
3. The Logic of Quantified Statements

 Direct Proof and Counterexample Rational Numbers Divisibility  Indirect Proof

1

Aaron Tan

4. Methods of Proof

AY2025/26 Semester 1



2

4. Methods of Proof

4.1 Direct Proof and Counterexample

• Definitions: even and odd numbers; prime and composite.

• Proving existential statements by constructive proof.

• Disproving universal statements by counterexample.

• Proving universal statements by exhaustion.

• Proving universal statements by generalizing from the generic particular. 

4.2 Proofs on Rational Numbers

• Every integer is a rational number.

• Sum of any two rational numbers is rational.

4.3 Proofs on Divisibility 

• Positive divisor of a positive integer; divisors of 1; transitivity of divisibility.

4.4 Indirect Proof

• Proof by contradiction; proof by contraposition.
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Reference: Epp’s Chapter 4 Elementary Number Theory and 
Methods of Proof
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4.1 Definitions
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Definitions

4.1.1. Definitions

Appendix A has been uploaded onto “LumiNUS > Files > Lecture slides and notes” 
and the CS1231S website.
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Definitions: Even and Odd Integers

Recall from Lecture #2:

Definitions: Even and Odd Integers

An integer 𝑛 is even if, and only if,  𝑛 equals twice some integer.

An integer 𝑛 is odd if, and only if,  𝑛 equals twice some integer plus 1.

Symbolically, if 𝑛 is an integer, then
 𝑛 is even ⟺ ∃𝑘 ∈ ℤ such that 𝑛 = 2𝑘. 
 𝑛 is odd ⟺ ∃𝑘 ∈ ℤ such that 𝑛 = 2𝑘 + 1. 
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Definitions: Prime and Composite

Definitions: Prime and Composite

An integer 𝑛 is prime iff 𝑛 > 1 and for all positive integers 𝑟 and 𝑠, if 
𝑛 = 𝑟𝑠,  then either 𝑟 or 𝑠 equals 𝑛. 

An integer 𝑛 is composite iff 𝑛 > 1 and 𝑛 = 𝑟𝑠 for some integers  𝑟 and 
𝑠 with 1 < 𝑟 < 𝑛 and 1 < 𝑠 < 𝑛 . 

In symbols:

 𝑛 is prime: (𝑛 > 1) ∧ ∀𝑟, 𝑠 ∈ ℤ+, 

  𝑛 = 𝑟𝑠 → 𝑟 = 1 ∧ 𝑠 = 𝑛 ∨ 𝑟 = 𝑛 ∧ 𝑠 = 1 . 

 𝑛 is composite: ∃𝑟, 𝑠 ∈ ℤ+ 𝑛 = 𝑟𝑠 ∧ 1 < 𝑟 < 𝑛 ∧ 1 < 𝑠 < 𝑛 .

There are other ways of defining prime. 
For example:

𝑛 is prime: 𝑛 > 1 ∧ ∀𝑟, 𝑠 ∈ ℤ 𝑟 > 1 ∧ 𝑠 > 1 → 𝑟𝑠 ≠ 𝑛 .
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CS1231S Midterm Test (AY2019/20 Sem1)

Given the following predicate:

𝑃 𝑥 = 𝑥 ≠ 1 ∧ ∀𝑦, 𝑧 𝑥 = 𝑦𝑧 → (𝑦 = 𝑥) ∨ (𝑦 = 1)  

and that the domain of 𝑥, 𝑦 and 𝑧 is ℤ+, what is 𝑃(𝑥)?

A.  𝑃(𝑥) is true iff 𝑥 is a prime number.

B.  𝑃(𝑥) is true iff 𝑥 is a number other than 1.

C.  𝑃(𝑥) is always true irrespective of the value of 𝑥.

D.  𝑃(𝑥) is true if 𝑥 has exactly two factors other than 1 and 𝑥.

E.  None of the above.


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Proving Existential Statements: Constructive Proof

4.1.2. Proving Existential Statements by Constructive Proof

An existential statement:

 ∃𝑥 ∈ 𝐷 𝑄(𝑥)

is true iff 𝑄(𝑥) is true for at least one 𝑥 in 𝐷.

To prove such statement, we may use constructive 
proofs of existence:

▪ Find an 𝑥 in 𝐷 that makes 𝑄(𝑥) true; or

▪ Give a set of directions for finding such an 𝑥.
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Proving Existential Statements: Constructive Proof

Example #1

a. Prove that there exists an even integer 𝑛 that can be written 
in two ways as a sum of two prime numbers.

b. Suppose 𝑟 and 𝑠 are integers. Prove that there is an integer 
𝑘 such that 22𝑟 +  18𝑠 =  2𝑘.

a. Let 𝑛 = 10. Then 10 = 5 + 5 = 3 + 7, where 3, 5 and 7 are 
all prime numbers.

Note that the question does not 
say that the two prime numbers 
must be distinct.

b. Let 𝑘 = 11𝑟 + 9𝑠. Then 𝑘 is an integer because it is a 
sum of products of integers (by closure property); and 
2𝑘 = 2 11𝑟 + 9𝑠 = 22𝑟 + 18𝑠 (by distributive law). 
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Disproving Universal Statements: Counterexample

4.1.3. Disproving Universal Statements by Counterexample

Given a universal (conditional) statement:

 ∀𝑥 ∈ 𝐷 𝑃 𝑥 → 𝑄 𝑥 .

Showing this statement is false is equivalent to showing 
that its negation is true.

The negation of the above statement is an existential 
statement:

 ∃𝑥 ∈ 𝐷 𝑃 𝑥 ∧ ~𝑄 𝑥 .



 Direct Proof and Counterexample Rational Numbers Divisibility  Indirect Proof

11

Disproving Universal Statements: Counterexample

To prove that an existential statement is true, we use an 
example (constructive proof), which is called the 
counterexample for the original universal conditional 
statement.

Disproof by Counterexample

To disprove a statement of the form

  ∀𝑥 ∈ 𝐷 𝑃 𝑥 → 𝑄 𝑥 ,

find a value of 𝑥 in 𝐷 for which the hypothesis 𝑃(𝑥) is true 
but the conclusion 𝑄(𝑥) is false.

Such an 𝑥 is called a counterexample. 
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Disproving Universal Statements: Counterexample

Example #2: Disprove the following statement

 ∀𝑎, 𝑏 ∈ ℝ, if 𝑎2 = 𝑏2 then 𝑎 = 𝑏.

Counterexample: Let 𝑎 = 1 and 𝑏 = −1. Then 𝑎2 = 12 = 1 
and 𝑏2 = (−1)2= 1 and so 𝑎2 = 𝑏2. But 𝑎 ≠ 𝑏.
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Proving Universal Statements: Exhaustion

4.1.4. Proving Universal Statements by Exhaustion

Given a universal conditional statement:

 ∀𝑥 ∈ 𝐷 𝑃 𝑥 → 𝑄 𝑥 .

When 𝐷 is finite or when only a finite number of 
elements satisfy 𝑃(𝑥), we may prove the statement by 
the method of exhaustion.
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Proving Universal Statements: Exhaustion

Example #3: Prove the following statement

 ∀𝑛 ∈ ℤ, if 𝑛 is even and 4 ≤ 𝑛 ≤ 26, then 𝑛 can 
be written as a sum of two primes.

Proof (by method of exhaustion):
▪ 4 = 2 + 2
▪ 6 = 3 + 3
▪ 8 = 3 + 5
▪ 10 = 5 + 5
▪ 12 = 5 + 7
▪ 14 = 11 + 3

▪ 16 = 5 + 11
▪ 18 = 7 + 11
▪ 20 = 7 + 13
▪ 22 = 5 + 17
▪ 24 = 5 + 19
▪ 26 = 7 + 19
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Proving Universal Statements: Generalizing from the Generic Particular

4.1.5. Proving Universal Statements by 
             Generalizing from the Generic Particular

The most powerful technique for proving a universal 
statement s one that works regardless of the size of the 
domain (possibly infinite) over which the statement is 
quantified.

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain 
property, suppose 𝑥 is a particular but arbitrarily chosen 
element of the set, and show that 𝑥 satisfies the property.
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Proving Universal Statements: Generalizing from the Generic Particular

Example #4: Prove that the sum of any two even integers 
is even.

Proof:
1. Let 𝑚 and 𝑛 be two particular but arbitrarily chosen even 

integers.

 1.1 Then 𝑚 = 2𝑟 and 𝑛 = 2𝑠 for some integers 𝑟 and 𝑠 
(by the definition of even number)

 1.2 𝑚 + 𝑛 = 2𝑟 + 2𝑠 = 2(𝑟 + 𝑠) (by basic algebra)

 1.3 2(𝑟 + 𝑠) is an integer (by closure of integers under + and ×) 

and an even number (by the definition of even number)

 1.4 Hence 𝑚 + 𝑛 is an even number.

2. Therefore the sum of any two even integers is even.
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4.2 Proofs on Rational Numbers
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Definition

4.2.1. Definition

In this section, we will apply proof techniques we have 
learned on rational numbers.

Definition: Rational Numbers

A real number 𝑟 is rational if, and only if, it can be expressed 
as a quotient of two integers with a nonzero denominator.

A real number that is not rational is irrational.

 𝑟 is rational ⟺ ∃ integers 𝑎 and 𝑏 such that 𝑟 =
𝑎

𝑏
 and 𝑏 ≠ 0. 
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Every Integer is a Rational Number

4.2.2. Every Integer is a Rational Number

Theorem 4.2.1 (5th: 4.3.1)

Every integer is a rational number.

Proof:
1. Let 𝑎 be a particular but arbitrarily chosen integer.

 1.1 Then 𝑎 =
𝑎

1
 which is in the form 

𝑎

𝑏
 where 𝑎 and 𝑏(= 1) 

are integers.
 1.2 Hence 𝑎 is a rational number.
2. Therefore every integer is a rational number.
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The Sum of Any Two Rational Numbers is Rational

4.2.3. The Sum of Any Two Rational Numbers is Rational

Theorem 4.2.2 (5th: 4.3.2)

The sum of any two rational numbers is rational.

Proof:
1. Let 𝑟 and 𝑠 be two particular but arbitrarily chosen rational 

numbers.

 1.1 Then 𝑟 =
𝑎

𝑏
 and 𝑠 =

𝑐

𝑑
 for some integers 𝑎, 𝑏, 𝑐, 𝑑 with 𝑏 ≠ 0 

and 𝑑 ≠ 0 (by the definition of rational number).

 1.2 Then 𝑟 + 𝑠 =
𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑+𝑏𝑐

𝑏𝑑
 (by basic algebra).

 1.3 Since 𝑎𝑑 + 𝑏𝑐 and 𝑏𝑑 are integers (by closure of integers under 

+ and ×) and 𝑏𝑑 ≠ 0, so 𝑟 + 𝑠 is rational.
2. Therefore the sum of any two rational numbers is rational.
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Corollary; The Double of a Rational Number is Rational

Corollary

A result that is a simple deduction from a theorem.

Example: 
▪ (Chapter 4)  
 Theorem 4.2.2 (5th: 4.3.2) The sum of any two rational numbers is rational
 Corollary 4.2.3 (5th: 4.3.3) The double of a rational number is rational.

Recall from Lecture #2:

Corollary 4.2.3 (5th: 4.2.3)

The double of a rational number is rational.

Theorem 4.2.2 (5th: 4.3.2)

The sum of any two rational numbers is rational.
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4.3 Proofs on Divisibility
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Definition

Recall from Lecture #2:

4.3.1. Definition

Definition: Divisibility

If 𝑛 and 𝑑 are integers, then

 𝑛 is divisible by 𝑑 iff 𝑛 equals 𝑑 times some integer. 

We use the notation 𝑑 | 𝑛 to mean “𝑑 divides 𝑛”.  Symbolically, if 
𝑛, 𝑑 ∈ ℤ:

  𝑑 | 𝑛 ⟺  ∃𝑘 ∈ ℤ such that 𝑛 = 𝑑𝑘.
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Theorems: A Positive Divisor of a Positive Integer

4.3.2. Theorems

Theorem 4.3.1 (5th: 4.4.1) A Positive Divisor of a Positive Integer

For all positive integers 𝑎 and 𝑏, if 𝑎 | 𝑏, then 𝑎 ≤ 𝑏.

Proof (direct proof):
1. Let 𝑎 and 𝑏 be two positive integers and 𝑎 | 𝑏.
 1.1 Then there exists an integer 𝑘 such that 𝑏 = 𝑎𝑘 (by the 

definition of divisibility).
 1.2 Since both 𝑎 and 𝑏 are positive integers, 𝑘 is positive, i.e. 

𝑘 ≥ 1. 
 1.3 Therefore 𝑎 ≤ 𝑎𝑘 = 𝑏.
2. Therefore for all positive integers 𝑎 and 𝑏, if 𝑎 | 𝑏, then 𝑎 ≤ 𝑏.
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Theorems: Divisors of 1

Theorem 4.3.2 (5th: 4.4.2) Divisors of 1

The only divisors of 1 are 1 and -1.

Proof (by division into cases):
1. Suppose 𝑚 is any integer that divides 1.
 1.1 Then there exists an integer 𝑘 such that 1 = 𝑚𝑘 (by the definition of 

divisibility).
 1.2 Since 𝑚𝑘 is positive, either both 𝑚 and 𝑘 are positive, or both negative.
 1.3 Case 1: Both 𝑚 and 𝑘 are positive. 
  1.3.1 Since 𝑚 | 1, 𝑚 ≤ 1 (by Theorem 4.3.1).
  1.3.2 Then 𝑚 = 1.
 1.4 Case 2: Both 𝑚 and 𝑘 are negative.
  1.4.1 Then – 𝑚 is a positive integer divisor of 1, i.e. – 𝑚|1.
  1.4.2 By the same reasoning in 1.3.1 and 1.3.2, −𝑚 = 1, or 𝑚 = −1.

2. Therefore the only divisors of 1 are 1 and -1.
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Theorems: Transitivity of Divisibility

Theorem 4.3.3 (5th: 4.4.3) Transitivity of Divisibility

For all integers 𝑎, 𝑏 and 𝑐, if 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐.

Proof:
1. Suppose 𝑎, 𝑏, 𝑐 are integers s.t. 𝑎 | 𝑏 and 𝑏 | 𝑐.
 1.1 Then 𝑏 = 𝑎𝑟 and 𝑐 = 𝑏𝑠 for some integers 𝑟 and 𝑠. (by the definition 

of divisibility)
 1.2 Then 𝑐 = 𝑏𝑠 = 𝑎𝑟 𝑠 (by substitution) = 𝑎(𝑟𝑠) (by associativity) 
 1.3 Let 𝑘 = 𝑟𝑠, then 𝑘 is an integer (by closure property) and 𝑐 = 𝑎𝑘.

2. Therefore 𝑎 | 𝑐.
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4.4 Indirect Proof



 Direct Proof and Counterexample Rational Numbers Divisibility  Indirect Proof

28

4.4.1. Indirect Proof: Proof by Contradiction

Sometimes when a direct proof is hard to derive, we can 
try indirect proof. 

Example: Theorem 4.7.1 (5th: 4.8.1) 2 is irrational.

Proof by Contradiction

1. Suppose the statement to be proved, 𝑆, is false. That is, 
the negation of the statement, ~𝑆, is true.

2. Show that this supposition leads logically to a 
contradiction.

3. Conclude that the statement 𝑆 is true.

Indirect Proof: Proof by Contradiction
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Indirect Proof: Proof by Contradiction

Theorem 4.6.1 (5th: 4.7.1)

There is no greatest integer.

Proof (by contradiction):
1. Suppose not, i.e. there is a greatest integer.
 1.1 Let call this greatest integer 𝑔, and  𝑔 ≥ 𝑛 for all integers 𝑛.
 1.2 Let 𝐺 =  𝑔 + 1. 
 1.3 Now, 𝐺 is an integer (closure of integers under +) and 𝐺 > 𝑔.
 1.4 Hence, 𝑔 is not the greatest integer → contradicting 1.1.

2. Hence, the supposition that there is a greatest integer is false. 

3. Therefore, there is no greatest integer.
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4.4.2. Indirect Proof: Proof by Contraposition

Recall: Contrapositive of 𝑝 → 𝑞 is ~𝑞 → ~𝑝.

Proof by Contraposition

1. Statement to be proved: ∀𝑥 ∈ 𝐷 𝑃 𝑥 → 𝑄 𝑥 .

2. Rewrite the statement into its contrapositive form:

  ∀𝑥 ∈ 𝐷 ~𝑄 𝑥 → ~𝑃 𝑥 .

3. Prove the contrapositive statement by a direct proof.

 3.1 Suppose 𝑥 is an (particular but arbitrarily chosen) element of 
𝐷 s.t. 𝑄(𝑥) is false.

 3.2 Show that 𝑃(𝑥) is false.

4. Therefore, the original statement 

∀𝑥 ∈ 𝐷 𝑃 𝑥 → 𝑄 𝑥  is true.

Indirect Proof: Proof by Contraposition
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Indirect Proof: Proof by Contraposition

Proposition 4.6.4 (5th: 4.7.4)

For all integers 𝑛, if 𝑛2 is even than 𝑛 is even.

Recall that in Lecture 1, we use the following 

proposition to prove that 2 is irrational.

We shall now prove this proposition.
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Indirect Proof: Proof by Contraposition

Proposition 4.6.4 (5th: 4.7.4)

For all integers 𝑛, if 𝑛2 is even then 𝑛 is even.

Proof (by contraposition):
1. Contrapositive statement: 
 For all integers 𝑛, if 𝑛 is odd then 𝑛2 is odd.
2. Let 𝑛 be an arbitrarily chosen odd number.
 2.1 Then 𝑛 = 2𝑘 + 1 for some integer 𝑘 (by definition of odd number).
 2.2 Then 𝑛2 = 2𝑘 + 1 2𝑘 + 1 = 4𝑘2 + 4𝑘 + 1 = 2 2𝑘2 + 2𝑘 + 1
 2.3 Let 𝑚 = 2𝑘2 + 2𝑘. Now, 𝑚 is an integer (by closure property) and 

𝑛2 = 2𝑚 + 1. 
 2.4 So 𝑛2 is odd.

3. Therefore, for all integers 𝑛, if 𝑛2 is even then 𝑛 is even.


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