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“For whereas in the past it was thought that every 
branch of mathematics depended on its own 
particular intuition which provided its concepts and 
prime truths, nowadays it is known to be possible, 
logically speaking, to derive practically the whole of 
known mathematics from a single source – the 
Theory of Sets.”

~Nicolas Bourbaki
Elements of Mathematics: Theory of Sets
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Why is Set Theory important for Computer Science?

▪ It is a useful tool for formalizing and reasoning about 
computation and the objects of computation.

▪ It is indivisible from logic where Computer Science 
has its roots.

▪ Applications

▪ Data structures

▪ Database theory – databases as relations over sets

▪ Formal language theory

▪ Machine learning

▪ etc.
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Ref: Introduction to the Theory of Computation by Michael Sipser
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5. Set Theory

5.1 Definitions

• Set-roster notation; set-builder notation; replacement notation.

• Membership; cardinality.

• Subsets; proper subsets; empty set; singleton. 

• Ordered pairs; Cartesian products.

• Set equality; Venn diagrams; operations on sets (union, intersection, 
difference, complement).

• Partitions of sets; power sets.

5.2 Properties of Sets

• Some subset relations

• Procedural versions of set definitions

• Set identities

Definitions  Properties of Sets

Reference: Epp’s Chapter 6 Set Theory
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5.1 Definitions
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▪ A set is a unordered collection of objects.
▪ The objects are called members or elements of the set.

5.1.1. Definitions

S = { 3, a, 5 }

Days = { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }

▪ Order and duplicates do not matter.

{ 9, 8, 7 } = { 7, 9, 8 } = { 7, 8, 7, 9, 9, 7, 7 }

Set-Roster Notation

A set may be specified by writing all of its elements between braces.

Examples: {1, 2, 3}, {1, 2, 3, …, 100}, {1, 2, 3, …}. 

(The symbol ⋯ is called an ellipsis and is read “and so forth”.)

We distinguish between set and multiset. Eg:  {a, b, c} and {a, b, b, c} 
are two different multisets. Multisets are not in the scope of this lecture.
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▪ Eg: 𝑏 ∈ 𝑎, 𝑏, 𝑐 ; 456 ∈ 1, 2, 3, … , 999 ; 𝑓 ∉ {𝑎, 𝑏, 𝑐}. 

Definition: Membership of a Set (Notation: ∈)

If 𝑆 is a set, the notation 𝑥 ∈ 𝑆 means that 𝑥 is an element of 𝑆. 
(𝑥 ∉ 𝑆 means 𝑥 is not an element of 𝑆.)

▪ Eg: 𝑎, 𝑏, 𝑐 = 3. 

Definition: Cardinality of a Set (Notation: |𝑆|)

The cardinality of a set 𝑆, denoted as |𝑆|, is the size of the set, that is, 
the number of elements in 𝑆.

The notation | | can also mean absolute value, so the meaning 
depends on context. Sometimes, cardinality of a set 𝑆 is denoted by 
𝑛(𝑆) or #𝑆. We will use the notation |𝑆| in CS1231S.
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

b. What is the cardinality of the set 1, 1,2 , 3, 4,5 , 6 , 2,3 ?

4

c. For each integer 𝑛, let 𝑈𝑛 = {𝑛, −𝑛}. 
 Find |𝑈1|, |𝑈−5| and |𝑈0|.

|𝑈1| = 1, −1 = 2;

𝑈−5 = −5, 5 = 2;

𝑈0 = 0, −0 = 0 = 1.

a. Is 𝑎 ∈ 𝑎, 𝑎, 𝑏 , 𝑐  ?

No. The 3 members of 𝑎, 𝑎, 𝑏 , 𝑐  are 𝑎, {𝑎, 𝑏} and 𝑐.
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Table 5.1. Common Sets 

Symbol Meaning

ℕ The set of all natural numbers {0, 1, 2, 3,…}*

ℤ The set of all integers

ℚ The set of all rational numbers

ℝ The set of all real numbers

ℂ The set of all complex numbers

ℤ+ The set of all positive integers

ℤ− The set of all negative integers

ℤ≥0 The set of all non-negative integer

*: In this module we define the set ℕ to include zero.

ℚ+, ℚ−, ℚ≥𝑚, 
ℝ+, ℝ−, ℝ≥𝑚, etc. 
are defined similarly.

Zero is neither positive nor negative. 
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Describe each of the following sets.

a. {𝑥 ∈ ℝ ∶ −2 < 𝑥 < 5}

b. {𝑥 ∈ ℤ ∶ −2 < 𝑥 < 5}

c. {𝑥 ∈ ℤ+ ∶ −2 < 𝑥 < 5}

The open interval of real numbers (strictly) between -2 and 5, 
pictured as follows:

The set of all integers (strictly) between -2 and 5, that is,
{ -1, 0, 1, 2, 3, 4}.

The set { 1, 2, 3, 4}.
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Another way to specify a set is to describe its elements. This is 
called the set-builder notation. 

Set-Builder Notation

Let 𝑈 be a set and 𝑃(𝑥) be a predicate over 𝑈. Then the set of all 
elements  𝑥 ∈ 𝑈 such that 𝑃(𝑥) is true is denoted

{𝑥 ∈ 𝑈 ∶ 𝑃 𝑥 } or   𝑥 ∈ 𝑈 𝑃 𝑥 }

which is read as “the set of all 𝑥 in 𝑈 such that 𝑃(𝑥) (is true)”.

Definitions   Properties of Sets

▪ Example: {𝑥 ∈ ℤ≥0 ∶ 𝐸𝑣𝑒𝑛 𝑥 }, where 𝐸𝑣𝑒𝑛(𝑥) means 
“𝑥 is even”, is the set of non-negative even integers.

Those 𝑥 
satisfying 𝑃(𝑥)

Those 𝑥 
satisfying ~𝑃(𝑥)

𝑈
To check whether an object 𝑧 is an element 
of the set 𝑆 = 𝑥 ∈ 𝑈 ∶ 𝑃 𝑥 ,

▪ If 𝑧 ∈ 𝑈 and 𝑃(𝑧) is true, then 𝑧 ∈ 𝑆.

▪ If 𝑧 ∉ 𝑈, then 𝑧 ∉ 𝑆.

▪ If ~𝑃 𝑧 , then 𝑧 ∉ 𝑆.
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Yet another way to specify a set uses the replacement notation. 

Replacement Notation

Let 𝐴 be a set and 𝑡(𝑥) be a term in a variable 𝑥. Then the set of all objects 
of the form 𝑡(𝑥) where 𝑥 ranges over the elements of 𝐴 is denoted

{𝑡 𝑥 ∶ 𝑥 ∈ 𝐴} or   𝑡 𝑥  𝑥 ∈ 𝐴}

which is read as “the set of all 𝑡(𝑥) where 𝑥 ∈ 𝐴”.

Definitions   Properties of Sets

▪ Eg: The elements of 𝑆 = {𝑥 + 1 ∶  𝑥 ∈ ℤ≥0} are precisely those 𝑥 + 1 where 
𝑥 ∈ ℤ≥0, i.e., the positive integers.  So, 1 = 0 + 1 ∈ 𝑆 but 0 ∉ 𝑆.

To check whether an object 𝑧 is an 
element of 𝑆 = 𝑡 𝑥 ∶ 𝑥 ∈ 𝐴 :

▪ If there is an 𝑥 ∈ 𝐴 such that 𝑡(𝑥) = 𝑧, 
then 𝑧 ∈ 𝑆, else 𝑧 ∉ 𝑆.

𝑎, 𝑏, 𝑐, …

𝐴 {𝑡 𝑥 ∶ 𝑥 ∈ 𝐴}

𝑡 𝑎 , 𝑡 𝑏 ,
𝑡(𝑐), …
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Definitions: Subset and superset

Let 𝐴 and 𝐵 be sets. 𝐴 is a subset of 𝐵, written 𝐴 ⊆ 𝐵, iff every element 
of 𝐴 is also an element of 𝐵.

Symbolically:
 𝐴 ⊆ 𝐵 iff ∀𝑥 (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵)

Another way of saying “𝐴 is a subset of 𝐵” is “𝐴 is contained in 𝐵”.

If 𝐴 ⊆ 𝐵, we may also write 𝐵 ⊇ 𝐴 which reads as “𝐵 contains 𝐴” or “𝐵 
includes 𝐴” or “𝐵 is a superset of 𝐴”.

Definition: Proper Subset

Let 𝐴 and 𝐵 be sets. 𝐴 is a proper subset of 𝐵, denoted 𝐴 ⊊ 𝐵, iff 
𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. In this case, we may say that the inclusion of 𝐴 in 
𝐵 is proper or strict.

Avoid the symbol ⊂ as it means 
different things to different people .

5.1.2. Subsets, Proper Subsets, Empty Set and Singleton
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▪ It follows from the definition of subset that for a set A not 
to be a subset of a set B means that there is at least one 
element of A that is not an element of B.

▪ Symbolically: 𝐴 ⊈ 𝐵 ⇔ ∃𝑥 (𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵).

⊆ ⊊ ⊈
Subset Proper 

subset
Not subset

Theorem 6.2.4

An empty set is a subset of every set, i.e. ∅ ⊆ 𝐴 for all sets 𝐴.

▪ A set with no element, {}, is an empty set, denoted as ∅.

▪ A set with exactly one element is called a singleton.
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Which of the following are true?



a. ∅ ∈ {1, 2, 3}

b. ∅ ⊆ {1, 2, 3}

c. 2 ∈ {1, 2, 3}

d. {2}  ∈ {1, 2, 3}

e. 2 ⊆ {1, 2, 3}

f. {2}  ⊆ {1, 2, 3}

g. {2,3}  ⊆ {1, 2, 3}

h. {2}  ⊆ {{1}, {2}, {3}}

i. {2}  ∈ {{1}, {2}, {3}}

✓

✓

✓






✓

✓


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5.1.3. Ordered Pairs

a. Is 1,2 = (2,1)?

b. Is 3,0.5 = ( 9,
1

2
)? (Assuming all values are positive.)

No (although {1,2} = {2,1})

Yes



Definition: Ordered Pair

An ordered pair is an expression of the form (𝑥, 𝑦). 

Two ordered pairs (𝑎, 𝑏) and (𝑐, 𝑑) are equal iff 𝑎 = 𝑐 and 𝑏 = 𝑑. 

Symbolically:  𝑎, 𝑏 = 𝑐, 𝑑 ⇔ (𝑎 = 𝑐) ∧ (𝑏 = 𝑑).
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5.1.4. Cartesian Products

a. Find 𝐴 × 𝐵

b. Find 𝐵 × 𝐴

c. Find 𝐵 × 𝐵

d. How many elements are there in 𝐴 × 𝐵, 𝐵 × 𝐴, and 𝐵 × 𝐵?

𝐴 × 𝐵 = { 1, 𝑢 , 2, 𝑢 , 3, 𝑢 , 1, 𝑣 , 2, 𝑣 , 3, 𝑣 }



Let 𝐴 = {1,2,3} and 𝐵 = {𝑢, 𝑣}.

𝐵 × 𝐴 = { 𝑢, 1 , 𝑢, 2 , 𝑢, 3 , 𝑣, 1 , 𝑣, 2 , 𝑣, 3 }

𝐵 × 𝐵 = { 𝑢, 𝑢 , 𝑢, 𝑣 , 𝑣, 𝑢 , (𝑣, 𝑣)}

6, 6, and 4

Definition: Cartesian Product

Given sets 𝐴 and 𝐵, the Cartesian product of 𝐴 and 𝐵, denoted 𝑨 × 𝑩 
and read “𝐴 cross 𝐵”, is the set of all ordered pairs (𝑎, 𝑏) where 𝑎 is in 𝐴 
and 𝑏 is in 𝐵.

Symbolically:  𝐴 × 𝐵 = { 𝑎, 𝑏 ∶  𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.
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Let ℝ denote the set of all real numbers. Describe ℝ × ℝ.

ℝ × ℝ is the set of all ordered pairs (𝑥, 𝑦) where  𝑥, 𝑦 ∈ ℝ.

Each ordered pair (𝑥, 𝑦) can be said to correspond to a unique 
point in the plane where 𝑥 and 𝑦 indicate the horizontal and 
vertical positions of the point.

The term Cartesian plane is often used to refer to a plane with 
this coordinate system.

Figure 1.2.1 A Cartesian Plane
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5.1.5. Definition: Set Equality

Sets A and B are equal if, and only if, they have 
exactly the same elements.

Definition: Set equality

Given sets 𝐴 and 𝐵, 𝐴 equals 𝐵, written 𝑨 = 𝑩 iff every element of 𝐴 is 
in 𝐵 and every element of 𝐵 is in 𝐴.

Symbolically:  𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴.

Basic method for proving that two sets are equal:

1. Let sets 𝑋 and 𝑌 be given. To prove 𝑋 =  𝑌:
2. (⊆) Prove that 𝑋 ⊆ 𝑌.
3. (⊇) Prove that 𝑌 ⊆ 𝑋 (or 𝑋 ⊇ 𝑌).
4. From (2) and (3), conclude that 𝑋 = 𝑌.
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a. Let 𝐴 =  {1, 2, 3}, 𝐵 =  {3, 1, 2} and 𝐶 =  { 1, 1, 2, 3, 3, 3}. 
 Are they the same set?

Yes, they are the same set, each containing three elements: 1, 2 and 3.

b. Is {9} = 9?



No, {9}  ≠  9 because {9} is a set  but 9 is not.

c. Is {9} = 9 ?

No, {9} ≠ {{9}} because {9} is a set with the element 9 

whereas 9  is a a set with the element {9}.

d. Is {9} = {9, ∅}?

No, {9} ≠ {9, ∅} because {9} is a set with one element 
whereas {9, ∅} is a set with two elements. 
Alternatively, since 9, ∅ ⊈ {9}, hence 9 ≠ 9, ∅ .
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𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

From the definition of subset:

𝐴 ⊆ 𝐵 iff ∀𝑥 (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵)

We have this alternative definition for set equality.

Definition: Set equality

Given sets 𝐴 and 𝐵, 𝐴 equals 𝐵, written 𝑨 = 𝑩 iff every element of 𝐴 is 
in 𝐵 and every element of 𝐵 is in 𝐴.

Symbolically:  𝐴 = 𝐵 ⇔ ∀𝑥 (𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵).
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Example: Prove that 𝑥 ∈ ℤ ∶ 𝑥2 = 1 = 1, −1 .

Proof
1. (⇒)

2. (⇐)

3. Therefore, 𝑥 ∈ ℤ ∶ 𝑥2 = 1 = 1, −1 . (from (1) and (2))

1.1. Take any 𝑧 ∈ 𝑥 ∈ ℤ ∶ 𝑥2 = 1 .
1.2. Then 𝑧 ∈ ℤ and 𝑧2 = 1.
1.3. So, 𝑧2 − 1 = 𝑧 − 1 𝑧 + 1 = 0. (by basic algebra)
1.4. ∴ 𝑧 − 1 = 0 or 𝑧 + 1 = 0. 
1.5. ∴ 𝑧 = 1 or 𝑧 = −1.
1.6. So, 𝑧 ∈ 1, −1 .

2.1. Take any 𝑧 ∈ 1, −1 .
2.2. Then 𝑧 = 1 or 𝑧 = −1.
2.3. In either case, we have 𝑧 ∈ ℤ and 𝑧2 = 1. 
2.4. So, 𝑧 ∈ 𝑥 ∈ ℤ ∶ 𝑥2 = 1 .


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5.1.6. Venn Diagrams

If sets A and B are represented as regions in the plane, 
relationships between A and B can be represented by 
pictures, called Venn diagrams,  introduced by the 
British mathematician John Venn in 1881.

Figure 6.1.1

𝐴 ⊆ 𝐵

𝐴 ⊈ 𝐵

Figure 6.1.2



Definitions   Properties of Sets

Operations on Sets

25

5.1.7. Operations on Sets

Universal set:
Most mathematical discussions are carried on within some 
context. For example, in a certain situation all sets being 
considered might be sets of real numbers.

In such a situation, the set of real numbers would be called a 
universal set or a universe of discourse for the discussion.
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Union, intersection, difference and complement.

Definitions

Let 𝐴 and 𝐵 be subsets of a universal set 𝑈.

1. The union of 𝐴 and 𝐵, denoted 𝑨 ∪ 𝑩, is the set of all elements that are in 
at least one of 𝐴 or 𝐵.

2. The intersection of 𝐴 and 𝐵, denoted 𝑨 ∩ 𝑩, is the set of all elements that 
are common to both 𝐴 and 𝐵.

3. The difference of 𝐵 minus 𝐴 (or relative complement of 𝐴 in 𝐵), denoted 
𝑩 − 𝑨, or 𝑩 \ 𝑨, is the set of all elements that are in 𝐵 and not 𝐴.

4. The complement of 𝐴, denoted ഥ𝑨, is the set of all elements in 𝑈 that are 
not in 𝐴. (Note: Epp uses the notation 𝐴𝑐.)

Symbolically: 𝐴 ∪ 𝐵 = {𝑥 ∈ 𝑈: 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵},

 𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑈: 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵},

 𝐵 \ 𝐴 = {𝑥 ∈ 𝑈: 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴},

 ҧ𝐴 = x ∈ 𝑈 𝑥 ∉ 𝐴}.
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Shaded region

represents A  B.

Shaded region

represents A  B.

Shaded region

represents B – A.

Shaded region

represents Ac.

Figure 6.1.4

Union, intersection, difference and complement.

Let the universal set be 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} and 
let 𝐴 = {𝑎, 𝑐, 𝑒, 𝑔} and 𝐵 = {𝑑, 𝑒, 𝑓, 𝑔} . Find 

a. 𝐴 ∪ 𝐵

b. 𝐴 ∩ 𝐵

c. 𝐵 \ 𝐴 

d. ҧ𝐴


{𝑎, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}

{𝑒, 𝑔}

{𝑑, 𝑓}

{𝑏, 𝑑, 𝑓}

Note: In a context where 𝑈 is the universal 
set (so that implicitly means 𝑈 ⊇ 𝑋), the 
complement of 𝑋, denoted ത𝑋 or 𝑋𝑐, is 
defined by ത𝑋 = 𝑈 \ 𝑋. 
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Intervals of real numbers:
There is a convenient notation for subsets of real 
numbers that are intervals.

Note: Observe that the notation for the interval (a, b) is 
identical to the notation for the ordered pair (a, b). However, 
context makes it unlikely that the two will be confused.

Interval notation

Given real numbers 𝑎 and 𝑏 with 𝑎 ≤ 𝑏:

𝑎, 𝑏 = {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏}, [𝑎, 𝑏] = {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 ≤ 𝑏},

 (𝑎, 𝑏] = {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 ≤ 𝑏}, 𝑎, 𝑏 = {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 < 𝑏}.

The symbols ∞ and −∞ are used to indicate intervals that are unbounded 
either on the right or on the left:

𝑎, ∞ = {𝑥 ∈ ℝ ∶ 𝑥 > 𝑎}, [𝑎, ∞) = {𝑥 ∈ ℝ ∶ 𝑥 ≥ 𝑎},

 (−∞, 𝑏) = {𝑥 ∈ ℝ ∶ 𝑥 < 𝑏}, (−∞, 𝑏] = {𝑥 ∈ ℝ ∶ 𝑥 ≤ 𝑏}.
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The definitions of unions and intersections for more than two 
sets are very similar to the definitions for two sets.
▪ 𝑖=0ڂ

𝑛 𝐴𝑖 = 𝐴0 ∪ 𝐴1 ∪ ⋯ ∪ 𝐴𝑛

▪ 𝑖=0ځ
𝑛 𝐴𝑖 = 𝐴0 ∩ 𝐴1 ∩ ⋯ ∩ 𝐴𝑛



Definitions   Properties of Sets

Partition of Sets

30

5.1.8. Partitions of Sets

In many applications of set theory, sets are divided 
up into nonoverlapping (or disjoint) pieces. Such a 
division is called a partition.

Definition

Two sets are disjoint iff they have no elements in common.

Symbolically: 𝐴 and 𝐵 are disjoint iff 𝐴 ∩ 𝐵 = ∅. 

Definition

Sets 𝐴1, 𝐴2, 𝐴3, ⋯ are mutually disjoint (or pairwise disjoint or 
nonoverlapping) iff no two sets 𝐴𝑖 and 𝐴𝑗 with distinct subscripts have 

any elements in common, i.e. for all 𝑖, 𝑗 = 1,2,3, ⋯

 𝐴𝑖 ∩ 𝐴𝑗 = ∅ whenever 𝑖 ≠ 𝑗.
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Suppose A, A1, A2, A3, and A4 are 
the sets of points represented by 
the regions shown in Figure 6.1.5.

Figure 6.1.5

A Partition of a SetThen A1, A2, A3, and A4 are subsets 
of A, and A = A1 ∪ A2 ∪ A3 ∪ A4.

Suppose further that boundaries are assigned to the 
regions representing A1, A2, A3, and A4 in such a way that 
these sets are mutually disjoint.

Then A is called a union of mutually disjoint subsets, and 
the collection of sets {A1, A2, A3, A4} is said to be a
partition of A.
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Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer 𝑛 and positive integer 𝑑, there 
exist unique integers 𝑞 and 𝑟 such that

𝑛 = 𝑑𝑞 + 𝑟   and   0 ≤ 𝑟 < 𝑑.

Examples:
▪ 𝑛 = 54, 𝑑 = 4

54 = 4 ∙ 13 + 2; hence 𝑞 = 13 and 𝑟 = 2.

▪ 𝑛 = −27, 𝑑 = 5
−27 = 5 ∙ (−6) + 3; hence 𝑞 = −6 and 𝑟 = 3.
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a. Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, and 
A3 = {5, 6}. Is {A1, A2, A3} a partition of A?



Yes. A = A1 ∪ A2 ∪ A3 and the sets A1, A2, and A3 are mutually disjoint.  

Yes. By the quotient-remainder theorem, every integer n can be 
written in exactly one of the three forms: n = 3k, or n = 3k+1, or 
n = 3k + 2 for some integer k. This implies that T0, T1 and T2 are 
mutually disjoint and ℤ = T0 ∪ T1 ∪ T2.

b.  Let ℤ be the set of all integers and let

     Is {T0, T1, T2} a partition of ℤ?

𝑇0 = {𝑛 ∈ ℤ ∶ 𝑛 = 3𝑘, for some integer 𝑘}, 
𝑇1 = {𝑛 ∈ ℤ ∶ 𝑛 = 3𝑘 + 1, for some integer 𝑘}, and
𝑇2 = {𝑛 ∈ ℤ ∶ 𝑛 = 3𝑘 + 2, for some integer 𝑘}. 
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5.1.9. Power Sets

There are various situations in which it is useful to 
consider the set of all subsets of a particular set. 

The power set axiom guarantees that this is a set.

Let 𝐴 = {𝑥, 𝑦}. Find the power set of 𝐴, i.e. 𝒫(𝐴). 

𝒫(𝐴) is the set of all subsets of 𝐴. Therefore

𝒫 𝐴 = ∅, 𝑥 , 𝑦 , 𝑥, 𝑦

Definition

Given a set 𝐴, the power set of 𝐴, denoted 𝒫(𝐴), is the set of all 
subsets of 𝐴. 
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The number of subsets of a set is the number of elements of its 
power set. Assume that set A is a finite set.

The proof uses mathematical induction (to be covered in lecture 8) and is 
based on the following observations. Suppose 𝐴 is a set and 𝑧 ∈ 𝐴.

▪ The subsets of 𝐴 can be split into two groups: those that do not contain 𝑧 and 
those that contain 𝑧.

▪ The subsets of 𝐴 that do not contain 𝑧 are the same as the subset of 𝐴 − {𝑧}.

▪ The subsets of 𝐴 that do not contain 𝑧 can be matched up one for one with 
the subsets of 𝐴 that do contain 𝑧 by matching each subset that does not 
contain 𝑧 to the subset that contains 𝑧.

▪ Thus, there are as many subsets of 𝐴 that contains 𝑧 as there are subsets of 𝐴 
that do not contain 𝑧.

Theorem: Cardinality of Power Set of a Finite Set

Let 𝐴 be a finite set where 𝐴 = 𝑛,  then 𝒫 𝐴 = 2𝑛.
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For instance, if 𝐴 =  {𝑥, 𝑦, 𝑧}, the following table shows the 
correspondence between subsets of 𝐴 that do not contain 𝑧 and 
subsets of 𝐴 that contain 𝑧.

Theorem 6.3.1

Suppose 𝐴 is a finite set with 𝑛 elements, then 𝒫(𝐴) has 2𝑛 

elements. In other words, 𝒫 𝐴 = 2|𝐴|.

Subsets of A that 
do not contain z

Subsets of A that 
contain z

∅ ⟷ ∅ ∪ 𝑧 = 𝑧
{𝑥} ⟷ {𝑥} ∪ 𝑧 = 𝑥, 𝑧
{𝑦} ⟷ 𝑦 ∪ 𝑧 = 𝑦, 𝑧
{𝑥, 𝑦} ⟷ {𝑥, 𝑦} ∪ 𝑧 = 𝑥, 𝑦, 𝑧
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5.1.10. Ordered 𝑛-tuples and Cartesian Products (Revisit)

Definition

Let 𝑛 ∈ ℤ+ and let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be (not necessarily distinct) elements. An 
ordered 𝒏-tuple is an expression of the form 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 .
An ordered pair is an ordered 2-tuple; an ordered triple is an ordered 3-tuple.

Equality of two ordered 𝑛-tuples:
𝑥1, 𝑥2, ⋯ , 𝑥𝑛 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 ⇔ 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, ⋯ , 𝑥𝑛 = 𝑦𝑛.

Definition

Given sets 𝐴1, 𝐴2, ⋯ , 𝐴𝑛, the Cartesian product of 𝐴1, 𝐴2, ⋯ , 𝐴𝑛, denoted 

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, is the set of all ordered 𝑛-tuples 𝑎1, 𝑎2, ⋯ , 𝑎𝑛  where 
𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, ⋯ , 𝑎𝑛 ∈ 𝐴𝑛.

 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = { 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 ∶ 𝑎1 ∈ 𝐴1 ∧ 𝑎2 ∈ 𝐴2 ∧ ⋯ ∧ 𝑎𝑛 ∈ 𝐴𝑛}.

If 𝐴 is a set, then 𝐴𝑛 = 𝐴 × 𝐴 × ⋯ × 𝐴.

n many 𝐴’s
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Let 𝐴1 = {𝑥, 𝑦}, 𝐴2 = {1,2,3} and 𝐴3 = {𝑎, 𝑏}. 

a. Find 𝐴1 × 𝐴2. 

b. Find (𝐴1× 𝐴2) × 𝐴3. 



c. Find 𝐴1 × 𝐴2 × 𝐴3. 

𝐴1 × 𝐴2 = { 𝑥, 1 , 𝑥, 2 , 𝑥, 3 , 𝑦, 1 , 𝑦, 2 , (𝑦, 3)}

(𝐴1× 𝐴2) × 𝐴3 = { 𝑢, 𝑣 ∶  𝑢 ∈ 𝐴1 × 𝐴2 and 𝑣 ∈ 𝐴3}

= { 𝑥, 1 , 𝑎 , 𝑥, 2 , 𝑎 , 𝑥, 3 , 𝑎 , 𝑦, 1 , 𝑎 , 𝑦, 2 , 𝑎 , 𝑦, 3 , 𝑎 , 

𝑥, 1 , 𝑏 , 𝑥, 2 , 𝑏 , 𝑥, 3 , 𝑏 , 𝑦, 1 , 𝑏 , 𝑦, 2 , 𝑏 , 𝑦, 3 , 𝑏 }

𝐴1 × 𝐴2 × 𝐴3 = { 𝑢, 𝑣, 𝑤 :  𝑢 ∈ 𝐴1, 𝑣 ∈ 𝐴2 and 𝑤 ∈ 𝐴3}
= { 𝑥, 1, 𝑎 , 𝑥, 1, 𝑏 , 𝑥, 2, 𝑎 , 𝑥, 2, 𝑏 , 𝑥, 3, 𝑎 , 𝑥, 3, 𝑏 , 

𝑦, 1, 𝑎 , 𝑦, 1, 𝑏 , 𝑦, 2, 𝑎 , 𝑦, 2, 𝑏 , 𝑦, 3, 𝑎 , 𝑦, 3, 𝑏 }
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5.2 Properties of Sets
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5.2.1 Properties of Sets

We begin by listing some set properties that involve 
subset relations.

Theorem 6.2.1 Some Subset Relations

1. Inclusion of Intersection: For all sets 𝐴 and 𝐵,

 (a) 𝐴 ∩ 𝐵 ⊆ 𝐴 (b)  𝐴 ∩ 𝐵 ⊆ 𝐵

2. Inclusion in Union: For all sets 𝐴 and 𝐵,

 (a) 𝐴 ⊆ 𝐴 ∪ 𝐵 (b) 𝐵 ⊆ 𝐴 ∪ 𝐵

3. Transitive Property of Subsets: For all sets 𝐴, 𝐵 and 𝐶,

 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶.
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Procedural versions of the definitions of the other set 
operations are derived similarly and are summarized 
below.

Procedural Versions of Set Definitions

Let 𝑋 and 𝑌 be subsets of a universal set 𝑈 and suppose 𝑎 and 𝑏 are 
elements of 𝑈.

1. 𝑎 ∈ 𝑋 ∪ 𝑌 ⇔ 𝑎 ∈ 𝑋 ∨ 𝑎 ∈ 𝑌

2. 𝑎 ∈ 𝑋 ∩ 𝑌 ⇔ 𝑎 ∈ 𝑋 ∧ 𝑎 ∈ 𝑌

3. 𝑎 ∈ 𝑋 − 𝑌 ⇔ 𝑎 ∈ 𝑋 ∧ 𝑎 ∉ 𝑌

4. 𝑎 ∈ ത𝑋 ⇔ 𝑎 ∉ 𝑋

5. (𝑎, 𝑏) ∈ 𝑋 × 𝑌 ⇔ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌

Note: In a context where 𝑈 is the universal set (so that 
implicitly means 𝑈 ⊇ 𝑋), the complement of 𝑋, denoted ത𝑋 or 
𝑋𝑐, is defined by ത𝑋 = 𝑈 \ 𝑋. 
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5.2.2 Set Identities

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set 𝑈.

1. Commutative Laws: For all sets 𝐴 and 𝐵,
  (a) 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 and (b) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴.

2. Associative Laws: For all sets 𝐴, 𝐵 and 𝐶,
  (a) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) and (b) (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶).

3. Distributive Laws: For all sets 𝐴, 𝐵 and 𝐶,
  (a) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) and 
  (b) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

4. Identity Laws: For all sets 𝐴,
  (a) 𝐴 ∪ ∅ = 𝐴 and (b) 𝐴 ∩ 𝑈 = 𝐴.

5. Complement Laws: For all sets 𝐴,
  (a) 𝐴 ∪ ҧ𝐴 = 𝑈 and (b) 𝐴 ∩ ҧ𝐴 = ∅.

6. Double Complement Law: For all sets 𝐴,
   Ӗ𝐴 = 𝐴.
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Theorem 6.2.2 Set Identities

7. Idempotent Laws: For all sets 𝐴,
  (a) 𝐴 ∪ 𝐴 = 𝐴 and (b) 𝐴 ∩ 𝐴 = 𝐴.

8. Universal Bound Laws: For all sets 𝐴,
  (a) 𝐴 ∪ 𝑈 = 𝑈 and (b) 𝐴 ∩ ∅ = ∅.

9. De Morgan’s Laws: For all sets 𝐴 and 𝐵,
  (a) 𝐴 ∪ 𝐵 = ҧ𝐴 ∩ ത𝐵 and (b) 𝐴 ∩ 𝐵 = ҧ𝐴 ∪ ത𝐵.

10. Absorption Laws: For all sets 𝐴 and 𝐵,
  (a) 𝐴 ∪ (𝐴 ∩ 𝐵) = 𝐴 and (b) 𝐴 ∩ (𝐴 ∪ 𝐵) = 𝐴.

11. Complements of 𝑈 and ∅:
  (a) ഥ𝑈 = ∅ and (b) ഥ∅ = 𝑈.

12. Set Difference Law: For all sets 𝐴 and 𝐵,
   𝐴 \ 𝐵 = 𝐴 ∩ ത𝐵.



Definitions   Properties of Sets

Properties of Sets

44

Table 6.4.1 summarizes the main features of the logical 
equivalences from Theorem 2.1.1. and the set properties from 
Theorem 6.2.2. Notice how similar they are.

In fact, both are special cases of the same general structure, 
known as a Boolean algebra.

Table 6.4.1

=
=

=
=
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Table 6.4.1 (continued)

=
=
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5.2.3 Examples of Proofs involving Sets

Example #1: Prove the De Morgan’s law below by working in the 
universal set 𝑈 and using definition of set operations and laws for 
propositional logic.

𝐴 ∪ 𝐵 = ҧ𝐴 ∩ ത𝐵 (De Morgan’s law)

Proof:
1. Let 𝑧 ∈ 𝑈.
2. 2.1. Then 𝑧 ∈ 𝐴 ∪ 𝐵

 2.2 ⇔ ~(𝑧 ∈ 𝐴 ∪ 𝐵) by the definition of ഥ  

 2.3 ⇔ ~ 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝐵  by the definition of ∪

 2.4 ⇔ 𝑧 ∉ 𝐴 ∧ 𝑧 ∉ 𝐵  by De Morgan’s Law for 
    propositional logic

 2.5 ⇔ 𝑧 ∈ ҧ𝐴 ∧ 𝑧 ∈ ത𝐵   by the definition of ഥ  
 2.6 ⇔ 𝑧 ∈ ҧ𝐴 ∩ ത𝐵  by the definition of ∩
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5.2.3 Examples of Proofs involving Sets

Example #2: Using set identities (Theorem 6.2.2), prove the 
following: Under the universal set 𝑈, show that

𝐴 ∩ 𝐵 ∪ 𝐴 \ 𝐵 = 𝐴 for all sets 𝐴, 𝐵.

Proof:
1. 𝐴 ∩ 𝐵 ∪ 𝐴 \ 𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ ത𝐵) by the Set Difference Law



2.  = 𝐴 ∩ (𝐵 ∪ ത𝐵) by the Distributive Law

3.  = 𝐴 ∩ 𝑈 by the Complement Law

4.  = 𝐴 by the Identity Law
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5.3 Paradoxes and Axiomatisation

Only for reading!
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5.3 Paradoxes

So far, we described the sets like this {𝑥 ∈ ℝ ∶ −2 < 𝑥 < 5}

(Unrestricted) Comprehension Principle

If 𝑃 is property (a predicate) , then there exists a set 𝑥 ∶ 𝑃 𝑥 .

Hmm… where does 𝑥 come from? 

Let 𝒟 be a set that contains “everything”!

𝑥 comes from 𝒟!



5050

Definitions   Properties of Sets Paradoxes and Axiomatisation

5.3 Paradoxes

Russell’s Paradox (Paraphrased).

(Unrestricted) Comprehension Principle leads to a contradiction.

Proof:
1. Let 𝒟 be the set of all possible sets in the world.
2. Consider a predicate over 𝒟, 𝑃 𝑥 = 𝑥 ∉ 𝑥. This predicate 

evaluates to true if the set 𝑥 does not contain itself.
3. Using comprehension principle, let us construct 

𝐴 =  𝑥 ∈ 𝒟 𝑃 𝑥 }
(𝐴 represents a set that contains all those sets that do not contain 
themselves.)
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5.3 Paradoxes

Russell’s Paradox (Paraphrased).

(Unrestricted) Comprehension Principle leads to a contradiction.

Proof:
4. Suppose that 𝐴 ∈ 𝐴:
       4.1 Then by definition of the set A, 𝑃(𝐴) is true.
       4.2 By definition of the predicate, 𝐴 ∉ 𝐴.
       4.3 Contradiction
5. Suppose that 𝐴 ∉ 𝐴:
       5.1 Then by definition of the set A, 𝑃(𝐴) is not true.
       5.2  By definition of the predicate, 𝐴 ∈ 𝐴.
       5.3  Contradiction
6.  *********
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5.3 Paradoxes

Cantor’s Paradox (Paraphrased).

Existence of 𝒟 leads to contradiction.

Proof:

1. Let 𝒟 be a set that contains “everything” (all possible sets).
2. Then, 𝒫(𝒟) denotes the power set of 𝒟.
3. Cardinality of 𝒫(𝒟) is strictly larger than the cardinality of 𝒟.
4. Contradiction (𝒟 should contain everything including 𝒫(𝒟) )

Wait for Lecture 9
Existential 

Crisis!
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5.3 Paradoxes

Where have we gone wrong?

➢ We allowed existence/creation of the universal set.

➢ We allowed unrestricted creation of the new sets.

➢ We allowed possibility of set that may contain itself.

Premises are false!
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5.3 Paradoxes

Axiomatisation

1890s  -  Cantor’s Paradox

1901    -  Russell’s Paradox

In 1908, Zermelo gave the initial set of axioms to the set theory. 

These were later modified by Skolem and Frankel in 1922.

They are known as ZF Axioms.

cure
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5.3 Paradoxes

Zermelo-Frankel Axioms

1. Extensionality Axiom

Two sets are equal if and only if they have the same elements.

2. Null Set Axiom

There exists a set with no elements.

3. Pairing Axiom

Given any sets 𝑥 and 𝑦, there is a set whose elements are 𝑥 and 𝑦.
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5.3 Paradoxes

Zermelo-Frankel Axioms

4. Union Axiom

Given any set 𝑥 (whose elements are sets), there is a set which has its 
elements all elements of elements of 𝑥.

5. Power Set Axiom

Given any set 𝑥, there is a set which has its elements all subsets of 𝑥.

6. Separation Axiom

Given a well-formed property 𝑃 and any set 𝑥, there is a set 
𝑦 ∈ 𝑥 𝑃(𝑦)}.
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5.3 Paradoxes

Zermelo-Frankel Axioms

7. Replacement Axiom

Given any well-formed formula 𝒻 𝑥, 𝑦 , which determines a function 
and any set 𝑢, there is a set 𝑣 consisting all objects 𝑦 for which there is 
𝑥 ∈ 𝑢 such that 𝒻 𝑥, 𝑦  holds.

8. Infinity Axiom

There is a set 𝑥 such that 𝜙 ∈ 𝑥 and such that for every set 𝑢 ∈ 𝑥 we 
have 𝑢 ∪ 𝑢 ∈ 𝑥.

9. Foundation Axiom

Every non-empty set 𝑥 contains an element which is disjoint from 𝑥.
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