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Lecture 6: Relations

AY2025/26 Semester 1
Part of the contents here is taken from 
Dr Wong Tin Lok’s lecture notes. 
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6. Relations

6.1 Relations on Sets
• Definition of relation; arrow diagram, inverse of a relation.
• Relation on a set; directed graph of a relation.
• Composition of relations.
• N-ary relations and relational databases.

6.2 Reflexivity, Symmetry and Transitivity

• Definitions of reflexivity, symmetry and transitivity.
• Transitive closure of a relation.

6.3 Equivalence Relations

• Partition of a set; the relation induced by a partition.
• Equivalence relation; equivalence classes.
• Congruence.
• Dividing a set by an equivalence relation.
• Summary
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6. Relations

6.4 Partial Order Relations

• Antisymmetry.
• Partial order relations.
• Hasse diagrams.
• Comparability.
• Maximal/minimal/largest/smallest element.
• Linearization.
• Total order relations; well ordered sets.
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6.1 Relations on Sets
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6.1.1 Definitions

As the topic of relations is built on sets, definitions on sets, such 
as ordered pair, ordered 𝑛-tuple, Cartesian product, etc. (see 
Lecture 5 Set Theory) will be referred to here.

Recall: The Cartesian product of sets 𝐴 and 𝐵, denoted 𝐴 × 𝐵, 
consists of all ordered pairs whose first element is in 𝐴 and 
second element in 𝐵: 𝐴 × 𝐵 = { 𝑥, 𝑦 ∶ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}.

Example #1: Let 𝐴 = {0,1,2} and 𝐵 = 𝑎, 𝑏, 𝑐 .

Then 𝐴 × 𝐵 =
{ 0, 𝑎 , 0, 𝑏 , 0, 𝑐 , 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 }.
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Definition: Relation

Let 𝐴 and 𝐵 be sets. A (binary) relation from 𝑨 to 𝑩 is a subset 
of 𝑨 × 𝑩. 

Given an ordered pair (𝑥, 𝑦) in 𝐴 × 𝐵, 𝒙 is related to 𝒚 by 𝑹, or 
𝒙 is 𝑹-related to 𝒚, written 𝒙 𝑹 𝒚, iff (𝒙, 𝒚) ∈ 𝑹. 

Symbolically, 𝑥 𝑅 𝑦 means (𝑥, 𝑦) ∈ 𝑅
 𝑥 𝑅 𝑦 means (𝑥, 𝑦) ∉ 𝑅

We read 𝑥 𝑅 𝑦 as “𝑥 is 𝑅-related to 𝑦” or, if there is no risk of 
confusion, simply “𝑥 is related to 𝑦”. 
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Example #3: Let 𝐴 = {1,2} and 𝐵 = 1,2,3 . Define a relation 𝑅 
from 𝐴 to 𝐵 as follows:

∀ 𝑥, 𝑦 ∈ 𝐴 × 𝐵 𝑥, 𝑦 ∈ 𝑅 ⇔
𝑥−𝑦

2
∈ ℤ .

State explicitly which ordered pairs are in 𝐴 × 𝐵 and which are in 𝑅.

𝐴 × 𝐵 = 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3 .

𝑅 = { 1,1 , 1,3 , 2,2 }.

Example #2: Let 𝐴 = {0,1,2} and 𝐵 = 1,2,3 . Suppose we 
define the relation 𝑅 s.t. 𝑥𝑅𝑦 iff 𝑥 < 𝑦.

Then 0𝑅1, 0𝑅2, 0𝑅3, 1𝑅2, 1𝑅3 and 2𝑅3, but 1𝑅1, 2𝑅1 and 
2𝑅2.
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An application: A simple database

Let 𝑆 be the set of students, 𝑀 the set of modules, and 𝑅 the 
relation “is enrolled in” from 𝑆 to 𝑀.

Student Module

Ali CS1101S

Aiken CS1231S

Dueet CS1231S

Bam Boo MA1101R

Lian Eng CS1101S

Manimaran CS1231S

James Tan MA1101R

: :

𝑅 = { (Ali, CS1101S),
 (Aiken, CS1231S),
 (Dueet, CS1231S)
 (Bam Boo, MA1101R),
 (Lian Eng, CS1101S),
 (Manimaran, CS1231S),
 (James Tan, MA1101R),
 … }
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Definitions: Domain, Co-domain, Range

Let 𝐴 and 𝐵 be sets and 𝑅 be a relation from 𝐴 to 𝐵. 

The domain of 𝑅, 𝐷𝑜𝑚 𝑅 , is the set {𝑎 ∈ 𝐴 ∶ 𝑎𝑅𝑏 for some 𝑏 ∈ 𝐵}.

The co-domain of 𝑅, 𝑐𝑜𝐷𝑜𝑚(𝑅), is the set 𝐵.

The range of 𝑅, 𝑅𝑎𝑛𝑔𝑒 𝑅  , is the set {𝑏 ∈ 𝐵: 𝑎𝑅𝑏 for some 𝑎 ∈ 𝐴}.

Example #4: Let 𝐴 = {1,2,3} and 𝐵 = 2,4,9 , and define a 
relation 𝑅 from 𝐴 to 𝐵 as follows:

 ∀ 𝑥, 𝑦 ∈ 𝐴 × 𝐵, 𝑥, 𝑦 ∈ 𝑅 ⇔ 𝑥2 = 𝑦.

𝐷𝑜𝑚 𝑅 = 2,3

𝑐𝑜𝐷𝑜𝑚 𝑅 = {2,4,9}

𝑅𝑎𝑛𝑔𝑒 𝑅 = {4,9}
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Example #5: Define a relation 𝑅 from ℤ to ℤ as follows:
 ∀ 𝑥, 𝑦 ∈ ℤ × ℤ (𝑥𝑅𝑦 ⇔ 𝑥 − 𝑦 is even). 

a. Is 4𝑅0? Is 2𝑅6? Is 3𝑅(– 3)? Is 5𝑅2?

b. List five integers that are related by 𝑅 to 1.

c. Prove that if 𝑎 is any odd integer, then 𝑎𝑅1.

Yes



Yes Yes No

Infinitely many possible answers.
One answer: 1, 57, 12345, -203, -999.

1. Let 𝑎 be an odd integer.
2. Then 𝑎 = 2𝑘 + 1 for some integer 𝑘 (by the definition of odd).

3. Therefore, 𝑎 − 1 = 2𝑘 which is even (by the definition of even).
4. Hence 𝑎𝑅1 (by the definition of 𝑅).
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A relation 𝑅 from set 𝐴 to set 𝐵 can be depicted as an 
arrow diagram:
1. Represent the elements of 𝐴 as points in one region and the 

elements of 𝐵 as points in another region.
2. For each 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, draw an arrow from 𝑥 to 𝑦 iff 𝑥𝑅𝑦.

Example #6: Let 𝐴 = {1,2,3} and 𝐵 = 1,3,5 . Define 
relations 𝑆 and 𝑇 from 𝐴 to 𝐵 as follows: ∀ 𝑥, 𝑦 ∈ 𝐴 × 𝐵,

𝑥, 𝑦 ∈ 𝑆 ⇔ 𝑥 < 𝑦

 𝑇 = (2,1 , (2,5)}.
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6.1.2 The Inverse of a Relation

If 𝑅 is a relation from 𝐴 to 𝐵, then a relation 𝑅−1 from 𝐵 
to 𝐴 can be defined by interchanging the elements of all 
the ordered pairs of 𝑅.

This definition can be written operationally as follows:

Definition: Inverse of a Relation

Let 𝑅 be a relation from 𝐴 to 𝐵. Define the inverse relation 𝑅−1 
from 𝐵 to 𝐴 as follows:

 𝑅−1 = { 𝑦, 𝑥 ∈ 𝐵 × 𝐴 ∶ (𝑥, 𝑦) ∈ 𝑅}.

∀𝑥 ∈ 𝐴, ∀𝑦 ∈ 𝐵 𝑦, 𝑥 ∈ 𝑅−1 ⇔ 𝑥, 𝑦 ∈ 𝑅 .
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Example #7: Let 𝐴 = {2, 3, 4} and 𝐵 = {2, 6, 8} and let 
𝑅 be the “divides” relation from A to 𝐵:

∀ 𝑥, 𝑦 ∈ 𝐴 × 𝐵 𝑥𝑅𝑦 ⇔ 𝑥 𝑦
a. State explicitly which ordered pairs are in 𝑅 and 𝑅−1, and draw 

arrow diagrams for 𝑅 and 𝑅−1.



𝑅 = {(2,2), (2,6), (2,8), (3,6), (4,8)}
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𝑅−1 = {(2,2), (6,2), (8,2), (6,3), (8,4)}

b. Describe 𝑅−1.

∀ 𝑦, 𝑥 ∈ 𝐵𝐴 
(𝑦𝑅−1𝑥 ⇔  𝑦 = 𝑘𝑥) for some integer 𝑘.

If 𝑛, 𝑑 ∈ ℤ:

𝑑 | 𝑛 ⟺  ∃𝑘 ∈ ℤ such that 𝑛 = 𝑑𝑘.
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6.1.3 Directed Graph of a Relation

The arrow diagram of such a relation can be modified so that it 
becomes a directed graph. Instead of representing 𝐴 as two 
separate sets of points, represent 𝐴 only once, and draw an 
arrow from each point of 𝐴 to its related point. 

If a point is related to itself, a loop is drawn that extends out from 
the point and goes back to it.

Definition: Relation on a Set

A relation on a set 𝑨 is a relation from 𝐴 to 𝐴. 

In other words, a relation on a set 𝐴 is a subset of 𝐴 × 𝐴.

We may write 𝐴2 for 𝐴 × 𝐴. 
In general, we may write 𝐴𝑛 for 𝐴 × ⋯ × 𝐴 (𝑛 times).
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Example #8: Let 𝐴 = {3, 4, 5, 6, 7, 8} and define a 
relation 𝑅 on 𝐴 as follows: ∀𝑥, 𝑦 ∈ 𝐴,

𝑥𝑅𝑦 ⇔ 2 | (𝑥 – 𝑦).

Draw the directed graph of 𝑅.
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6.1.4 Composition of Relations

In other words, 𝑥 ∈ 𝐴 and 𝑧 ∈ 𝐶 are “𝑆 ∘ 𝑅”-related iff there is a 
“path” from 𝑥 to 𝑧 via some intermediate element 𝑦 ∈ 𝐵 in the 
arrow diagram.

Definition: Composition of Relations

Let 𝐴, 𝐵 and 𝐶 be sets. Let 𝑅 ⊆ 𝐴 × 𝐵 be a relation. Let 𝑆 ⊆
𝐵 × 𝐶 be a relation. The composition of 𝑅 with 𝑆, denoted 
𝑆 ∘ 𝑅, is the relation from 𝐴 to 𝐶 such that: 

 ∀𝑥 ∈ 𝐴, ∀𝑧 ∈ 𝐶 𝑥 𝑆 ∘ 𝑅 𝑧 ⇔ ∃𝑦 ∈ 𝐵 𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧 .
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Students

Ann

Bryan

Candy

Danny

Module

CS1010

CS1231

IS1103

MA1101

CS2100

Venue

LT15

ICube

SR1

takes held in

Students

Ann

Bryan

Candy

Danny

Venue

LT15

ICube

SR1

“held in ∘ takes” = “go to”
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Proposition: Composition is Associative

Let 𝐴, 𝐵, 𝐶, 𝐷 be sets. Let 𝑅 ⊆ 𝐴 × 𝐵, 𝑆 ⊆ 𝐵 × 𝐶 and 𝑇 ⊆ 𝐶 × 𝐷 
be relations.

 𝑇 ∘ 𝑆 ∘ 𝑅 = 𝑇 ∘ 𝑆 ∘ 𝑅 = 𝑇 ∘ 𝑆 ∘ 𝑅

Proposition: Inverse of Composition

Let 𝐴, 𝐵 and 𝐶 be sets. Let 𝑅 ⊆ 𝐴 × 𝐵 and 𝑆 ⊆ 𝐵 × 𝐶 be relations.

 (𝑆 ∘ 𝑅)−1= 𝑅−1 ∘ 𝑆−1
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6.1.5 N-ary Relations and Relational Databases

A relation involving two sets is called binary relation. We can 
generalize a relation to involve more than two sets.

Definition: 𝑛-ary Relation

Given 𝑛 sets 𝐴1, 𝐴2, ⋯ , 𝐴𝑛, an 𝒏-ary relation 𝑹 on
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 is a subset of 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛. 

The special cases of 2-ary, 3-ary and 4-ary relations are called 
binary, ternary and quaternary relations respectively. 
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Example #9: (The following is a radically simplified version of a database that 

might be used in a hospital.)

Let 𝐴1 be a set of positive integers, 𝐴2 and 𝐴4 be sets of alphabetic 
character strings, and 𝐴3 be a set of numeric character strings.

Define a quaternary relation 𝑅 on 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4 as follows:

(𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑅 ⇔ a patient with ID number 𝑎1, named 
𝑎2, was admitted on date 𝑎3 with primary diagnosis 𝑎4.

At a particular hospital, 
this relation might 
contain these 4-tuples:

(011985, John Schmidt, 020710, asthma)

(574329, Tak Kurosawa, 011410, pneumonia)

(466581, Mary Lazars, 010310, appendicitis)

(008352, Joan Kaplan, 112409, gastritis)

(011985, John Schmidt, 021710, pneumonia)

(244388, Sarah Wu, 010310, broken leg)

(778400, Jamal Baskers, 122709, appendicitis)
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For example, in the database language SQL, if the above database 
is denoted as 𝑆, the result of the query 

SELECT Patient_ID#, Name FROM 𝑆 WHERE Admission_Date=010310

would yield a list of the ID numbers and names of all patients 
admitted on 01-03-10:

466581 Mary Lazars

244388 Sarah Wu

This is obtained by taking the intersection of the set 𝐴1 × 𝐴2 ×
{010310} × 𝐴4 with the database and then projecting onto the 
first two fields. 
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6.2 Reflexivity, Symmetry 
and Transitivity
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6.2.1 Definitions of Reflexivity, Symmetry and Transitivity

Example #10: Let 𝐴 = {2, 3, 4, 6, 7, 9} and define a 
relation 𝑅 on 𝐴 as follows: ∀𝑥, 𝑦𝐴 𝑥𝑅𝑦 ⇔ 3 𝑥 − 𝑦 .

The directed graph for 𝑅 is shown below:
1. Each point of the graph has an arrow 

looping around from it back to itself.

2. Wherever there is an arrow going from 
one point to another, there is also an 
arrow going from the second point 
back to the first.

3. Wherever there is an arrow going from 
one point to a second and from the 
second point to a third, there is also an 
arrow going from the first point to the 
third.

If 𝑛, 𝑑 ∈ ℤ:

𝑑 | 𝑛 ⟺  ∃𝑘 ∈ ℤ such that 𝑛 = 𝑑𝑘.
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Properties (1), (2), and (3) correspond to properties of general 
relations called reflexivity, symmetry, and transitivity.

Definitions: Reflexivity, Symmetry, Transitivity

Let 𝑅 be a relation on a set 𝐴.

1. 𝑅 is reflexive iff ∀𝑥 ∈ 𝐴 (𝑥𝑅𝑥).

2. 𝑅 is symmetric iff ∀𝑥, 𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥).

3. 𝑅 is transitive iff ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧).

∀

∃

Reflexive Symmetric Transitive

∃

∀
∀ ∀

∃
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Example #11: Let 𝐴 = {0, 1, 2, 3} and define relations 𝑅, 𝑆, and 𝑇 on 
𝐴 as follows:
   𝑅 =  {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)},

   𝑆 =  {(0, 0), (0, 2), (0, 3), (2, 3)},

   𝑇 =  {(0, 1), (2, 3)}.

a. Is 𝑅 reflexive? symmetric? transitive?

b. Is 𝑆 reflexive? symmetric? transitive?

c. Is 𝑇 reflexive? symmetric? transitive?



Yes Yes No

No No Yes

No No Yes
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Common mistake: Talking about reflexivity.

“The element 0 is reflexive.”

“The element 1 is not reflexive.”

“The element 2 is not reflexive.”

“The element 0 is related to itself.”

“The element 1 is not related to itself.”

“The element 2 is not related to itself.”

Reflexivity, symmetry and transitivity are 
properties of a relation, not properties 
of members of the set.

We say a relation is reflexive or not 
reflexive.
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Example #12: Define a relation 𝑅 on ℤ as follows: 

∀𝑥, 𝑦 ∈ ℤ 𝑥 𝑅 𝑦 ⇔ 3 | 𝑥 − 𝑦 .

This relation is called congruence modulo 3. 

Is 𝑅 reflexive, symmetric, transitive? 𝑅 is reflexive.

Proof of Reflexivity:
1. Let 𝑎 be an arbitrarily chosen integer.
2. Now 𝑎 − 𝑎 = 0.
3. But 3 | 0 (since 0 = 3 ∙ 0), hence, 3 |(𝑎 − 𝑎).
4. Therefore 𝑎 𝑅 𝑎 (by the definition of 𝑅).
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Example #12: Define a relation 𝑅 on ℤ as follows: 

∀𝑥, 𝑦 ∈ ℤ 𝑥 𝑅 𝑦 ⇔ 3 | 𝑥 − 𝑦 .

This relation is called congruence modulo 3. 

Is 𝑅 reflexive, symmetric, transitive? 𝑅 is symmetric.

Proof of Symmetry:
1. Let 𝑎 and 𝑏 be arbitrarily chosen integers that satisfy 𝑎 𝑅 𝑏.
2. Then 3|(𝑎 − 𝑏) (by the definition of 𝑅), hence 𝑎 − 𝑏 = 3𝑘 

for some integer 𝑘 (by the definition of divisibility).
3. Multiplying both sides by −1 gives 𝑏 − 𝑎 = 3 −𝑘 . 
4. Since – 𝑘 is an integer, 3|(𝑏 − 𝑎) (by definition of divisibility).
5. Therefore 𝑏 𝑅 𝑎 (by the definition of 𝑅).
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Example #12: Define a relation 𝑅 on ℤ as follows: 

∀𝑥, 𝑦 ∈ ℤ 𝑥 𝑅 𝑦 ⇔ 3 | 𝑥 − 𝑦 .

This relation is called congruence modulo 3. 

Is 𝑅 reflexive, symmetric, transitive? 𝑅 is transitive.

Proof of Transitivity:
1. Let 𝑎, 𝑏 and 𝑐 be arbitrarily chosen integers that satisfy 𝑎 𝑅 𝑏 

and 𝑏 𝑅 𝑐.
2. Then 3|(𝑎 − 𝑏) and 3|(𝑏 − 𝑐) (by the definition of 𝑅), hence 

𝑎 − 𝑏 = 3𝑟 and 𝑏 − 𝑐 = 3𝑠 for some integers 𝑟 and 𝑠 (by the 
definition of divisibility).

3. Adding both equations gives 𝑎 − 𝑐 = 3 𝑟 + 𝑠 . 
4. Since 𝑟 + 𝑠 is an integer, 3|(𝑎 − 𝑐) (by definition of divisibility).

5. Therefore 𝑎 𝑅 𝑐 (by the definition of 𝑅).
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6.2.2 The Transitive Closure of a Relation

Generally speaking, a relation fails to be transitive 
because it fails to contain certain ordered pairs. 

For example, if (1, 3) and (3, 4) are in a relation R, then 
the pair (1, 4) must be in R for R to be transitive. 

To obtain a transitive relation from one that is not 
transitive, it is necessary to add ordered pairs.

Roughly speaking, the relation obtained by adding the 
least number of ordered pairs to ensure transitivity is 
called the transitive closure of the relation.
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In a sense made precise by the formal definition, the 
transitive closure of a relation is the smallest transitive 
relation that contains the relation.

Definition: Transitive Closure

Let 𝐴 be a set and 𝑅 a relation on 𝐴. The transitive closure of 𝑅 is 
the relation 𝑅𝑡 on 𝐴 that satisfies the following three properties:

1. 𝑅𝑡 is transitive.

2. 𝑅 ⊆ 𝑅𝑡.

3. If 𝑆 is any other transitive relation that contains 𝑅, then 𝑅𝑡 ⊆ 𝑆.
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Example #13: Let 𝐴 = {0, 1, 2, 3} and 
consider the relation 𝑅 defined on 𝐴 as 
follows: 𝑅 = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of 𝑅.

Since there are arrows from 0 to 1 and from 1 to 2, 𝑅𝑡 
must have an arrow from 0 to 2. Hence (0,2) ∈ 𝑅𝑡. 

Then (0,2) ∈ 𝑅𝑡 and (2,3) ∈ 𝑅𝑡, so (0,3) ∈ 𝑅𝑡.

Also, since (1,2) ∈ 𝑅𝑡  and (2,3) ∈ 𝑅𝑡, so (1,3) ∈ 𝑅𝑡.

Directed graph of 𝑅𝑡:
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6.3 Equivalence Relations
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6.3.1 The Relation Induced by a Partition

A partition of a set 𝐴 is a finite or infinite collection of 
nonempty, mutually disjoint subsets whose union is 𝐴.

𝑏

𝑝
𝑓

𝑚

𝑘

𝑒

𝑏 𝑝

𝑓 𝑚

𝑒

𝑘

The diagram below illustrates a partition of a set 
𝐴 = {𝑏, 𝑒, 𝑓, 𝑘, 𝑚, 𝑝} by subsets 𝑏, 𝑝 , 𝑓, 𝑚 , 𝑘 , {𝑒}.
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Definition: Partition

C is a partition of a set 𝐴 if the following hold:
(1) C is a set of which all elements are non-empty subsets of 𝐴, i.e., 

∅ ≠ 𝑆 ⊆ 𝐴 for all 𝑆 ∈ C.
(2) Every element of 𝐴 is in exactly one element of C, i.e.,

 ∀𝑥 ∈ 𝐴 ∃𝑆 ∈ C (𝑥 ∈ 𝑆) and
 ∀𝑥 ∈ 𝐴 ∀𝑆1, 𝑆2 ∈ C (𝑥 ∈ 𝑆1 ∧ 𝑥 ∈ 𝑆2 ⇒ 𝑆1 = 𝑆2).

Elements of a partition are called components of the partition.

𝑏

𝑝
𝑓

𝑚

𝑘

𝑒

𝑏 𝑝

𝑓 𝑚

𝑒

𝑘

𝐴 = {𝑏, 𝑒, 𝑓, 𝑘, 𝑚, 𝑝} C = 𝑏, 𝑝 , 𝑓, 𝑚 , 𝑘 , 𝑒
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Definition: Partition

C is a partition of a set 𝐴 if the following hold:
(1) C is a set of which all elements are non-empty subsets of 𝐴, i.e., 

∅ ≠ 𝑆 ⊆ 𝐴 for all 𝑆 ∈ C.
(2) Every element of 𝐴 is in exactly one element of C, i.e.,

 ∀𝑥 ∈ 𝐴 ∃𝑆 ∈ C (𝑥 ∈ 𝑆) and
 ∀𝑥 ∈ 𝐴 ∀𝑆1, 𝑆2 ∈ C (𝑥 ∈ 𝑆1 ∧ 𝑥 ∈ 𝑆2 ⇒ 𝑆1 = 𝑆2).

Elements of a partition are called components of the partition.

Definition (shorter): Partition

A partition of set 𝐴 is a set C  of non-empty subsets of 𝐴 such 

that
∀𝑥 ∈ 𝐴 ∃! 𝑆 ∈ C 𝑥 ∈ 𝑆 .

(Recall: ∃! means “there exists a unique”.)
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Partitions as relations

𝑏 𝑝

𝑓 𝑚

𝑒

𝑘

We may view a partition as a “is in the same component as” 
relation.

𝑏 𝑝

𝑓 𝑚

𝑘 𝑒

Let 𝑅 be “in the same 
component as” relation.

𝑏 𝑅 𝑏
𝑝 𝑅 𝑝
𝑏 𝑅 𝑝
𝑝 𝑅 𝑏

𝑓 𝑅 𝑓
𝑚 𝑅 𝑚
𝑓 𝑅 𝑚
𝑚 𝑅 𝑓

𝑘 𝑅 𝑘 𝑒 𝑅 𝑒
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Example #14: Let 𝐴 = {0, 1, 2, 3, 4} and consider this 

partition of 𝐴: 0, 3, 4 , 1 , 2 .

Find the relation 𝑅 induced by this partition.

{0,3,4} is a component of the partition → 0R0, 0R3, 0R4, 3R0, 
3R3, 3R4, 4R0, 4R3 and 4R4.

{1} is a component of the partition → 1R1.

{2} is a component of the partition → 2R2.

Therefore, R = {(0,0), (0,3), (0,4), (1,1), (2,2), (3,0), (3,3), (3,4), 
(4,0), (4,3), (4,4)}.

Definition: Relation Induced by a Partition

Given a partition C of a set 𝐴, the relation 𝑅 induced by the 

partition is defined on 𝐴 as follows: ∀𝑥, 𝑦 ∈ 𝐴,

 𝑥𝑅𝑦 ⇔ ∃ a component 𝑆 of C  s.t. 𝑥, 𝑦 ∈ 𝑆.
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The fact is that a relation induced by a partition of a 
set satisfies all three properties: reflexivity, symmetry, 
and transitivity.

Theorem 8.3.1 Relation Induced by a Partition

Let 𝐴 be a set with a partition and let 𝑅 be the relation induced 
by the partition. Then 𝑅 is reflexive, symmetric, and transitive.
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6.3.2 Definition of an Equivalence Relation

A relation on a set that satisfies the three properties of 
reflexivity, symmetry, and transitivity is called an 
equivalence relation.

Definition: Equivalence Relation

Let 𝐴 be a set and 𝑅 a relation on 𝐴. 𝑅 is an equivalence 
relation iff 𝑅 is reflexive, symmetric and transitive.

Note: The symbol ~ is commonly used to denote an equivalence relation.



 Relations on Sets Reflexivity, Symmetry and Transitivity Equivalence Relations Partial Order Relations

Definition of an Equivalence Relation

41

Example #15: Let 𝑋 be the set of all nonempty subsets of {1, 2, 3}. 
Then 𝑋 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Define a relation R on 𝑋 as follows: For all 𝐴, 𝐵 ∈ 𝑋,
 𝐴 R 𝐵 ⇔ the least element of 𝐴 equals the least element of 𝐵.

Prove that R is an equivalence relation on 𝑋.

R is reflexive:

Suppose 𝐴 is a nonempty subset of {1, 2, 3}. It is true to say that 
the least element of 𝐴 equals the least element of 𝐴. Thus, 𝐴 R 𝐴. 

R is symmetric:

Suppose 𝐴 and 𝐵 are nonempty subsets of {1, 2, 3} and 𝐴 R 𝐵.
Since 𝐴 R 𝐵, the least element of 𝐴 equals the least element of 𝐵.
But this means that the least element of 𝐵 equals the least 
element of 𝐴, and so by definition of R, 𝐵 R 𝐴.
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Example #15: Let 𝑋 be the set of all nonempty subsets of {1, 2, 3}. 
Then 𝑋 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Define a relation R on 𝑋 as follows: For all 𝐴, 𝐵 ∈ 𝑋,
 𝐴 R 𝐵 ⇔ the least element of 𝐴 equals the least element of 𝐵.

Prove that R is an equivalence relation on 𝑋.

R is transitive:

Suppose 𝐴, 𝐵 and 𝐶 are nonempty subsets of {1, 2, 3}, 𝐴 R 𝐵 and 
𝐵 R 𝐶. 

Since 𝐴 R 𝐵, the least element of 𝐴 equals the least element of 𝐵 
and since 𝐵 R 𝐶, the least element of 𝐵 equals the least element 
of 𝐶.

Thus the least element of 𝐴 equals the least element of 𝐶, and 
so, by definition of R, 𝐴 R 𝐶.
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6.3.3 Equivalence Classes of an Equivalence Relation

Suppose there is an equivalence relation on a certain set. 
If 𝑎 is any particular element of the set, then one can 
ask, “What are the elements that are related to 𝑎?” This 
set of elements is called the equivalence class of 𝑎.

Definition: Equivalence Class

Suppose 𝐴 is a set and ~ is an equivalence relation on 𝐴. For 
each 𝑎 ∈ 𝐴, the equivalence class of 𝑎, denoted [𝒂] and called 
the class of 𝒂 for short, is the set of all elements 𝑥 ∈ 𝐴 s.t. 𝑎 is 
~-related to 𝑥.

Symbolically,
 [𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }
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The procedural version of this definition is

∀𝑥 ∈ 𝐴 𝑥 ∈ [𝑎]~⇔ 𝑎~𝑥 .

(When there is no risk of confusion, we may drop the 
subscript ~ and write [𝑎].)

𝑎

[𝑎]~
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Example #16: Let 𝐴 = {0, 1, 2, 3, 4} and define a relation 𝑅 
on 𝐴 as follows:
 𝑅 = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.

The directed graph for 𝑅 is as shown below. As can be seen 
by inspection, 𝑅 is an equivalence relation on 𝐴. Find the 
distinct equivalence classes of 𝑅.
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First find the equivalence class of 
every element of 𝐴.

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence 
classes of the relation are {0, 4}, {1, 3}, and {2}.

0 = {𝑥 ∈ 𝐴 ∶ 0 𝑅 𝑥} = 0,4

1 = {𝑥 ∈ 𝐴 ∶ 1 𝑅 𝑥} = {1,3}

2 = {𝑥 ∈ 𝐴 ∶ 2 𝑅 𝑥} = {2}

3 = {𝑥 ∈ 𝐴 ∶ 3 𝑅 𝑥} = {1,3}

4 = {𝑥 ∈ 𝐴 ∶ 4 𝑅 𝑥} = {0,4}
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Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The 
following are equivalent for all 𝑥, 𝑦 ∈ 𝐴. 

 (i) 𝑥~𝑦. (ii) 𝑥 = 𝑦 . (iii) 𝑥 ∩ [𝑦] ≠ ∅.

We prove this 
by proving:

(i)

(ii)(iii) ⇐

Proof
1. ((i) ⇒ (ii))

 1.1. Suppose 𝑥~𝑦.

 1.2. Then 𝑦~𝑥 by symmetry.

 1.3. For every 𝑧 ∈ [𝑥],

  1.3.1. 𝑥~𝑧 by the definition of [𝑥];

  1.3.2. ∴ 𝑦~𝑧 by transitivity, as 𝑦~𝑥;

  1.3.3. ∴ 𝑧 ∈ [𝑦] by the definition of [𝑦].

 1.4. This shows 𝑥 ⊆ 𝑦 .

 1.5. Switching the roles of 𝑥 and 𝑦, we see also that 𝑦 ⊆ 𝑥 .

 1.6. Therefore, [𝑥] = [𝑦].

Definition:
[𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }
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Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The 
following are equivalent for all 𝑥, 𝑦 ∈ 𝐴. 

 (i) 𝑥~𝑦. (ii) 𝑥 = 𝑦 . (iii) 𝑥 ∩ [𝑦] ≠ ∅.

We prove this 
by proving:

(i)

(ii)(iii) ⇐

Proof
2. ((ii) ⇒ (iii))
 2.1. Suppose [𝑥] = [𝑦].

 2.2. Then 𝑥 ∩ 𝑦 = [𝑥] by the Idempotent Law for ∩.

 2.3. However, we know 𝑥~𝑥 by the reflexivity of ~.

 2.4. This shows 𝑥 ∈ 𝑥 = 𝑥 ∩ 𝑦   by the definition of [x] and line 2.2.

 2.5. Therefore, 𝑥 ∩ [𝑦] ≠ ∅.

Definition:
[𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }
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Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The 
following are equivalent for all 𝑥, 𝑦 ∈ 𝐴. 

 (i) 𝑥~𝑦. (ii) 𝑥 = 𝑦 . (iii) 𝑥 ∩ [𝑦] ≠ ∅.

We prove this 
by proving:

(i)

(ii)(iii) ⇐

Proof
3. ((iii) ⇒ (i))
 3.1. Suppose 𝑥 ∩ [𝑦] ≠ ∅.

 3.2. Take 𝑧 ∈ 𝑥 ∩ 𝑦 .

 3.3. Then 𝑧 ∈ 𝑥  and 𝑧 ∈ 𝑦  by the definition of ∩.

 3.4. Then 𝑥~𝑧 and 𝑦~𝑧. by the definition of [𝑥] and [𝑦].

 3.5.  𝑦~𝑧 implies 𝑧~𝑦 by symmetry.

 3.6. Therefore, 𝑥~𝑦 by transitivity.

Definition:
[𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }
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Theorem 8.3.4 The Partition Induced by an Equivalence Relation

If 𝐴 is a set and 𝑅 is an equivalence relation on 𝐴, then the 
distinct equivalence classes of 𝑅 form a partition of 𝐴; that 
is, the union of the equivalence classes is all of 𝐴, and the 
intersection of any two distinct classes is empty.
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Revisit Example #12: 

Define a relation 𝑅 on ℤ as follows: 

∀𝑥, 𝑦 ∈ ℤ 𝑥 𝑅 𝑦 ⇔ 3 | 𝑥 − 𝑦 .

This relation is called congruence modulo 3. 

It has been shown that 𝑅 is an equivalence relation.

What are the distinct equivalence classes of 𝑅?

The distinct equivalent classes of 𝑅 are:
▪ {3𝑘 ∶ 𝑘 ∈ ℤ},
▪ {3𝑘 + 1 ∶ 𝑘 ∈ ℤ}, and
▪ 3𝑘 + 2 ∶ 𝑘 ∈ ℤ .

{…,-9,-6,-3,0,3,6,9,…}

{…,-8,-5,-2,1,4,7,10,…}

{…,-7,-4,-1,2,5,8,11,…}

Observe that {{…,-9,-6,-3,0,3,6,9,…}, {…,-8,-5,-2,1,4,7,10,…}, 
{…,-7,-4,-1,2,5,8,11,…}} is a partition of ℤ.  
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Congruence modulo 𝑛 (congruence-mod-𝑛) relation: 

∀𝑥, 𝑦 ∈ ℤ 𝑥 𝑅 𝑦 ⇔ 𝑛 | 𝑥 − 𝑦 .

Congruence modulo 2 Congruence modulo 3 Congruence modulo 4

:
-4
-2
0
2
4
:

:
-3
-1
1
3
5
:

ℤ :
-6
-3
0
3
6
:

:
-5
-2
1
4
7
:

ℤ:
-4
-1
2
5
8
:

:
-8
-4
0
4
8
:

:
-7
-3
1
5
9
:

ℤ:
-6
-2
2
6

10
:

:
-5
-1
3
7

11
:

Partition of ℤ:

2𝑘 ∶ 𝑘 ∈ ℤ ,

2𝑘 + 1 ∶ 𝑘 ∈ ℤ

Partition of ℤ:

3𝑘 ∶ 𝑘 ∈ ℤ ,

3𝑘 + 1 ∶ 𝑘 ∈ ℤ ,

3𝑘 + 2 ∶ 𝑘 ∈ ℤ

Partition of ℤ:

4𝑘 ∶ 𝑘 ∈ ℤ ,
4𝑘 + 1 ∶ 𝑘 ∈ ℤ ,

4𝑘 + 2 ∶ 𝑘 ∈ ℤ ,
4𝑘 + 3 ∶ 𝑘 ∈ ℤ
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6.3.4 Congruence

Definition: Divisibility

Let 𝑛, 𝑑 ∈ ℤ. Then 𝑑 | 𝑛 ⇔ 𝑛 = 𝑑𝑘 for some 𝑘 ∈ ℤ.

Definition: Congruence

Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℤ+. Then 𝑎 is congruent to 𝑏 modulo 𝑛 iff 
𝑎 − 𝑏 = 𝑛𝑘 for some 𝑘 ∈ ℤ. In other words, 𝑛 | 𝑎 − 𝑏 . 

In this case, we write 𝑎 ≡ 𝑏 (mod 𝑛).

Example #17: Are the following true?

(a) 7 ≡ 1 (mod 2)

(b) −3 ≡ 12 (mod 5)

(c) −4 ≡ 5 (mod 7)

Yes, because 7 − 1 = 6 = 2 × 3. 𝑘 = 3.

Yes, because −3 − 12 = −15 = 5 × (−3). 𝑘 = −3.



No, because −4 − 5 = −9 ≠ 7𝑘 for any 𝑘 ∈ ℤ.
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Proposition

Congruence-mod 𝑛 is an equivalence relation on ℤ for every 𝑛 ∈ ℤ+.

Proof:

1. (Reflexivity) For all 𝑎 ∈ ℤ,

2. (Symmetry)

3. (Transitivity)

A relation 𝑅 on a set 𝐴 is
reflexive: ∀𝑥 ∈ 𝐴 (𝑥 𝑅 𝑥);

1.1. 𝑎 − 𝑎 = 0 = 𝑛 × 0.
1.2. So 𝑎 ≡ 𝑎 (mod 𝑛) by the defn of congruence.

symmetric: 
 ∀𝑥, 𝑦 ∈ 𝐴 (𝑥 𝑅 𝑦 ⇒ 𝑦 𝑅 𝑥);
transitive: 
 ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 

𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ⇒ 𝑥 𝑅 𝑧 .2.1. Let 𝑎, 𝑏 ∈ ℤ such that 𝑎 ≡ 𝑏 (mod 𝑛) .
2.2. Then there is a 𝑘 ∈ ℤ such that 𝑎 − 𝑏 = 𝑛𝑘.
2.3. Then 𝑏 − 𝑎 = − 𝑎 − 𝑏 = −𝑛𝑘 = 𝑛(−𝑘).
2.4.  −𝑘 ∈ ℤ (by closure of integers under ×), 
 so 𝑏 ≡ 𝑎 (mod 𝑛) by the definition of congruence.

3.1. Let 𝑎, 𝑏, 𝑐 ∈ ℤ such that 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛) .
3.2. Then there are 𝑘, 𝑙 ∈ ℤ such that 𝑎 − 𝑏 = 𝑛𝑘 and 𝑏 − 𝑐 = 𝑛l.
3.3. Then 𝑎 − 𝑐 = 𝑎 − 𝑏 + 𝑏 − 𝑐 = 𝑛𝑘 + 𝑛𝑙 = 𝑛(𝑘 + 𝑙).
3.4.  𝑘 + 𝑙 ∈ ℤ (by closure of integers under +), 
 so 𝑎 ≡ 𝑐 (mod 𝑛) by the definition of congruence.
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Congruence: Equivalence classes

Definition: Equivalence Class

Suppose 𝐴 is a set and ~ is an equivalence relation on 𝐴. 
The equivalence class of 𝑎 ∈ 𝐴, is [𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }.

Congruence modulo 4

:
-8
-4
0
4
8
:

:
-7
-3
1
5
9
:

ℤ:
-6
-2
2
6

10
:

:
-5
-1
3
7

11
:

Let 𝑛 ∈ ℤ+. The equivalence classes w.r.t. the 
congruence-mod-𝑛 relation on are of the form:

𝑥 = 𝑦 ∈ ℤ ∶ 𝑥 ≡ 𝑦 mod 𝑛

 = {𝑦 ∈ ℤ ∶ 𝑥 − 𝑦 = 𝑛𝑘 for some 𝑘 ∈ ℤ}

 = 𝑥 + 𝑛𝑘 ∶ 𝑘 ∈ ℤ

 = … , 𝑥 − 2𝑛, 𝑥 − 𝑛, 𝑥, 𝑥 + 𝑛, 𝑥 + 2𝑛, …  where 𝑥 ∈ ℤ.

Note that for all 𝑥 ∈ ℤ, 𝑥 + 𝑛 = … , 𝑥 − 𝑛, 𝑥, 𝑥 + 𝑛, 𝑥 + 2𝑛, 𝑥 + 3𝑛, … = 𝑥 .

For example, if 𝑛 = 4, then 

 ⋯ = −8 = −4 = 0 = 4 = ⋯ and ⋯ = −7 = −3 = 1 = 5 = ⋯

 and so on. 
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6.3.5 Dividing a Set by an Equivalence Relation

Definition: Set of equivalence classes

Let 𝐴 be a set and ~ be an equivalence relation on 𝐴. Denote by 
𝐴/~ the set of all equivalence classes with respect to ~, i.e.,

  𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 .

We may read 𝐴/~ as “the quotient of 𝐴 by ~”.

Example #18: Let 𝑛 ∈ ℤ+. If ~𝑛 denotes the congruence-mod-𝑛 
relation on ℤ, then

 ℤ/~𝑛 = { 𝑥 ∶ 𝑥 ∈ ℤ}

  = 𝑛𝑘 ∶ 𝑘 ∈ ℤ , 𝑛𝑘 + 1 ∶ 𝑘 ∈ ℤ , ⋯ , 𝑛𝑘 + 𝑛 − 1 ∶ 𝑘 ∈ ℤ .
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Let ~ be an equivalence relation on a set 𝐴. 
Then 𝐴/~ is a partition of 𝐴.

𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 .

C is a partition of a set 𝐴 if:
(1) C is a set of which all 

elements are nonempty 
subsets of 𝐴.

(2) Every element of 𝐴 is in 
exactly one element of C.

Proof:

1.  𝐴/~ is by definition a set.

2.  We show that every element of  𝐴/~ is a nonempty subset of 𝐴.

3.  We show that every element of  𝐴 is in at least one element of 𝐴/~.

4.  We show that every element of  𝐴 is in at most one element of 𝐴/~.

2.1. Let 𝑆 ∈ 𝐴/~.
2.2. Use the definition of 𝐴/~ to find 𝑥 ∈ 𝐴 such that 𝑆 = [𝑥].
2.3. Then 𝑆 = [𝑥] ⊆ 𝐴 in view of the definition of equivalence classes.
2.4. 𝑥~𝑥 by the reflexivity of ~.
2.5. Hence 𝑥 ∈ 𝑥 = 𝑆 by the definition of [x]. 
2.6. In particular, we know 𝑆 is nonempty.

Theorem Rel.2 Equivalence classes form a partition
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Theorem Rel.2 Equivalence classes form a partition

Let ~ be an equivalence relation on a set 𝐴. 
Then 𝐴/~ is a partition of 𝐴.

𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 .

C is a partition of a set 𝐴 if:
(1) C is a set of which all 

elements are nonempty 
subsets of 𝐴.

(2) Every element of 𝐴 is in 
exactly one element of C.

Proof:

1.  𝐴/~ is by definition a set.

2.  We show that every element of  𝐴/~ is a nonempty subset of 𝐴.

3.  We show that every element of  𝐴 is in at least one element of 𝐴/~.

4.  We show that every element of  𝐴 is in at most one element of 𝐴/~.

3.1. Let 𝑥 ∈ 𝐴.
3.2. 𝑥~𝑥 by the reflexivity of ~.
3.3. So 𝑥 ∈ 𝑥 ∈ 𝐴/~.
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Let ~ be an equivalence relation on a set 𝐴. 
Then 𝐴/~ is a partition of 𝐴.

𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 .

C is a partition of a set 𝐴 if:
(1) C is a set of which all 

elements are nonempty 
subsets of 𝐴.

(2) Every element of 𝐴 is in 
exactly one element of C.

Proof:

1.  𝐴/~ is by definition a set.

2.  We show that every element of  𝐴/~ is a nonempty subset of 𝐴.

3.  We show that every element of  𝐴 is in at least one element of 𝐴/~.

4.  We show that every element of  𝐴 is in at most one element of 𝐴/~.

4.1. Let 𝑥 ∈ 𝐴 that is in two elements of 𝐴/~, say 𝑆1 and 𝑆2. 
4.2. Use the definition of 𝐴/~ to find 𝑦1, 𝑦2 ∈ 𝐴 such that 𝑆1 = [𝑦1] and 𝑆2 = [𝑦2]. 
4.3. 𝑥 ∈ [𝑦1] ∩ [𝑦2] by lines 4.1 and 4.2.
4.4. So [𝑦1] ∩ [𝑦2] ≠ ∅.
4.5. Therefore 𝑆1 = 𝑦1 = 𝑦2 = 𝑆2  by lemma: equivalence classes.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The following are 
equivalent for all 𝑥, 𝑦 ∈ 𝐴. (i) 𝑥~𝑦; (ii) 𝑥 = 𝑦 ; (iii) 𝑥 ∩ [𝑦] ≠ ∅.

Theorem Rel.2 Equivalence classes form a partition
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6.3.6 Summary

Definition: A relation on set 𝐴 is a subset of 𝐴2.

Definition: A partition of a set 𝐴 is a set C of non-empty subsets of 𝐴 such that

 ∀𝑥 ∈ 𝐴 ∃! 𝑆 ∈ C 𝑥 ∈ 𝑆 .

Definition: If 𝑅 is a relation on a set 𝐴, then we write 𝑥 𝑅 𝑦 for (𝑥, 𝑦) ∈ 𝑅.

Definition: A relation 𝑅 on 𝐴 is an equivalence relation if
▪ (reflexivity) ∀𝑥 ∈ 𝐴 (𝑥 𝑅 𝑥);
▪ (symmetry) ∀𝑥, 𝑦 ∈ 𝐴 (𝑥 𝑅 𝑦 ⇒ 𝑦 𝑅 𝑥); and
▪ (transitivity) ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 (𝑥 𝑅 𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑦 𝑅 𝑧). 

Definition: Let ~ be an equivalence relation on 𝐴. Then the set of equivalence classes 
is denoted by 𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 , where  𝑥 ~ = {𝑦 ∈ 𝐴 ∶ 𝑥~𝑦}.

Proposition: The same-component relation w.r.t. a partition is an equivalence relation.

Theorem Rel.2: If ~ is an equivalence relation on 𝐴, then 𝐴/~ is a partition of 𝐴.
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Informal descriptions of the terms

𝑏𝑝

𝑓𝑚
𝑒

𝑘

C = 𝑏, 𝑝 , 𝑓, 𝑚 , 𝑘 , 𝑒

𝑏 𝑝

𝑓 𝑚

𝑘 𝑒

1. underlying set 𝐴 the set to be “partitioned”
2. components 𝑆 subsets of 𝐴, mutually disjoint,
   together union to 𝐴
3. partition C the set of all components
4. same-component relation ~ equivalence relation

1. underlying set 𝐴 the set of all vertices
2. relation 𝑅 the set of all arrows
3. equivalence relation ~ if ignoring directions of arrows 
   one can walk from 𝑥 to 𝑦, then
   there is an arrow from 𝑥 to 𝑦
4. equivalence classes [𝑥] connected components
5. quotient 𝐴/~ the set of all connected components

𝑏

𝑝
𝑓

𝑚

𝑘

𝑒

𝐴 = {𝑏, 𝑒, 𝑓, 𝑘, 𝑚, 𝑝}
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6.4 Partial Order Relations
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6.4.1 Antisymmetry

By taking the negation of the definition, you can see that a 
relation 𝑅 is not antisymmetric iff

∃𝑥, 𝑦 ∈ 𝐴 (𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ∧ 𝑥 ≠ 𝑦).

Definition: Antisymmetry

Let 𝑅 be a relation on a set 𝐴. 𝑅 is antisymmetric iff

∀𝑥, 𝑦 ∈ 𝐴 (𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ⇒ 𝑥 = 𝑦).

or

∀

∀

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The big question: Is antisymmetry ≡ ~(symmetry)?

Let 𝑅 be a relation on a set 𝐴.

𝑅 is symmetric 
iff ∀𝑥, 𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥).

𝑅 is antisymmetric 
iff ∀𝑥, 𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 ⇒ 𝑥 = 𝑦).

≡ ?
𝑅 is not symmetric 

iff ∃𝑥, 𝑦 ∈ 𝐴 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 .




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Example #19: Let 𝑅1 be the “divides” relation on the set of all 
positive integers, and let 𝑅2 be the “divides” relation on the set 
of all integers.

a. Is 𝑅1 antisymmetric? Prove or give a counterexample.

𝑅1 is antisymmetric:

1. Suppose 𝑎, 𝑏 ∈ ℤ+ such that 𝑎𝑅1𝑏 and 𝑏𝑅1𝑎.
2. Then 𝑏 = 𝑟𝑎 and 𝑎 = 𝑠𝑏 for some integers 𝑟 and 𝑠 (by 

definition of “divides”).  It follows that 𝑏 = 𝑟𝑎 = 𝑟 𝑠𝑏 .
3. Dividing both sides by 𝑏 gives 1 = 𝑟𝑠.
4. The only product of two positive integers that equals 1 is 

1 ∙ 1.
5. Thus 𝑟 = 𝑠 = 1, and so 𝑎 = 𝑠𝑏 = 1 ∙ 𝑏 = 𝑏.

∀𝑎, 𝑏 ∈ ℤ+, 𝑎𝑅1𝑏 ⇔ 𝑎|𝑏.
∀𝑎, 𝑏 ∈ ℤ,  𝑎𝑅2𝑏 ⇔ 𝑎|𝑏.
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Example #19: Let 𝑅1 be the “divides” relation on the set of all 
positive integers, and let 𝑅2 be the “divides” relation on the set 
of all integers.

a. Is 𝑅1 antisymmetric? Prove or give a counterexample.

𝑅1 is antisymmetric:

1. Suppose 𝑎, 𝑏 ∈ ℤ+ such that 𝑎𝑅1𝑏 and 𝑏𝑅1𝑎.
2. Then 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 by Theorem 4.3.1.
3. So 𝑎 = 𝑏.

∀𝑎, 𝑏 ∈ ℤ+, 𝑎𝑅1𝑏 ⇔ 𝑎|𝑏.
∀𝑎, 𝑏 ∈ ℤ,  𝑎𝑅2𝑏 ⇔ 𝑎|𝑏.

Alternatively, we may use Theorem 4.3.1 (see lecture #4):

For all 𝑎, 𝑏 ∈ ℤ+, if 𝑎 | 𝑏 then 𝑎 ≤ 𝑏. 
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Example #19: Let 𝑅1 be the “divides” relation on the set of all 
positive integers, and let 𝑅2 be the “divides” relation on the set 
of all integers.

b. Is 𝑅2 antisymmetric? Prove or give a counterexample.

𝑅2 is not antisymmetric.

Counterexample:
Let 𝑎 = 2 and 𝑏 = −2. Then 𝑎|𝑏 and 𝑏|𝑎.
Hence 𝑎𝑅2𝑏 and 𝑏𝑅2𝑎 but 𝑎 ≠ 𝑏.

∀𝑎, 𝑏 ∈ ℤ+, 𝑎𝑅1𝑏 ⇔ 𝑎|𝑏.
∀𝑎, 𝑏 ∈ ℤ,  𝑎𝑅2𝑏 ⇔ 𝑎|𝑏.


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6.4.2 Partial Order Relations

Two fundamental partial order relations are the “less than or 
equal to (≤)” relation on a set of real numbers and the “subset 
(⊆)” relation on a set of sets. 

Definition: Partial Order Relation

Let 𝑅 be a relation on a set 𝐴. Then 𝑅 is a partial order 
relation (or simply partial order) iff 𝑅 is reflexive, 
antisymmetric and transitive.

Definition: Partially Ordered Set

A set 𝐴 is called a partially ordered set (or poset) with 
respect to a partial order relation 𝑅 on 𝐴, denoted by (𝐴, 𝑅).
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Example #20: Let | be the “divides” relation on a set 𝐴 
of positive integers. That is, ∀𝑎, 𝑏 ∈ 𝐴,

Prove that | is a partial order relation on 𝐴.

| is reflexive: Suppose 𝑎 ∈ 𝐴. Then 𝑎 = 1𝑎, so 𝑎|𝑎 (by the 
definition of divisibility).

| is antisymmetric: To show that ∀𝑎, 𝑏 ∈ 𝐴, 𝑎 𝑏 ∧ 𝑏 𝑎 → 𝑎 = 𝑏. 
Proof identical to Exercise #19a.

| is transitive: To show that for ∀𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎 𝑏 ∧ 𝑏 𝑐 → 𝑎|𝑐. 
This is Theorem 4.3.3 (5th: 4.4.3).

𝑎|𝑏 ⇔ 𝑏 = 𝑘𝑎 for some integer 𝑘.

Theorem 4.3.3 (5th: 4.4.3) Transitivity of Divisibility

For all integers 𝑎, 𝑏 and 𝑐, if 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐.
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Theorem 4.3.3 (5th: 4.4.3) Transitivity of Divisibility

For all integers 𝑎, 𝑏 and 𝑐, if 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐.

Proof:

1. Suppose 𝑎, 𝑏, 𝑐 are integers such that 𝑎 | 𝑏 and 𝑏 | 𝑐.

2. Then 𝑏 = 𝑎𝑟 and 𝑐 = 𝑏𝑠 for some integers 𝑟 and 𝑠 by the 
definition of divisibility.

3. 𝑐 = 𝑏𝑠 = (𝑎𝑟)𝑠 = 𝑎(𝑟𝑠) by basic algebra.

4. Therefore 𝑎 | 𝑐 since 𝑟𝑠 is an integer (by closure of integers 
under ×).
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Notation

Because of the special paradigmatic role played by the ≤ 
relation in the study of partial order relations, the symbol ≼ 
is often used to refer to a general partial order, and the 
notation 𝑥 ≼ 𝑦 is read “𝑥 is curly less than or equal to 𝑦”.

Exercise: Let ≤ be the “less than or equal to” relation 
on ℚ. Show that ≤ is a partial order.

Question: The “less than” relation on ℚ is denoted as 
<. Is < a partial order? Why?



No. < is not reflexive.

Question: Fix an 𝑛 ∈ ℤ+. Let 𝑅 denote the congruence-
mod-𝑛 relation on ℤ. Is 𝑅 a partial order? Why?

No. 𝑅 is not antisymmetric.
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One way of viewing partial orders.

▪ We may view the set 𝐴 as a set of tasks.

▪ Suppose 𝑥, 𝑦 ∈ 𝐴. We write 𝑥 ≼ 𝑦 iff task 𝑥 must be done 
before or at the same time as task 𝑦.

▪ For some elements 𝑥 and 𝑦, it could be that neither 𝑥 ≼ 𝑦 
nor 𝑦 ≼ 𝑥 (that is, 𝑥 and 𝑦 are not “comparable” – to be 
defined later).

▪ Hence, the order is “partial”, that is, there may not be an 
order between certain elements.

▪ This is clearer when we get to the Hasse Diagram.
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6.4.3 Hasse Diagrams

Example #21: Let 𝐴 = {1, 2, 3, 9, 18} and consider the 
“divides” relation on 𝐴: ∀𝑎, 𝑏 ∈ 𝐴,

The directed graph of this relation, which is a partial 
order, is as follows:

𝑎 | 𝑏 ⇔ 𝑏 = 𝑘𝑎 for some integer 𝑘.
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Note that there is a loop at every vertex, all 
other arrows point in the same direction 
(upward), and any time there is an arrow 
from one point to a second and from the 
second point to a third, there is an arrow 
from the first point to the third.

Given any partial order relation defined on a finite set, it is 
possible to draw the directed graph in such a way that all of these 
properties are satisfied.

This makes it possible to associate a somewhat simpler graph, 
called a Hasse diagram (after Helmut Hasse, a twentieth-century 
German number theorist), with a partial order relation defined 
on a finite set.
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To obtain a Hasse diagram, proceed as follows:

Start with a directed graph of the relation, placing vertices on the 
page so that all arrows point upward. Then eliminate

1. the loops at all the vertices,
2. all arrows whose existence is implied by the transitive property,
3. the direction indicators on the arrows.

Directed graph of the “divides” 
relation on {1,2,3,9,18}

Hasse diagram of the “divides” 
relation on {1,2,3,9,18}
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Directed graph of the “divide” 
relation on {1,2,3,9,18}

Hasse diagram of the “divide” 
relation on {1,2,3,9,18}

Definition: Hasse Diagram

Let ≼ be a partial order on a set 𝐴. A Hasse diagram of ≼ 
satisfies the following condition for all distinct 𝑥, 𝑦, 𝑚 ∈ 𝐴:

If 𝑥 ≼ 𝑦 and no 𝑚 ∈ 𝐴 is such that 𝑥 ≼ 𝑚 ≼ 𝑦, 
then 𝑥 is placed below 𝑦 with a line joining them, 
else no line joins 𝑥 and 𝑦. 
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Example #22: Consider 𝒫( 1,2,3 ) partially ordered by 
the subset relation ⊆. Draw its Hasse diagram.
(The directed graph would be too complex. 
The Hasse diagram carries the same information.)

Recall that 𝒫(𝐴) denotes 
the power set of 𝐴.

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{}

Note that certain elements, 
say 𝑥 and 𝑦, of 𝒫( 1,2,3  
are not comparable, that is, 
neither 𝑥 ≼ 𝑦 nor 𝑦 ≼ 𝑥.

{1,2} and {1,3} are two such 
elements, as neither 
1,2 ⊆ {1,3} nor 

1,3 ⊆ {1,2}.  
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6.4.4 Comparability

Given any two real numbers 𝑥 and 𝑦, either 𝑥 ≤ 𝑦 or 
𝑦 ≤ 𝑥. In a situation like this, the elements 𝑥 and 𝑦 are 
said to be comparable.

On the other hand, given two subsets 𝐴 and 𝐵 of 
{𝑎, 𝑏, 𝑐}, it may be the case that neither 𝐴 ⊆ 𝐵 nor 
𝐵 ⊆ 𝐴.

For instance, let 𝐴 = {𝑎, 𝑏} and 𝐵 = {𝑏, 𝑐}. Then 𝐴 ⊈ 𝐵 
and 𝐵 ⊈ 𝐴.

In such a case, 𝐴 and 𝐵 are said to be noncomparable.
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Definition: Comparability

Suppose ≼ is a partial order relation on a set 𝐴. Elements 𝑎 
and 𝑏 of 𝐴 are said to be comparable iff either 𝑎 ≼ 𝑏 or 
𝑏 ≼ 𝑎. Otherwise, 𝑎 and 𝑏 are noncomparable.

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{}

⊆ on 𝒫( 1,2,3 )



Which of the following pairs of 
elements are comparable?

(a) {1} and {1,3}

(b) {2,3} and {2}

(c) {1} and {3}

(d) {1,2} and {3}

(e) {3} and {1,2,3}

Yes

Yes

No

No

Yes
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6.4.5 Maximal/Minimal/Largest/Smallest Element

Definitions

Let a set 𝐴 be partially ordered with respect to a relation ≼ and 𝑐 ∈ 𝐴.

1. 𝑐 is a maximal element of 𝐴 iff ∀𝑥 ∈ 𝐴, either 𝑥 ≼ 𝑐, or 𝑥 and 𝑐 are 
not comparable. Alternatively, 𝑐 is a maximal element of 𝐴 iff

    ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥 ⇒ 𝑐 = 𝑥. ) 

2. 𝑐 is a minimal element of 𝐴 iff ∀𝑥 ∈ 𝐴, either 𝑐 ≼ 𝑥, or 𝑥 and 𝑐 are 
not comparable. Alternatively, 𝑐 is a minimal element of 𝐴 iff  

   ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐 ⇒ 𝑐 = 𝑥). 

3. 𝑐 is the largest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐).

4. 𝑐 is the smallest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥).

Note: Alternative terms
▪ largest element = greatest element = maximum; 
▪ smallest element = least element = minimum.
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Example #23: Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖} have the partial 
ordering  defined by the following Hasse diagram. Find all 
maximal, minimal, largest, and smallest elements of 𝐴.

There is just one maximal element, 
𝑔, which is also the largest element. 
The minimal elements are 𝑐, 𝑑, and 
𝑖, and there is no smallest element.

Let a set 𝐴 be partially ordered with respect to a relation ≼ and 𝑐 ∈ 𝐴.

1. 𝑐 is a maximal element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥 ⇒ 𝑐 = 𝑥. ) 

2. 𝑐 is a minimal element of 𝐴 iff  ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐 ⇒ 𝑐 = 𝑥). 

3. 𝑐 is the largest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐).

4. 𝑐 is the smallest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥).
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Example #24: The divisibility relation | on 𝐴 = {1, 2, ⋯ , 10} is 
has the following Hasse diagram. Find all maximal, minimal, 
largest, and smallest elements of 𝐴.

Maximal: 

Minimal:

Largest:

Smallest:



Let a set 𝐴 be partially ordered with respect to a relation ≼ and 𝑐 ∈ 𝐴.

1. 𝑐 is a maximal element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥 ⇒ 𝑐 = 𝑥. ) 

2. 𝑐 is a minimal element of 𝐴 iff  ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐 ⇒ 𝑐 = 𝑥). 

3. 𝑐 is the largest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐).

4. 𝑐 is the smallest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥).

8

6 10 9

2 3 5

1

7

4

6,7,8,9,10

1

No largest element

1
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Proof:
1. Let 𝑐 be a smallest element.
2. Take any 𝑥 ∈ 𝐴 such that 𝑥 ≼ 𝑐.
3. By smallestness, we know 𝑐 ≼ 𝑥 too.
4. So 𝑐 = 𝑥 by antisymmetry.

Proposition: A smallest element is minimal.

Consider a partial order ≼ on a set 𝐴. Any smallest element 
is minimal. (Likewise, any largest element is maximal.)

smallest ⇔ everything is above

minimal ⇔ nothing is below

⇓

Being above and below implies 
equality by antisymmetry

∀𝑥, 𝑦 ∈ 𝐴
𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 ⇒ 𝑥 = 𝑦

Let a set 𝐴 be partially ordered with respect to a relation ≼ and 𝑐 ∈ 𝐴.

2. 𝑐 is a minimal element of 𝐴 iff  ∀𝑥 ∈ 𝐴 (𝑥 ≼ 𝑐 ⇒ 𝑐 = 𝑥). 

4. 𝑐 is the smallest element of 𝐴 iff ∀𝑥 ∈ 𝐴 (𝑐 ≼ 𝑥).
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6.4.6 Linearization

Let ≼ be a partial order relation on a set 𝐴. Suppose we view 𝐴 as a 
set of tasks and 𝑥 ≼ 𝑦 to mean 𝑥 must be performed before or at 
the same time as 𝑦. How can we “line up” the tasks in 𝐴 assuming 
that we cannot perform two tasks simultaneously?

Hasse diagram of the “divides” 
relation on {1,2,3,9,18}

Possible “line-ups”:

9

18

3

2

1

9

18

2

3

1

2

18

9

3

1

or or or … 

A “line-up” is 
called a 
linearization of ≼.

Such a “line-up” 
(linearization) 
happens to be a 
total order (to be 
defined later).
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Example #25: Consider the subset relation ⊆ on 𝒫( 1,2,3 ). The 
Hasse Diagram is shown below. 

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{}

⊆ on 𝒫( 1,2,3 )

Which of the following is a 
linearization of 𝒫 1,2,3 , ⊆ ?



{2,3}

{1,2,3}

{1,2}

{1,3}

{2}

{1}

{3}

{}

{2,3}

{1,2,3}

{1}

{1,2}

{2}

{1,3}

{3}

{}

{2,3}

{1,2,3}

{1,2}

{1}

{2}

{1,3}

{3}

{}
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6.4.7 Total Order Relations

When all the elements of the set in a partial order relation are comparable, 
the relation is called a total order. (Some call it a linear order.)

Definition: Total Order Relations

If 𝑅 is a partial order relation on a set 𝐴, and for any two elements 
𝑥 and 𝑦 in 𝐴, either 𝑥 𝑅 𝑦 or 𝑦 𝑅 𝑥, then 𝑅 is a total order relation 
(or simply total order) on 𝐴.

In other words, 𝑅 is a total order iff 
 𝑅 is a partial order and ∀𝑥, 𝑦 ∈ 𝐴 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 .

Example #25: The divisibility relation | on ℤ+ is a partial order but not a 
total order because 3 and 5 are not comparable (i.e., 3 ∤ 5 and 5 ∤ 3).

Example #26: The ≤ relation on ℚ is a total order because for every 
𝑥, 𝑦 ∈ ℚ 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 .
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It follows that the Hasse diagram of a total order is one single line 
(chain). Hence, the linearization of a total order is the total order 
itself.

A linearization of a partial order can be seen as deriving one total 
order (among many possible total orders) from that partial order.

Definition: Linearization of a partial order 

Let ≼ be a partial order on a set 𝐴. A linearization of ≼ is a 
total order ≼∗ on 𝐴 such that

 ∀𝑥, 𝑦 ∈ 𝐴 𝑥 ≼ 𝑦 ⇒ 𝑥 ≼∗ 𝑦 .
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Example #25 (revisit): Consider the subset relation ⊆ on 𝒫( 1,2,3 ). 

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{}

⊆ on 𝒫( 1,2,3 )

Which of the following is a 
linearization of 𝒫 1,2,3 , ⊆ ?

{2,3}

{1,2,3}

{1,2}

{1,3}

{2}

{1}

{3}

{}

{2,3}

{1,2,3}

{1}

{1,2}

{2}

{1,3}

{3}

{}

{2,3}

{1,2,3}

{1,2}

{1}

{2}

{1,3}

{3}

{}

1 ≼ {1,3} 
but 

1 ≼∗ {1,3} 
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Kahn’s Algorithm (1962)

Input: A finite set 𝐴 and a partial order ≼ on 𝐴.

Output: A linearization ≼∗ of ≼ defined by setting, for all 
indices 𝑖, 𝑗, 

𝑐𝑖 ≼∗ 𝑐𝑗 ⇔ 𝑖 ≤ 𝑗.

1. Set 𝐴0 ≔ 𝐴 and 𝑖 ≔ 0.
2. Repeat until 𝐴𝑖 = ∅
 2.1. find a minimal element 𝑐𝑖 of 𝐴𝑖 wrt ≼
 2.2. set 𝐴𝑖+1 = 𝐴𝑖 \ {𝑐𝑖}
 2.3. set 𝑖 ≔ 𝑖 + 1
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Example #26: A run of the Kahn’s algorithm 
on the set 𝑑 ∈ ℤ+ ∶ 𝑑 30  partially ordered 
by the divisibility relation |. 

30

6 10 15

2 3 5

1
 Set 𝐴0 ≔ 𝑑 ∈ ℤ+ ∶ 𝑑 30 .

 1 is the only minimal element of 𝐴0.
Set 𝑐0 ≔ 1 and 𝐴1 ≔ 𝐴0 \ {1}.

 2,3,5 are the minimal elements of 𝐴1.
Set 𝑐1 ≔ 3 and 𝐴2 ≔ 𝐴1 \ {3}.

 2,5 are the minimal elements of 𝐴2.
Set 𝑐2 ≔ 2 and 𝐴3 ≔ 𝐴2 \ {2}.

 5,6 are the minimal elements of 𝐴3.
Set 𝑐3 ≔ 6 and 𝐴4 ≔ 𝐴3 \ {6}.

 5 is the only minimal element of 𝐴4.
Set 𝑐4 ≔ 5 and 𝐴5 ≔ 𝐴4 \ {5}.

 10,15 are the minimal elements of𝐴5.
Set 𝑐5 ≔ 15 and 𝐴6 ≔ 𝐴5 \ {15}.

 10 is the only minimal element of 𝐴6.
Set 𝑐6 ≔ 10 and 𝐴7 ≔ 𝐴6 \ {10}.

 30 is the only minimal element of 𝐴7.
Set 𝑐7 ≔ 30 and 𝐴8 ≔ 𝐴7 \ {30}.

  𝐴8 = ∅ and so we stop.

10

30

15

5

6

2

1

3

  A linearization is obtained: 1 ≼∗ 3 ≼∗ 2 ≼∗ 6 ≼∗ 5 ≼∗ 15 ≼∗ 10 ≼∗ 30.
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Definition: Well-Ordered Set

Let ≼ be a total order on a set 𝐴. 𝐴 is well-ordered iff every 
non-empty subset of 𝐴 contains a smallest element. 
Symbolically,

 ∀𝑆 ∈ 𝒫 𝐴 , 𝑆 ≠ ∅ ⇒ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≼ 𝑦 .

Example #27:

▪ (ℕ, ≤) is well-ordered.

▪ (ℤ, ≤) is not well-ordered.
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Summary
▪ Relations allow us to model and study many real-world 

relationships.

▪ Relations may be inverted and composited.

▪ Important properties are: reflexivity, symmetry, transitivity, anti-
symmetry.

▪ An Equivalent Relation is the generalization of the notion of 
“equality”.

▪ A partition of a set and an equivalence relation are two sides of 
the same coin.

▪ A Partial Order is the generalization of the notion of “less than or 
equal to”.

▪ Maximal and minimal elements are generalizations of upper and 
lower bounds.
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END OF FILE
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Recap: Concepts in Sets that are needed 
in Relations

▪ Sets (membership ∈, subset ⊆, power set 𝒫(𝐴), 
union ∪, intersection ∩, difference \)

▪ Cartesian Products (𝐴 × 𝐵) and ordered pairs

▪ Partition of a set
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Today’s focus:

▪ Definition of Relations

▪ Common properties of Relations

▪ Equivalence Relation
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Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Which of the relations below are REFLEXIVE?

Let 𝐴 be a set and 𝑅 a relation on 𝐴.
𝑅 is reflexive: ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 .REFLEXIVITY
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Which of the relations below are REFLEXIVE?

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

Let 𝐴 be a set and 𝑅 a relation on 𝐴.
𝑅 is reflexive: ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 .REFLEXIVITY
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Which of the relations below are SYMMETRIC?

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Let 𝐴 be a set and 𝑅 a relation on 𝐴.
𝑅 is symmetric: ∀𝑥, 𝑦 ∈ 𝐴 𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥 .

Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

SYMMETRY
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𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Which of the relations below are SYMMETRIC?

Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

Let 𝐴 be a set and 𝑅 a relation on 𝐴.
𝑅 is symmetric: ∀𝑥, 𝑦 ∈ 𝐴 𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥 .SYMMETRY
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Which of the relations below are TRANSITIVE?

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Let 𝐴 be a set and  𝑅 a relation on 𝐴.
𝑅 is transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧 .

Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

TRANSITIVITY
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𝑎

𝑐

𝑏 𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑎

𝑐

𝑏 𝑎

𝑐

𝑏

𝑅1 𝑅2 𝑅3

𝑎

𝑐

𝑏

𝑅4

𝑅5 𝑅6 𝑅7 𝑅8

𝑎

𝑐

𝑏𝑎

𝑐

𝑏

Given a set 𝐴 = {𝑎, 𝑏, 𝑐} and a binary relation defined on 𝐴 as follows.

Let 𝐴 be a set and  𝑅 a relation on 𝐴.
𝑅 is transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝐴 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧 .

TRANSITIVITY

Which of the relations below are TRANSITIVE?
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𝑥

𝑦 𝑧

𝐴 = {𝑥, 𝑦, 𝑧}

Partitions of a set

𝑥

𝑧𝑦

1. 𝒞 = 𝑥 , 𝑦 , 𝑧

𝑥

𝑦

𝑧

2. 𝒞 = 𝑥, 𝑧 , 𝑦

𝑧

𝑦

3. 𝒞 = 𝑦 , 𝑧

𝑥

𝑧𝑦

4. 𝒞 = 𝑥, 𝑦, 𝑧 

𝑥
𝑧𝑦

5. 𝒞 = 𝑥, 𝑦, 𝑧

𝑥 𝑦

6. 𝒞 = 𝑥, 𝑦 , {𝑦, 𝑧}

𝑧 𝑦

𝑥 𝑦

7. 𝒞 = 𝑥, 𝑦 , 𝑧 , {}

𝑧
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Partial order
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