use an
example (constructive proof), which is called the

counterexample for the original universal conditional
statement.

Disproof by Counterexample

To disprove a statement of the form

Vx € D (P(x) — Q(x)),

find a value of x in D for which the hypothesis P(x) is true
but the conclusion Q (x) is false.

Such an x is called a counterexample.
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Disproving Universal Statements: Counterexample

Example #2: Disprove the following statement
Va,b € R, ifa’? = b thena = b.

Counterexample: Leta = 1land b = —1.Thena? =1 =1
and b? = (—1)?= 1and so a®? = b?. Buta # b.

12
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Proving Universal Statements: Exhaustion

4.1.4. Proving Universal Statements by Exhaustion

Given a universal conditional statement:
Vx €D (P(x) — Q(x)).

When D is finite or when only a finite number of
elements satisfy P(x), we may prove the statement by

the method of exhaustion.

13
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Proving Universal Statements: Exhaustion

Example #3: Prove the following statement

Vn e Z,ifnisevenand 4 <n < 26, then n can
be written as a sum of two primes.

Proof (by method of exhaustion):

" 4=2+2 = 16=5+11
= 6=3+3 = 18=7+11
= 8=3+5 = 20=7+13
= 10=5+5 = 22=5+17
= 12=5+7 = 24=5+19

= 14=11+3 = 26=7+19

14
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Proving Universal Statements: Generalizing from the Generic Particular

4.1.5. Proving Universal Statements by
Generalizing from the Generic Particular

The most powerful technique for proving a universal
statement s one that works regardless of the size of the
domain (possibly infinite) over which the statement is

guantified.

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain
property, suppose x is a particular but arbitrarily chosen
element of the set, and show that x satisfies the property.

15
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Proving Universal Statements: Generalizing from the Generic Particular

Example #4: Prove that the sum of any two even integers
IS even.

Proof:
1. Let m and n be two particular but arbitrarily chosen even
integers.

1.1 Thenm = 2r and n = 2s for some integers r and s
(by the definition of even number)

1.2 m+n = 2r + 2s = 2(r + s) (by basic algebra)

1.3 2(r + s) is an integer (by closure of integers under + and X)
and an even number (by the definition of even number)

1.4 Hence m + n is an even number.

2. Therefore the sum of any two even integers is even.
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4.2 Proofs on Rational Numbers

17
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Definition

4.2.1. Definition

In this section, we will apply proof techniques we have
learned on rational numbers.

Definition: Rational Numbers

A real number 7 is rational if, and only if, it can be expressed
as a quotient of two integers with a nonzero denominator.

A real number that is not rational is irrational.
r is rational < 3 integers a and b such thatr = %and b + 0.
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Every Integer is a Rational Number

4.2.2. Every Integer is a Rational Number

Theorem 4.2.1 (5%: 4.3.1)

Every integer is a rational number.

Proof:
1. Let a be a particular but arbitrarily chosen integer.

1.1 Thena = %which is in the form % where a and b(= 1)

are integers.
1.2 Hence a is a rational number.
2. Therefore every integer is a rational number.

19
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The Sum of Any Two Rational Numbers is Rational

4.2.3. The Sum of Any Two Rational Numbers is Rational

Theorem 4.2.2 (5t: 4.3.2)

The sum of any two rational numbers is rational.

Proof:
1. Letr and s be two particular but arbitrarily chosen rational
numbers.

1.1 Thenr = %and S = % for some integers a, b, c,d with b # 0
and d # 0 (by the definition of rational number).

a c ad+bc
1.2 Thenr+s-;+a— —

1.3 Since ad + bc and bd are integers (by closure of integers under
+and xX)and bd # 0, sor + s is rational.
2. Therefore the sum of any two rational numbers is rational.

(by basic algebra).

20
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Corollary; The Double of a Rational Number is Rational

Recall from Lecture #2:

Corollary

A result that is a simple deduction from a theorem.

Example:

= (Chapter 4)
Theorem 4.2.2 (5™: 4.3.2) The sum of any two rational numbers is rational
Corollary 4.2.3 (5t: 4.3.3) The double of a rational number is rational.

Theorem 4.2.2 (5t1: 4.3.2)

The sum of any two rational numbers is rational.

:> Corollary 4.2.3 (5t: 4.2.3)

The double of a rational number is rational.

21
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4.3 Proofs on Divisibility

22
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Definition

4.3.1. Definition

Recall from Lecture #2:

Definition: Divisibility

If n and d are integers, then
n is divisible by d iff n equals d times some integer.

We use the notation d | n to mean “d divides n”. Symbolically, if

n,d € Z:
d |n & 3k € Z such thatn = dk.
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Theorems: A Positive Divisor of a Positive Integer

4.3.2. Theorems

Theorem 4.3.1 (5%": 4.4.1) A Positive Divisor of a Positive Integer

For all positive integers a and b, if a | b, then a < b.

Proof (direct proof):
1. Let a and b be two positive integers and a | b.
1.1 Then there exists an integer k such that b = ak (by the
definition of divisibility).
1.2 Since both a and b are positive integers, k is positive, i.e.
k> 1.
1.3 Therefore a < ak = b.
2. Therefore for all positive integers a and b, if a | b, then a < b.

24
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Theorems: Divisors of 1

Theorem 4.3.2 (5t: 4.4.2) Divisors of 1

The only divisors of 1 are 1 and -1.

Proof (by division into cases):

1. Suppose m is any integer that divides 1.
1.1 Then there exists an integer k such that 1 = mk (by the definition of
divisibility).
1.2 Since mk is positive, either both m and k are positive, or both negative.
1.3 Case 1: Both m and k are positive.

1.3.1Sincem |1, m < 1 (by Theorem 4.3.1).
1.3.2Thenm = 1.

1.4 Case 2: Both m and k are negative.
1.4.1 Then - m is a positive integer divisor of 1, i.e. -m|1.
1.4.2 By the same reasoningin1.3.1and 1.3.2, —m =1, orm = —1.

2. Therefore the only divisors of 1 are 1 and -1.

25
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Theorems: Transitivity of Divisibility

Theorem 4.3.3 (5%: 4.4.3) Transitivity of Divisibility

For all integersa, bandc,ifa|bandb | c,thena | c.

Proof:

1. Suppose a, b, c are integerss.t.a|bandb | c.
1.1 Then b = ar and ¢ = bs for some integers r and s. (by the definition
of divisibility)
1.2 Then ¢ = bs = (ar)s (by substitution) = a(rs) (by associativity)
1.3 Let k = rs, then k is an integer (by closure property) and ¢ = ak.

2. Thereforea | c.

26
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4.4 Indirect Proof

27
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Indirect Proof: Proof by Contradiction

4.4.1. Indirect Proof: Proof by Contradiction

Sometimes when a direct proof is hard to derive, we can
try indirect proof.

Example: Theorem 4.7.1 (5th: 4.8.1) v/2 is irrational.

Proof by Contradiction

1. Suppose the statement to be proved, S, is false. That is,
the negation of the statement, ~S, is true.

2. Show that this supposition leads logically to a
contradiction.

3. Conclude that the statement S is true.
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Indirect Proof: Proof by Contradiction

Theorem 4.6.1 (5: 4.7.1)

There is no greatest integer.

Proof (by contradiction):

1. Suppose not, i.e. there is a greatest integer.
1.1 Let call this greatest integer g, and g = n for all integers n.
1.2 LetG = g + 1.
1.3 Now, G is an integer (closure of integers under +) and G > g.
1.4 Hence, g is not the greatest integer = contradicting 1.1.

2. Hence, the supposition that there is a greatest integer is false.
3. Therefore, there is no greatest integer.

29
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Indirect Proof: Proof by Contraposition

4.4.2. Indirect Proof: Proof by Contraposition

Recall: Contrapositive of p = q is ~q = ~p.

Proof by Contraposition

1. Statement to be proved: Vx € D (P(x) — Q(x)).

2. Rewrite the statement into its contrapositive form:
Vx €D (~Q(x) — ~P(x)).

3. Prove the contrapositive statement by a direct proof.

3.1 Suppose x is an (particular but arbitrarily chosen) element of
D s.t. Q(x) is false.

3.2 Show that P(x) is false.
4. Therefore, the original statement
Vx € D (P(x) — Q(x)) is true.
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Indirect Proof: Proof by Contraposition

Recall that in Lecture 1, we use the following
proposition to prove that V2 is irrational.

Proposition 4.6.4 (51: 4.7.4)

For all integers n, if n? is even than n is even.

We shall now prove this proposition.

31
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Indirect Proof: Proof by Contraposition

Proposition 4.6.4 (5%: 4.7.4)

For all integers n, if n? is even then n is even.

Proof (by contraposition):
1. Contrapositive statement:
For all integers n, if n is odd then n? is odd.

2. Letn be an arbitrarily chosen odd number.
2.1 Thenn = 2k + 1 for some integer k (by definition of odd number).
22 Thenn?=Qk+1Rk+1)=4k*+4k+1=20Q2k*+2k)+1
2.3 Letm = 2k? + 2k. Now, m is an integer (by closure property) and
n®=2m+1.
2.4 Son?isodd.

3. Therefore, for all integers n, if n? is even then n is even.

32
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