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“For whereas in the past it was thought that every
branch of mathematics depended on its own
particular intuition which provided its concepts and
prime truths, nowadays it is known to be possible,
logically speaking, to derive practically the whole of
known mathematics from a single source — the
Theory of Sets.”

~Nicolas Bourbaki
Elements of Mathematics: Theory of Sets




Why is Set Theory important for Computer Science?

" |tis a useful tool for formalizing and reasoning about
computation and the objects of computation.

" |t is indivisible from logic where Computer Science
has its roots.

= Applications
= Data structures
= Database theory — databases as relations over sets
* Formal language theory
* Machine learning
= etc.



DEFINITION 3. 'f ........................................................................................................................

A Tz&ring machine is a 7—1111)18, (QJ E! P: (5: q0, Qaccepts Qreject), where QJ Y , M are all
finite sets and

. {2 1s the set of states, |

. 3 is the input alphabet not containing the special blank symbol v,
I'is the tape alphabet, whereu € Tand & C T,

0: QxI'—@Q xT x }LL, R} is the transition function,

. ¢p € Q is the start state,

v Qaceepr € € s the accept state, and

N M R W N

Grejece € () 15 the reject state, where Greject 7= Qaccept-

Ref: Introduction to the Theory of Computation by Michael Sipser
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5. Set Theory

5.1 Definitions

e Set-roster notation; set-builder notation; replacement notation.
e Membership; cardinality.

e Subsets; proper subsets; empty set; singleton.
e Ordered pairs; Cartesian products.

e Set equality; Venn diagrams; operations on sets (union, intersection,
difference, complement).

e Partitions of sets; power sets.

5.2 Properties of Sets

e Some subset relations

e Procedural versions of set definitions
e Set identities

Reference: Epp’s Chapter 6 Set Theory
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5.1 Definitions
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Definitions: Set-roster Notation

5.1.1. Definitions

= Asetisaunordered collection of objects.

" The objects are called members or elements of the set.
$={3,a,V5}

Days = { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }

Set-Roster Notation

A set may be specified by writing all of its elements between braces.
Examples: {1, 2, 3}, {1, 2, 3, ..., 100}, {1, 2, 3, ...}.

(The symbol - is called an ellipsis and is read “and so forth”.)

* Order and duplicates do not matter.

{9l8l7}={71918}={7181719191717}

A We distinguish between set and multiset. Eg: {a, b, c} and {3, b, b, c}
are two different multisets. Multisets are not in the scope of this lecture.
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Definitions: Membership and Cardinality of a Set

Definition: Membership of a Set (Notation: €)

If S is a set, the notation x € S means that x is an element of S.
(x € S means x is not an element of S.)

= Eg:b €{a,b,c}; 456 €{1,2,3,...,999}; f & {a, b, c}.

Definition: Cardinality of a Set (Notation: |S])

The cardinality of a set S, denoted as |S]|, is the size of the set, that is,
the number of elements in S.

= Eg: |{a,b,c}| = 3.

A The notation | | can also mean absolute value, so the meaning
depends on context. Sometimes, cardinality of a set S is denoted by
n(S) or #5. We will use the notation |S] in CS1231S.
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Definitions : Membership and Cardinality of a Set

a. Is{a} € {a,{a,b},c}?

No. The 3 members of {a,{a, b}, c} are a, {a, b} and c.

b. What is the cardinality of the set {1,{1,2}, {3,{4,5}, 6}, {2,3}}?
4
c. Foreachintegern,let U, = {n,—n}.
Find |U4|, |[U_<| and |Uy]|.

Uyl = {1, —1}] = 2;
U_s| = {-=5,5}| = 2;
Uo|l = [{0,—0}]| = |{0}] = 1.
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Commonly used sets

Table 5.1. Common Sets

Symbol Meaning
N The set of all natural numbers {0, 1, 2, 3,...}*
Z The set of all integers
Q The set of all rational numbers
R The set of all real numbers
C The set of all complex numbers
YAl The set of all positive integers A Q*, Q" Q.
/A The set of all negative integers > R*,R7,R,,,, etc.
L The set of all non-negative integer | =13 AR Sl

*: In this module we define the set N to include zero.

A Zero is neither positive nor negative.

10
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Using the set-builder notation

Describe each of the following sets.

a. {xeR: -2 <x <5}
The open interval of real numbers (strictly) between -2 and 5,
pictured as follows:

-3 -2 -1 0 1 2 3 4 5 6 7 8
<« O—————f——f——f——f—(———1——>

b. {x€Z:-2<x <5}

The set of all integers (strictly) between -2 and 5, that is,
{ _1; 01 1; 2; 3; 4}

c. {x€Z":-2<x<5}
The set{1, 2, 3, 4}.

11
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Set-builder notation

Another way to specify a set is to describe its elements. This is
called the set-builder notation.

Set-Builder Notation

Let U be a set and P(x) be a predicate over U. Then the set of all
elements x € U such that P(x) is true is denoted

{xeU:P(x)} or {xeU|P(x)}

which is read as “the set of all x in U such that P(x) (is true)”.

= Example: {x € Zs, : Even(x)}, where Even(x) means
“x is even”, is the set of non-negative even integers.

To check whether an object z is an element
of thesetS ={x € U : P(x)},

* [fz€ UandP(z)istrue, thenz € S. Those x
» Ifz& U,thenz & S.

satisfying ~P(x) ’
» |f~P(z),thenz & S.

Those x
satisfying P(x)
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Replacement notation

Yet another way to specify a set uses the replacement notation.

Replacement Notation

Let A be a set and t(x) be a term in a variable x. Then the set of all objects
of the form t(x) where x ranges over the elements of A4 is denoted

{t(x) : x € A} or {t(x)|x € A}

which is read as “the set of all t(x) where x € A”.

"= Eg:Theelementsof S ={x + 1: x € Z,} are precisely those x + 1 where
X € Zsp, i.e., the positive integers. So,1 =0+ 1€ Sbut0 &S.

To check whether an object z is an
element of S = {t(x) : x € A}: E>

= |fthereisanx € A suchthatt(x) = z, ab c
thenz € S,elsez ¢ S. -

A {t(x) : x € A}
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Subsets, Proper Subsets, Empty Set and Singleton

5.1.2. Subsets, Proper Subsets, Empty Set and Singleton

Definitions: Subset and superset

Let A and B be sets. A is a subset of B, written A € B, iff every element

of A is also an element of B.
Avoid the symbol C as it means

Symbolically: different things to different people .

ACBiffVx(x € A= x €B)
Another way of saying “A is a subset of B” is “A is contained in B”.

If A € B, we may also write B 2 A which reads as “B contains A” or “B
includes A” or “B is a superset of A”.

Definition: Proper Subset

Let A and B be sets. A is a proper subset of B, denoted A € B, iff
A € B and A # B. In this case, we may say that the inclusion of A in
B is proper or strict.
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Subsets, Proper Subsets, Empty Set and Singleton

= |t follows from the definition of subset that for a set A not
to be a subset of a set B means that there is at least one
element of A that is not an element of B.

= Symbolically: | A€Be3Ix (x € AANx &€ B).

Subset Proper Not subset
subset

= A set with no element, {}, is an empty set, denoted as Q.

Theorem 6.2.4

An empty set is a subset of every set, i.e. @ € A for all sets A.

= A set with exactly one element is called a singleton.

15
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Distinction between € and €

Which of the following are true?

a. 0e{l1,23}x

b. v @ € {1,2,3}

c. v2 €{1,2,3)}

d. {2} €{1,2,3} X

e. 2¢c{1,23} X

f. v {2} €{1,2,3}

g. v {2,3} €{1,2,3)}

h. {2} < {{1},{2},{3}} %
v {2} € {{1},{2},{3}}

16
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Ordered Pairs

5.1.3. Ordered Pairs

Definition: Ordered Pair

An ordered pair is an expression of the form (x, y).
Two ordered pairs (a, b) and (¢, d) are equal iffa = cand b = d.
Symbolically: (a,b) = (c,d) & (a=c) A (b = qd).

a. Is(1,2) = (2,1)? No (although {1,2} = {2,1})

b. 1s (3,0.5) = (\/9, %)? (Assuming all values are positive.)

Yes
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Cartesian Products

5.1.4. Cartesian Products

Definition: Cartesian Product

Given sets A and B, the Cartesian product of A and B, denoted A X B

and read “A cross B”, is the set of all ordered pairs (a, b) where aisin A
and b isin B.

Symbolically: AX B ={(a,b) : a€ AANb € B}.
let A = {1,2,3} and B = {u, v}.
a. FINndAX B AxB={1,u),2uw),(3uw),(,v),2v),3 v
b. iIndBXA BxA={w1),w?2),w3),w1),w2),,3)}
c. FindBX B BXxB={uuw), () uw), )}

d. How many elements are therein A X B, B X A4, and B X B?
6,6, and 4
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Cartesian Products

Let IR denote the set of all real numbers. Describe R X IR.

R X R is the set of all ordered pairs (x,y) where x,y € R.

Each ordered pair (x,y) can be said to correspond to a unique
point in the plane where x and y indicate the horizontal and
vertical positions of the point.

The term Cartesian plane is often used to refer to a plane with
this coordinate system.

YA
(735 2)
.

1 4+ e (2,1)

X

T T T T T T T T
-4 -3 =2 -1 1 2 3 4

(—2,-2) 24+  e(l,-2)

Figure 1.2.1 A Cartesian Plane

19
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Set Equality

5.1.5. Definition: Set Equality

Sets A and B are equal if, and only if, they have
exactly the same elements.

Definition: Set equality

Given sets A and B, A equals B, written A = B iff every element of A is
in B and every element of B is in A.

Symbolically: A=B & AS BAB C A.

Basic method for proving that two sets are equal:

1. Letsets X andY be given. Toprove X = Y:
2. (€)ProvethatX €Y.

3. (2)ProvethatY €S X (orX 2Y).

4. From (2) and (3), conclude that X =Y.

20



Definitions Properties of Sets
(ool oNoN JoNoNoNONe) [oNoNe]

a.letd = {1,2,3},B = {3,1,2}and C = {1,1,2,3,3,3}.
Are they the same set?

Set Equality

Yes, they are the same set, each containing three elements: 1, 2 and 3.

b. Is{9} =9?
No, {9} # 9 because {9} is aset but 9 is not.

c. 1s{9} ={{9}}?

No, {9} # {{9}} because {9} is a set with the element 9
whereas {{9}} is a a set with the element {9}.

d. Is {9} = {9, §}?

No, {9} # {9, ©} because {9} is a set with one element

whereas {9, @} is a set with two elements.
Alternatively, since {9, @} € {9}, hence {9} # {9, 0}.

21
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Set Equality

A=B<© ACBANBCA
From the definition of subset:

ACBiffvx(x€A=>x€RB)
We have this alternative definition for set equality.

Definition: Set equality

Given sets A and B, A equals B, written A = B iff every element of A is
in B and every element of B is in A.

Symbolically: A=B © Vx (x € A © x € B).
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Set Equality

Example: Prove that {x € Z : x* = 1} = {1, —1}.

Proof
1. (=)
1.1. Takeanyz € {x € Z: x* = 1}.
1.2. Thenz € Z and z% = 1.
1.3. So,z>—1=(z—1)(z+ 1) = 0. (by basic algebra)
1.4, ~.z—1=0o0rz+1=0.
1.5. ~z=1orz=—1.
1.6. So, z € {1,—1}.

2. (&)
2.1. Takeanyz € {1,—1}.
2.2. Thenz=1orz = —1.
2.3. In either case, we have z € Z and z% = 1.
24. So,z€{x €Z:x*=1}.
3. Therefore, {x € Z : x* = 1} = {1, —1}. (from (1) and (2))

23

&
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Venn Diagrams

5.1.6. Venn Diagrams

If sets A and B are represented as regions in the plane,
relationships between A and B can be represented by
pictures, called Venn diagrams, introduced by the
British mathematician John Venn in 1881.

A
Ok .
(b) (c)

(a) (b) (a)
ACB
Figure 6.1.1 AZB

Figure 6.1.2

24
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Operations on Sets

5.1.7. Operations on Sets

Universal set:

Most mathematical discussions are carried on within some
context. For example, in a certain situation all sets being
considered might be sets of real numbers.

In such a situation, the set of real numbers would be called a
universal set or a universe of discourse for the discussion.
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Operations on Sets

Union, intersection, difference and complement.

Let A and B be subsets of a universal set U.

1. The union of A and B, denoted A U B, is the set of all elements that are in
at least one of 4 or B.

2. The intersection of A and B, denoted A N B, is the set of all elements that
are common to both 4 and B.

3. The difference of B minus A (or relative complement of A in B), denoted
B — A, or B\ A, is the set of all elements that are in B and not A.

4. The complement of 4, denoted 4, is the set of all elements in U that are
not in A. (Note: Epp uses the notation A°.)

Symbolically: AUB={x€eU:xe€e AVx € B},
ANB={x€eU:xe€ ANx € B},
B\A={xeU:x€BAx¢&A}
A={x€eU|x¢A}.
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Operations on Sets

Union, intersection, difference and complement.

U U U U
Shaded region Shaded region Shaded region Shaded region
represents A U B. represents A N B. represents B — A. represents A°.
Figure 6.1.4

Let the universal setbe U = {a, b,c,d, e, f, g} and
letA ={a,c,e,gtand B ={d,e,f,g}.Find
a. AuB H{acdef,g}

b. AnB {e g} Note: In a context where U is the universal
set (so that implicitly means U 2 X), the

c. B\A U f} complement of X, denoted X or X¢, is

d A {b,d, f} definedby X = U \ X.

{f} 27
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Operations on Sets

Intervals of real numbers:
There is a convenient notation for subsets of real
numbers that are intervals.

Interval notation

Given real numbers a and b with a < b:

(a,b) ={x €ER:a < x < b}, [a,b] ={x ER:a < x < b},
(a,b]={x€R:a<x<b} l[a,b) ={x ER:a < x < b}.

The symbols co and —oo are used to indicate intervals that are unbounded
either on the right or on the left:

(a,0) ={x eR:x > a}, [a,0) ={x ER:x > a},
(—oo,b) = {x € R: x < b}, (—oo, bl ={x €R:x < b}.

Note: Observe that the notation for the interval (a, b) is
identical to the notation for the ordered pair (a, b). However,
context makes it unlikely that the two will be confused.
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Operations on Sets

The definitions of unions and intersections for more than two
sets are very similar to the definitions for two sets.

» UlLoAd;i =4 UAU--UA,

" Nitodi =4pNA;N--NA,

Unions and Intersections of an Indexed Collection of Sets
Given sets Ay, A, A», ... that are subsets of a universal set U and given a nonneg-
ative integer n,

n

UAf ={xeU|x e A, foratleastone i =0,1,2,...,n}
i=0

o0

U A; = {x € U | x € A, for at least one nonnegative integer i }
=0

n

ﬂAl-:{erlxeA,-forall i=0,1,2,...,n}

i=0

o0
ﬂ A; = {x € U | x € A, for all nonnegative integers i }.
=0

29
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Partition of Sets

5.1.8. Partitions of Sets

In many applications of set theory, sets are divided

up into nonoverlapping (or disjoint) pieces. Such a
division is called a partition.

Two sets are disjoint iff they have no elements in common.
Symbolically: A and B are disjoint iff AN B = @.

Sets A4, A5, A3, -+ are mutually disjoint (or pairwise disjoint or
nonoverlapping) iff no two sets A; and A; with distinct subscripts have
any elements in common, i.e. foralli,j = 1,2,3, -

A; N Aj = @ whenever i # j.
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Partition of Sets

Suppose A, A, A,, A;, and A, are b
the sets of points represented by

the regions shown in Figure 6.1.5. "
Then A,, A,, A;, and A, are subsets A Partition of a Set
OfA, and A =A1UA2UA3UA4. Figure 6.1.5

Suppose further that boundaries are assigned to the
regions representing A,, A,, A;, and A, in such a way that
these sets are mutually disjoint.

Then A is called a union of mutually disjoint subsets, and
the collection of sets {A,, A,, A;, A,}is said to be a
partition of A. y
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Partition of Sets

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there
exist unique integers q and r such that

n=dqg+r and 0<r <d.

Examples:
= n=54d=4
54 =4-13 + 2; henceq =13 andr = 2.
= n=-27,d=5
—27=5:(—6)+ 3; henceq = —6andr = 3.

32
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Partition of Sets

a. LetA={1,2,3,4,5,6} A, =11, 2}, A,=1{3, 4}, and
A; =15, 6}.Is{A,, A,, A} a partition of A?

Yes. A=A, UA, UA;and thesets A, A,, and A, are mutually disjoint.

b. Let Z be the set of all integers and let

Ty = {n € Z : n = 3k, for some integer k},
T, ={n€Z:n=3k+1,for someinteger k}, and
T, ={n€Z:n=3k+ 2, forsome integer k}.

Is{T,, T,, T,} a partition of Z?

Yes. By the quotient-remainder theorem, every integer n can be
written in exactly one of the three forms: n = 3k, or n = 3k+1, or
n = 3k + 2 for some integer k. This implies that T,, T, and T, are
mutually disjointand Z=T,U T, U T,.
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Power Sets

5.1.9. Power Sets

There are various situations in which it is useful to
consider the set of all subsets of a particular set.

The power set axiom guarantees that this is a set.

Given a set A, the power set of A, denoted P (A), is the set of all
subsets of A.

Let A = {x, y}. Find the power set of 4, i.e. P(A).

P(A) is the set of all subsets of A. Therefore

P(A) = {0, {x}, {y} {x, y}}
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Power Sets

The number of subsets of a set is the number of elements of its
power set. Assume that set A is a finite set.

Theorem: Cardinality of Power Set of a Finite Set
Let A be a finite set where |4| = n, then |P(4)| = 2™

The proof uses mathematical induction (to be covered in lecture 8) and is
based on the following observations. Suppose A is a set and z € A.

= The subsets of A can be split into two groups: those that do not contain z and
those that contain z.

"= The subsets of A that do not contain z are the same as the subset of A — {z}.

=  The subsets of A that do not contain z can be matched up one for one with
the subsets of A that do contain z by matching each subset that does not
contain z to the subset that contains z.

=  Thus, there are as many subsets of A that contains z as there are subsets of A
that do not contain z. 35
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Power Sets

For instance, if A = {x,y, z}, the following table shows the
correspondence between subsets of A that do not contain z and
subsets of A that contain z.

Subsets of A that Subsets of A that
do not contain z contain z
@ > O U {z} = {z}
{x} — {x}uiz} ={xz}
{v} — rufz}={y z}
{x,y} — {x,y}ufz} ={x,y, 2}

Theorem 6.3.1

Suppose 4 is a finite set with n elements, then P (A) has 2"
elements. In other words, |P(4)| = 2/4l.
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Ordered n-tuples and Cartesian Products (Revisit)

5.1.10. Ordered n-tuples and Cartesian Products (Revisit)

Letn € Z* and let x4, x5, -**, X,, be (not necessarily distinct) elements. An

ordered n-tuple is an expression of the form (x4, x5, -, x,,).
An ordered pair is an ordered 2-tuple; an ordered triple is an ordered 3-tuple.

Equality of two ordered n-tuples:
(X1, X2, %) = (Y1, Y2, V) © X1 = Y1, X2 = Y2, Xn = Yn.

Given sets A4, 4,, -+, A,,, the Cartesian product of A, 4,,---, A,,, denoted
Ay X A, X -+ X A, is the set of all ordered n-tuples (a;, a,, -+, a,) where
al (S All az (S Az, Y, an (S ATL'
Al XAZ X “'XAn - {(al,az,'“,an) . al E Al /\az E Az /\"'/\an E ATL}

If Aisaset,thenA"=AXAX - X A.
\ )

Y
n many A’s
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Ordered n-tuples and Cartesian Products (Revisit)
let A, = {x,y}, A, = {1,2,3} and A5 = {a, b}.
a. Find A; X A,.
Al X AZ — {(X, 1)1 (x, 2)1 (x, 3)1 (y' 1)1 (yl 2)) ()’» 3)}

b. Find (4% A,) X As.
(A;X A,) X A3 ={(uw,v) : u€ A; XA, and v € A3}
= {((x,1),a),((x,2),a),((x,3),a), ((y,1),a), (¢, 2),a), ((y,3),a),
((x,1),b),((x,2),b),((x,3),b),((, D, b),((»,2),b),((,3),b)}
c. Find A; X A, X A;.

A XA, X Az = {(u,v,w): u € A;,v € A, and w € A3}
={(x,1,a),(x,1,b),(x,2,a),(x,2,b), (x,3,a), (x,3,b),
(v,1,a),(y,1,b),(y,2,a),(y,2,b),(y,3,a),(y,3,b)}

38
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5.2 Properties of Sets

39
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Properties of Sets

5.2.1 Properties of Sets

We begin by listing some set properties that involve
subset relations.

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets A and B,

() ANBCEA (b) ANBCEB
2. Inclusion in Union: For all sets A and B,
(a) ASAUB (b) BE€EAUB

3. Transitive Property of Subsets: For all sets A, B and C,
ASBABC(C—->ACC.

40
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Properties of Sets

Procedural versions of the definitions of the other set
operations are derived similarly and are summarized
below.

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose a and b are
elements of U.

1. aeXUY&©oaeXVaeyY
aeEXNYoSaeXNaeyY
aeEX—-YoaeXANa&Y
aeEXagX

(a,b)) EXXYSaeXAbeY

U g B9 [

Note: In a context where U is the universal set (so that
implicitly means U 2 X), the complement of X, denoted X or
X¢,isdefinedby X = U \ X.
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Set Identities

5.2.2 Set Identities

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative Laws: For all sets A and B,

(@) AUB=BUA and (b) AnB =B N A.
2. Associative Laws: For all sets A, B and C,

(@) AUB)UC=AU(BUC) and (b) ANB)NC=A4n(BnC).
3. Distributive Laws: For all sets A, B and C,

(@ AuBNnC)=(AuB)Nn(AUuC) and

(b) AN(BUC)=(ANB)U(ANC).

4. Identity Laws: For all sets A,

(@) Aup =4 and (b) AnU = A.
5. Complement Laws: For all sets A,
(@) AUA=U and (b) AnA=09.

6. Double Complement Law: For all sets A,
A=A
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Set Identities

Theorem 6.2.2 Set Identities

7. ldempotent Laws: For all sets A,

(a) AUA=A and (b) AN A = A.
8. Universal Bound Laws: For all sets A4,

(a) AuU=U and (b)) An@=0.
9. De Morgan’s Laws: For all sets A and B,

() AUB=ANB and (b) ANB=AUB.
10. Absorption Laws: For all sets A and B,

(a) AU(ANB) = A and (b) AN(AUB) = A.
11. Complements of U and ©:

(@) U=0 and (b) @ =U.

12. Set Difference Law: For all sets A and B,
A\B=AnNB.
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Properties of Sets

Table 6.4.1 summarizes the main features of the logical
equivalences from Theorem 2.1.1. and the set properties from
Theorem 6.2.2. Notice how similar they are.

In fact, both are special cases of the same general structure,
known as a Boolean algebra.

Logical Equivalences Set Properties
For all statement variables p. ¢, and r: For all sets A, B, and C:
a.pvg=qgvp a. AUB=BUA
b.prg=gnrp b ANB=BNA
apnrlgnrr)=pnalgnr) a. AUBUC) = AU(BUC)
b.pvigvri=pvigvr) bAN(BNC)=AN(BNC)
a.pAlgvry=(prg)Vv(pAar) A AN(BUC) =(ANB)U(ANC)
b.pvigar)=(pvag)n(pvr) b.AU(BNC)=(AUB)N(AUC)
A pvVe=p a AUN=A
b.pat=p b.ANU = A

Table 6.4.1 44
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Properties of Sets

a. pv~p=t a. AUA=U
b. pA ~p=c b.ANA =0
~(~p)=p (A=A

a. pVp=p a. AUA=A
b.pAp=p bbANA=A
a.pVvt=t a. AUU =U
b.pArnc=c b.ANP =1V

a.~(pVq)=~pA ~q
b.~(p Ag) =~pV ~q

a. (AU B)" = A° N B
b. (AN B)° = A° U B°

a.pVv((pAg)=p
b.pAan(pvg)=p

A, AU(ANB) = A
b.AN(AUB) = A

a.~t=¢
b.~c=t

a. U =0
b. ) =U

Table 6.4.1 (continued)
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Examples

5.2.3 Examples of Proofs involving Sets

Example #1: Prove the De Morgan’s law below by working in the
universal set U and using definition of set operations and laws for
propositional logic.

AUB = AN B (De Morgan’s law)

Proof:
1. Letz € U.
2. 2.1. Then z€AUB
22 & ~(z€ AUB) by the definition of

23 © ~((z eA)V(zE€ B)) by the definition of U
24 & (z¢ A)A(z ¢ B) by De Morgan’s Law for
propositional logic
(ze€ A)A(z€B) by the definition of
z€ANB by the definition of N

2.5
2.6

)
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Examples

5.2.3 Examples of Proofs involving Sets

Example #2: Using set identities (Theorem 6.2.2), prove the
following: Under the universal set U, show that

(ANB)U (A\ B) = Aforallsets 4, B.

Proof:

1. ANB)U(A\B)=(ANB)U(ANB) bythe Set Difference Law
2. =ANn(BUB) by the Distributive Law
3. =ANU by the Complement Law
4. =A by the Identity Law
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5.3 Paradoxes and Axiomatisation

Only for reading!
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So far, we described the sets like this {x € R: =2 < x < 5}

(Unrestricted) Comprehension Principle

If P is property (a predicate) , then there exists a set {x : P(x)}.

Hmm... where does x come from?

Let D be a set that contains “everything”!
x comes from D!
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Russell’s Paradox (Paraphrased).

(Unrestricted) Comprehension Principle leads to a contradiction.

Proof:

1. LetD be the set of all possible sets in the world.

2. Consider a predicate over D, P(x) = x & x. This predicate
evaluates to true if the set x does not contain itself.

3. Using comprehension principle, let us construct

A={xeD|P(x)}

(A represents a set that contains all those sets that do not contain
themselves.)
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Russell’s Paradox (Paraphrased).

(Unrestricted) Comprehension Principle leads to a contradiction.

Proof:

4. Suppose that A € A:
4.1 Then by definition of the set A, P(A4) is true.
4.2 By definition of the predicate, A & A.
4.3 Contradiction

5. Suppose that 4 &€ A:
5.1 Then by definition of the set A, P(A) is not true.
5.2 By definition of the predicate, A € A.
5.3 Contradiction

6 %k %k %k 3k 3k %k %k Xk %k
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Cantor’s Paradox (Paraphrased).

Existence of D leads to contradiction.

Proof:

1. Let D be a set that contains “everything” (all possible sets).
2. Then, P(D) denotes the power set of D.

3. Cardinality of P(D) is strictly larger than the cardinality of D.
4. Contradiction (D shwld contain everything including P (D) )

Wait for Lecture 9
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Where have we gone wrong?
» We allowed existence/creation of the universal set.
» We allowed unrestricted creation of the new sets.

» We allowed possibility of set that may contain itself.

Premises are false!
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Axiomatisation

1890s - Cantor’s Paradox

1901 - Russell’s Paradox cure

In 1908, Zermelo gave the initial set of axioms to'the set theory.
These were later modified by Skolem and Frankel in 1922.

They are known as ZF Axioms.
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Zermelo-Frankel Axioms

1. Extensionality Axiom

Two sets are equal if and only if they have the same elements.

2. Null Set Axiom

There exists a set with no elements.

3. Pairing Axiom

Given any sets x and y, there is a set whose elements are x and y.
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Zermelo-Frankel Axioms

4. Union Axiom

Given any set x (whose elements are sets), there is a set which has its
elements all elements of elements of x.

5. Power Set Axiom

Given any set x, there is a set which has its elements all subsets of x.

6. Separation Axiom

Given a well-formed property P and any set x, there is a set
{yex| Py}
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Zermelo-Frankel Axioms

7. Replacement Axiom

Given any well-formed formula #(x, y), which determines a function
and any set u, there is a set v consisting all objects y for which there is
x € u such that #(x, y) holds.

8. Infinity Axiom

There is a set x such that ¢ € x and such that for every set u € x we
have u U {u} € x.

9. Foundation Axiom

Every non-empty set x contains an element which is disjoint from x.



END OF FILE



	Slide 1: Lecture 5: Set Theory
	Slide 2: Lecture 5: Set Theory
	Slide 3: Lecture 5: Set Theory
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

