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Lecture 6: Relations

Aaron Tan

Part of the contents here is taken from
AY2025/26 Semester 1  Dr Wong Tin Lok’s lecture notes. !
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6. Relations

6.1 Relations on Sets

e Definition of relation; arrow diagram, inverse of a relation.
e Relation on a set; directed graph of a relation.

e Composition of relations.

e N-ary relations and relational databases.

6.2 Reflexivity, Symmetry and Transitivity

e Definitions of reflexivity, symmetry and transitivity.
e Transitive closure of a relation.

6.3 Equivalence Relations

e Partition of a set; the relation induced by a partition.
e Equivalence relation; equivalence classes.

e Congruence.

e Dividing a set by an equivalence relation.

e Summary

Reference: Epp’s Chapter 8 Properties of Relations 2
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6. Relations

6.4 Partial Order Relations

e Antisymmetry.

Partial order relations.

Hasse diagrams.

e Comparability.

e Maximal/minimal/largest/smallest element.
e Linearization.

e Total order relations; well ordered sets.

Reference: Epp’s Chapter 8 Properties of Relations 3
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6.1 Relations on Sets
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Definitions

6.1.1 Definitions

As the topic of relations is built on sets, definitions on sets, such
as ordered pair, ordered n-tuple, Cartesian product, etc. (see
Lecture 5 Set Theory) will be referred to here.

Recall: The Cartesian product of sets A and B, denoted A X B,
consists of all ordered pairs whose first elementis in A and
second elementin B:AX B ={(x,y) :x € ANy € B}.

Example #1: Let A = {0,1,2} and B = {a, b, c}.

Then A X B =
{(0,a),(0,b),(0,¢c),(1,a),(1,b),(1,¢),(2,a),(2,b), (2,c)}.
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Definitions

Definition: Relation

Let A and B be sets. A (binary) relation from A to B is a subset
of A X B.

Given an ordered pair (x,y) in A X B, x is related to y by R, or
x is R-related to y, written x R y, iff (x,y) € R.

Symbolically, x R y means (x,y) € R
x}é y means (x,y) € R

We read x R y as “x is R-related to y” or, if there is no risk of
confusion, simply “x is related to y”.
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Definitions

Example #2: Let A = {0,1,2} and B = {1,2,3}. Suppose we
define the relation R s.t. xRy iff x < y.
Then OR1,0R2,0R3,1R2,1R3 and 2R3, but 1R1,2R1 and

2R2.

Example #3: Let A = {1,2} and B = {1,2,3}. Define a relation R
from A to B as follows:

V(x,y) EAXB ((x,y) €ER @%E Z).

State explicitly which ordered pairs are in A X B and which are in R.

AxXB=1{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.
R =1{(1,1),(1,3),(2,2)}.
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Application of Relations

An application: A simple database

Let S be the set of students, M the set of modules, and R the
relation “is enrolled in” from S to M.

R ={ (Ali, C51101S),

Ali CS1101S 'k
Aiken CS1231S (Aiken, C512315),
(Dueet, CS12315)
Dueet CS1231S

(Bam Boo, MA1101R),
. (Lian Eng, CS1101S),
Lian Eng C51101S (Manimaran, CS12315),

Manimaran CS1231S (James Tan, MA1101R),
James Tan MA1101R o }

Bam Boo MA1101R
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Definitions

Definitions: Domain, Co-domain, Range

Let A and B be sets and R be a relation from A to B.
The domain of R, Dom(R), is the set {a € A : aRb for some b € B}.

The co-domain of R, coDom(R), is the set B.
The range of R, Range(R) , is the set {b € B: aRb for some a € A}.

Example #4: Let A = {1,2,3} and B = {2,4,9}, and define a
relation R from A to B as follows:

V(x,y) EAXB,(x,y) ER © x* =.
Dom(R) = {2,3}
coDom(R) = {2,4,9}
Range(R) = {4,9}
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Definitions

Example #5: Define a relation R from Z to Z as follows:
V(x,y) EZ XZ (xRy © x — y is even).

a. I1s4R0?1s2R6?1s3R(-3)?Is 5R2?
Yes Yes Yes No

b. List five integers that are related by R to 1.

Infinitely many possible answers.
One answer: 1,57, 12345, -203, -999.

c. Prove thatif a is any odd integer, then aR1.

Let a be an odd integer.
Then a = 2k + 1 for some integer k (by the definition of odd).

Therefore, a — 1 = 2k which is even (by the definition of even).
Hence aR1 (by the definition of R).

BN

10
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Arrow Diagram

A relation R from set A to set B can be depicted as an

arrow diagram:
1. Represent the elements of A as points in one region and the
elements of B as points in another region.
2. Foreachx € Aandy € B, draw an arrow from x to y iff xRy.

Example #6: Let A = {1,2,3} and B = {1,3,5}. Define
relations S and T from A to B as follows: V(x,y) € A X B,

(x,y) ESex<y

T =1(21),(2,5)}.

— —

=) A

11
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The Inverse of a Relation

6.1.2 The Inverse of a Relation

If R is a relation from A to B, then a relation R~ from B
to A can be defined by interchanging the elements of all

the ordered pairs of R.

Definition: Inverse of a Relation
Let R be a relation from A to B. Define the inverse relation R~1

from B to A as follows:
R1={(y,x) EBXA: (x,y) €R}.

This definition can be written operationally as follows:

vx € A,Vy € B((y,x) ER™T & (x,y) €R).
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The Inverse of a Relation

Ifn,d € Z:
d |n & 3k € Z such that n = dk.

Example #7: Let A = {2,3,4}and B = {2,6,8} and let
R be the “divides” relation from A to B:
V(x,y) EAXB (xRy © x| y)

a. State explicitly which ordered pairs are in R and R~ 1, and draw
arrow diagrams for R and R~ 1.

R =1{(2,2),(2,6),(2,8), (3,6), (4,8)}
R™' ={(2,2),(6,2),(8,2),(6,3),(84)}

b. Describe R~ 1.

V(y,x) € BxA
(YR™1x © y = kx) for some integer k.

13
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Directed Graph of a Relation

6.1.3 Directed Graph of a Relation

Definition: Relation on a Set

A relation on a set A is a relation from A to A.
In other words, a relation on a set 4 is a subset of A X A.

We may write A% for A X A.
In general, we may write A™ for A X :-- X A (n times).

The arrow diagram of such a relation can be modified so that it
becomes a directed graph. Instead of representing A as two
separate sets of points, represent A only once, and draw an
arrow from each point of A to its related point.

If a point is related to itself, a loop is drawn that extends out from
the point and goes back to it.

14
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Directed Graph of a Relation

Example #8: Let A = {3,4,5, 6,7, 8} and define a
relation R on A as follows: Vx,y € A,

xRy & 2| (x-vy).
Draw the directed graph of R.
QAT 4
%
"”

15
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Composition of Relations
6.1.4 Composition of Relations

Definition: Composition of Relations

Let A, B and C be sets. Let R € A X B be a relation. Let S €
B X C be a relation. The composition of R with S, denoted
S o R, is the relation from A to C such that:

VxEA,VZEC(xSoRZ<:>(EIyEB(ny/\ySZ))).

Relations on Sets
oNoNoX Neol

In other words, x € A and z € C are “S o R”-related iff there is a
“path” from x to z via some intermediate element y € B in the

arrow diagram.
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Composition of Relations

Students Module Venue
takes held in
Ann CS1010
LT15
Bryan — C51231%‘ ICube
Candy 151103 .
MA1101
Danny @ C$2100
Students Venue

“held in o takes” = “go to”

Ann \\ @ LT15
Bryan “ ‘
Candy 2@ I[Cube
Danny @ §: >R1

17
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Composition of Relations

Proposition: Composition is Associative

Let A,B,C,D besets.LetRCAXB,SCBXCandT < C XD
be relations.

To(SoR)=(ToS)oR=ToSoR

Proposition: Inverse of Composition

Let A, B and C be sets. Let R € A X Band S € B X C be relations.
(SoR)™'=R7toS§7!
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N-ary Relations and Relational Databases
6.1.5 N-ary Relations and Relational Databases

A relation involving two sets is called binary relation. We can
generalize a relation to involve more than two sets.

Definition: n-ary Relation

Given n sets A4, A,, -+, A,,, an n-ary relation R on
A1 X Az X X ATl iS d SUbset OfAl X Az X e X ATL'

The special cases of 2-ary, 3-ary and 4-ary relations are called
binary, ternary and quaternary relations respectively.
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N-ary Relations and Relational Databases

Example #9: (The following is a radically simplified version of a database that
might be used in a hospital.)

Let A, be a set of positive integers, A, and A, be sets of alphabetic
character strings, and A3 be a set of numeric character strings.

Define a quaternary relation R on A; X A, X A; X A, as follows:

(aq,a,, as, a,) € R & a patient with ID number a;, named
a,, was admitted on date a5 with primary diagnosis a,.

At a particular hospital, (011985, John Schmidt, 020710, asthma)

this relation might (574329, Tak Kurosawa, 011410, pneumonia)
contain these 4-tuples: | (466581, Mary Lazars, 010310, appendicitis)
(008352, Joan Kaplan, 112409, gastritis)
(011985, John Schmidt, 021710, pneumonia)
(244388, Sarah Wu, 010310, broken leg)
(778400, Jamal Baskers, 122709, appendicitis)
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N-ary Relations and Relational Databases

For example, in the database language SQL, if the above database
is denoted as S, the result of the query

SELECT Patient_ID#, Name FROM S WHERE Admission_Date=010310

would yield a list of the ID numbers and names of all patients
admitted on 01-03-10:

466581 Mary Lazars
244388 Sarah Wu

This is obtained by taking the intersection of the set A; X 4, X
{010310} x A, with the database and then projecting onto the
first two fields.

21
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6.2 Reflexivity, Symmetry
and Transitivity

22
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6.2.1 Definitions of Reflexivity, Symmetry and Transitivity

Example #10: Let A = {2, 3,4,6,7,9} and define a
relation R on A as follows: Vx, yeA (xRy < 3|(x — y)).

The directed graph for R is shown below:

2 1.
A 2.
7
3.
Ifn,d € Z:

d | n < 3k € Z such that n = dk.

Each point of the graph has an arrow
looping around from it back to itself.

Wherever there is an arrow going from
one point to another, there is also an
arrow going from the second point
back to the first.

Wherever there is an arrow going from
one point to a second and from the
second point to a third, there is also an
arrow going from the first point to the
third.

23
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Definitions of Reflexivity, Symmetry and Transitivity

Properties (1), (2), and (3) correspond to properties of general
relations called reflexivity, symmetry, and transitivity.

Definitions: Reflexivity, Symmetry, Transitivity

Let R be a relation on a set A.

1. R is reflexive iff Vx € A (xRx).

2. R is symmetriciff Vx,y € A (xRy = yRx).

3. Ristransitive iff Vx,y,z € A (xRy A yRz = xRz).

Reflexive Symmetric Transitive
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Definitions of Reflexivity, Symmetry and Transitivity

Example #11: Let A = {0, 1, 2, 3} and define relations R, S, and T on
A as follows:

= 1(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)},
§ =1(0,0),(0,2),(0,3),(2,3)},
T = 1(0,1),(2,3)}.

a. Is R reflexive? symmetric? transitive? Q S \O

Yes Yes No Q\

L\
b. Is S reflexive? symmetric? transitive?

. R ol
No No Yes 7\

.
c. Is T reflexive? symmetric? transitive?

e
\_/

De——————>e |
No No Yes

Je« 2
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Definitions of Reflexivity, Symmetry and Transitivity

Z-.-.‘: Common mistake: Talking about reflexivity.

S ;e

FACEPALNIES
“The element O is reflexive.” “The element O is related to itself.”
“The element 1 is not reflexive.” “The element 1 is not related to itself.”
“The element 2 is not reflexive.” “The element 2 is not related to itself.”

0 o]
Reflexivity, symmetry and transitivity are
properties of a relation, not properties
of members of the set. v
Je< ®?)

We say a relation is reflexive or not

reflexive.
26
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Definitions of Reflexivity, Symmetry and Transitivity

Example #12: Define a relation R on Z as follows:
Vx,yEZ(ny & 3 (x—y)).

This relation is called congruence modulo 3.

Is R reflexive, symmetric, transitive? R is reflexive.

Proof of Reflexivity:

1. Let a be an arbitrarily chosen integer.

2. Nowa —a = 0.

3. But3|0(since0=3-0), hence, 3 |(a — a).
4. Therefore a R a (by the definition of R).

27
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Definitions of Reflexivity, Symmetry and Transitivity

Example #12: Define a relation R on Z as follows:
Vx,yEZ(ny & 3 (x—y)).

This relation is called congruence modulo 3.

Is R reflexive, symmetric, transitive? R is symmetric.

Proof of Symmetry:

1. Let a and b be arbitrarily chosen integers that satisfy a R b.

2. Then 3|(a — b) (by the definition of R), hence a — b = 3k
for some integer k (by the definition of divisibility).

3. Multiplying both sides by —1 gives b — a = 3(—k).

4. Since - k is an integer, 3|(b — a) (by definition of divisibility).

5. Therefore b R a (by the definition of R).

28
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Definitions of Reflexivity, Symmetry and Transitivity

Example #12: Define a relation R on Z as follows:
Vx,yEZ(ny & 3 (x—y)).

This relation is called congruence modulo 3.

Is R reflexive, symmetric, transitive? R is transitive.

Proof of Transitivity:
1. Let a, b and c be arbitrarily chosen integers that satisfya R b
and b R c.

2. Then 3|(a — b) and 3|(b — ¢) (by the definition of R), hence
a—b = 3rand b — c = 3s for some integers r and s (by the
definition of divisibility).

. Adding both equations gives a — ¢ = 3(r + s).

Since r + s is an integer, 3|(a — ¢) (by definition of divisibility).

. Therefore a R ¢ (by the definition of R).

29
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The Transitive Closure of a Relation

6.2.2 The Transitive Closure of a Relation

Generally speaking, a relation fails to be transitive
because it fails to contain certain ordered pairs.

For example, if (1, 3) and (3, 4) are in a relation R, then
the pair (1, 4) must be in R for R to be transitive.

To obtain a transitive relation from one that is not
transitive, it is necessary to add ordered pairs.

Roughly speaking, the relation obtained by adding the
least number of ordered pairs to ensure transitivity is
called the transitive closure of the relation.

30
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The Transitive Closure of a Relation

In a sense made precise by the formal definition, the
transitive closure of a relation is the smallest transitive
relation that contains the relation.

Definition: Transitive Closure

Let A be a set and R a relation on A. The transitive closure of R is
the relation Rt on A that satisfies the following three properties:

1. Rt is transitive.
2. R € Rt
3. If S is any other transitive relation that contains R, then Rt C S.
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The Transitive Closure of a Relation

Example #13: Let A = {0, 1, 2,3} and

consider the relation R definedonAas '° ok
follows: R = {(0,1),(1,2),(2,3)}.
Find the transitive closure of R. 3 0 $

Since there are arrows from 0 to 1 and from 1 to 2, R?
must have an arrow from 0 to 2. Hence (0,2) € R’.

Then (0,2) € Rt and (2,3) € Rf, so (0,3) € RE.
Also, since (1,2) € Rt and (2,3) € RY, so (1,3) € Rt.

> |

Directed graph of Rt:

o
o

32
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6.3 Equivalence Relations

33
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The Relation Induced by a Partition

6.3.1 The Relation Induced by a Partition

A partition of a set A is a finite or infinite collection of
nonempty, mutually disjoint subsets whose union is A.

The diagram below illustrates a partition of a set
A={b,e, f,k,mp}bysubsets {b,p}, {f,m},{k},{e}.

34
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The Relation Induced by a Partition

Definition: Partition

‘G is a partition of a set A if the following hold:

(1) Gis a set of which all elements are non-empty subsets of 4, i.e.,
®+ScAforallS € T.

(2) Every element of A is in exactly one element of G, i.e.,
VxeA3IS € G(x€S)and
Vx EAVS,S, EG(XES;AXES, > 85 =85,).

Elements of a partition are called components of the partition.

= (@Q
[ 7 )

A={be f kmp) G = {{b,p}, {f, m}, {k}, {e}}
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The Relation Induced by a Partition

Definition: Partition

‘G is a partition of a set A if the following hold:

(1) Gis a set of which all elements are non-empty subsets of 4, i.e.,
®+SCcAforall S € C.

(2) Every element of A is in exactly one element of G, i.e.,
VxeA3IS € G(x€S)and
Vx EAVS,S, EG(XES;AXES, > 85 =85,).

Elements of a partition are called components of the partition.

Definition (shorter): Partition

A partition of set A is a set 'G of non-empty subsets of A such
that
Vx e A3!S e G(x €S).

(Recall: 3! means “there exists a unique”.)
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The Relation Induced by a Partition

Partitions as relations

We may view a partition as a “is in the same component as”
relation.

Let R be “in the same
component as” relation.

bRbD fRf
PRp mRm
bRp fRm
PRD mR f
kREk eRe

37
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The Relation Induced by a Partition

Definition: Relation Induced by a Partition

Given a partition G of a set A, the relation R induced by the
partition is defined on A as follows: Vx,y € A,
xRy & 3 acomponent S of Gs.t.x,y €S.

Example #14: Let A = {0, 1, 2, 3,4} and consider this
partition of A: {{O, 3,4}, {1}, {2}}.
Find the relation R induced by this partition.

{0,3,4} is a component of the partition = 0RO, OR3, OR4, 3RO,
3R3, 3R4, 4R0, 4R3 and 4RA4.

{1} is a component of the partition 2 1R1.

{2} is a component of the partition 2 2R2.

Therefore, R = {(0,0), (0,3), (0,4), (1,1), (2,2), (3,0), (3,3), (3,4),
(4,0), (4,3), (4,4)}.
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The Relation Induced by a Partition

The fact is that a relation induced by a partition of a
set satisfies all three properties: reflexivity, symmetry,

and transitivity.

Theorem 8.3.1 Relation Induced by a Partition

Let A be a set with a partition and let R be the relation induced
by the partition. Then R is reflexive, symmetric, and transitive.

A o

1 i
> -

SCHOOL BUS

SCHOOL BUS

39
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Definition of an Equivalence Relation

6.3.2 Definition of an Equivalence Relation

A relation on a set that satisfies the three properties of
reflexivity, symmetry, and transitivity is called an

equivalence relation.

Definition: Equivalence Relation

Let A be a set and R a relation on A. R is an equivalence
relation iff R is reflexive, symmetric and transitive.

Note: The symbol ~ is commonly used to denote an equivalence relation.
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Definition of an Equivalence Relation

Example #15: Let X be the set of all nonempty subsets of {1, 2, 3}.
Then X = {{1}, {2}, {3},{1,2},{1,3},{2,3},{1, 2, 3}}.
Define a relation R on X as follows: For all 4, B € X,

A R B & the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R is reflexive:

Suppose A is a nonempty subset of {1, 2, 3}. It is true to say that
the least element of A equals the least element of A. Thus, A R A.

R is symmetric:

Suppose A and B are nonempty subsets of {1, 2, 3}and AR B.
Since A R B, the least element of A equals the least element of B.
But this means that the least element of B equals the least
element of A4, and so by definition of R, B R A.
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Definition of an Equivalence Relation

Example #15: Let X be the set of all nonempty subsets of {1, 2, 3}.
Then X = {{1},{2},{3},{1,2},{1,3},{2,3},{1, 2, 3}}.

Define a relation R on X as follows: For all 4, B € X,
A R B & the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R is transitive:

Suppose A, B and C are nonempty subsets of {1, 2, 3}, AR B and
BRC.

Since A R B, the least element of A equals the least element of B

and since B R C, the least element of B equals the least element
of C.

Thus the least element of A equals the least element of C, and
so, by definition of R, AR C.
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Equivalence Classes of an Equivalence Relation

6.3.3 Equivalence Classes of an Equivalence Relation

Suppose there is an equivalence relation on a certain set.
If a is any particular element of the set, then one can
ask, “What are the elements that are related to a?” This
set of elements is called the equivalence class of a.

Definition: Equivalence Class

Suppose A is a set and ~ is an equivalence relation on A. For
each a € A, the equivalence class of a, denoted [a] and called
the class of a for short, is the set of all elements x € A s.t. a is
~-related to x.

Symbolically,
la]l.={x€A:a~x}



Relations on Sets Reflexivity, Symmetry and Transitivity Equivalence Relations Partial Order Relations
0000 (ON®) ONON NoJXoNe) oJoNoJooXoXe)

Equivalence Classes of an Equivalence Relation

The procedural version of this definition is

Vx €A (x € [a].© a~x).

(When there is no risk of confusion, we may drop the
subscript ~ and write [a].)
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Equivalence Classes of an Equivalence Relation

Example #16: Let A = {0, 1, 2, 3,4} and define a relation R
on A as follows:

R ={(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0), (4, 4)}-
The directed graph for R is as shown below. As can be seen

by inspection, R is an equivalence relation on A. Find the
distinct equivalence classes of R.

ar
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Equivalence Classes of an Equivalence Relation

First find the equivalence class of 3
every element of A. / >
0]={x€A:0Rx}=1{04} : 1 O
1] ={xe€eA:1Rx}={1,3}
2] ={x€A:2Rx}=1{2}
3] ={xe€eA:3Rx}={1,3}
4] ={x€A:4Rx}=1{04}

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence
classes of the relation are {0, 4}, {1, 3}, and {2}.
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Equivalence Classes of an Equivalence Relation

Lemma Rel.1 Equivalence Classes

We prove this

Let ~ be an equivalence relation on a set 4. The by proving:
following are equivalent for all x, y € A. (i)
: .. 7 N
x~y.  (E=DL G@Rap=o. 7S
Proof Definition:
1. ((i) = (ii)) [al.={x €EA:a~x}
1.1. Suppose x~y.
1.2. Theny~x by symmetry.
1.3. Forevery z € [x],
1.3.1. x~z by the definition of [x];
1.3.2. ~y~z by transitivity, as y~x;
1.3.3. ~z € |y] by the definition of [y].

1.4. This shows [x] S [y].
1.5. Switching the roles of x and y, we see also that [y] S [x].
1.6. Therefore, [x] = [y].
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Equivalence Classes of an Equivalence Relation

Lemma Rel.1 Equivalence Classes

We prove this

Let ~ be an equivalence relation on a set 4. The by proving:
following are equivalent for all x, y € A. (i)
. A 72 N
W~y b=l Gknplze. 7S
Proof Definition:
2. ((ii) = (iii)) [al.={x €EA:a~x}
2.1. Suppose [x] = [y].
2.2. Then [x] N [y] = [x] by the Idempotent Law for N.
2.3. However, we know x~x by the reflexivity of ~.

2.4. Thisshows x € [x] = [x] n[y] by the definition of [x] and line 2.2.
2.5. Therefore, [x] N [y] # O.
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Equivalence Classes of an Equivalence Relation

Lemma Rel.1 Equivalence Classes

We prove this

Let ~ be an equivalence relation on a set 4. The by proving:
following are equivalent for all x, y € A. (i)
x~y. (@I=bl (@@nplzo. 7 S
Proof Definition:
3. ((iii) = (i)) [al.={x €EA:a~x}
3.1. Suppose [x] N [y] # ©.
3.2. Take z € [x] N [y].
3.3. Thenz € [x] and z € |y] by the definition of N.
3.4. Thenx~zand y~z. by the definition of [x] and [y].
3.5. y~zimplies z~y by symmetry.

3.6. Therefore, x~y by transitivity.
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Equivalence Classes of an Equivalence Relation

Theorem 8.3.4 The Partition Induced by an Equivalence Relation

If A is asetand R is an equivalence relation on A4, then the
distinct equivalence classes of R form a partition of 4; that
is, the union of the equivalence classes is all of 4, and the
intersection of any two distinct classes is empty.
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Equivalence Classes of an Equivalence Relation

Revisit Example #12:

Define a relation R on Z as follows:
Vx,y€Z(xRy <3| (x—y)).

This relation is called congruence modulo 3.

It has been shown that R is an equivalence relation.

What are the distinct equivalence classes of R?

The distinct equivalent classes of R are:
» {3k :k €7}, {...,-9,-6,-3,0,3,6,9,...}
" {3k+1:k€Z}and | g.5.214710,..)

= 83k +2: k€L {7,-8,1,2,5,8,11,..}

Observe that {{...,-9,-6,-3,0,3,6,9,...}, {...,-8,-5,-2,1,4,7,10,...},
{...,-7,-4,-1,2,5,8,11,...}} is a partition of Z.
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Equivalence Classes of an Equivalence Relation

Congruence modulo n (congruence-mod-n) relation:
Vx,yEZ(ny (:n|(x—y)).

Congruence modulo 2 Congruence modulo 3 Congruence modulo 4
:E:Z /:i:i;\Z KEEE\Z
4 3 6 -5 | -4 8171615
2 -1 3121 -1 4030201
0 | 1 0 1 2 0111213
2 1 3 3145 4567
4 5 617 8 819110411
F{J \ : : J \ | | |J

Partition of Z: Partition of Z: Partition of Z:

{ {2k : k € Z}, } {3k : k € 7}, {4k : k € Z},

{2k+1:k €7} B3k+1:kez} {4k +1: k € Z},

{3k +2:keZ} {4k + 2 : k € Z},

{4k + 3 : k € 7}

52



Equivalence Relations Partial Order Relations

Relations on Sets Reflexivity, Symmetry and Transitivity
OO0OO00O0 (oNe)

Congruence
6.3.4 Congruence
Definition: Divisibility

Letn,d € Z. Then d | n & n = dk for some k € Z.

Definition: Congruence

ONoNeoN Jejeo) OO0OO0O0O0O0O0

Leta,b € Z andn € Z*. Then a is congruent to b modulo n iff
a — b = nk for some k € Z. In other words, n | (a — b).

In this case, we write a = b (mod n).

Example #17: Are the following true?
(a) 7 =1 (mod2) VYes because7—-1=6=2x3.k=3.

(b) —3 = 12 (mod 5) Yes, because —3 — 12 = —15 =5 X (=3). k = —3.
(c) —4 =5 (mod7) No, because —4 — 5 = —9 # 7k for any k € Z.
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Congruence

Congruence-mod n is an equivalence relation on Z for everyn € Z*.

Proof: A relation Ron aset A is
1. (Reflexivity) For all a € Z, reflexive: Vx € A (x R x);

1.1.a—a=0=nx0. symmetric:
1.2. Soa = a (mod n) by the defn of congruence. Y?C,y €EA(xRy=yRx);
transitive:
2. (Symmetry) Vx, 7,7 € A
2.1. Leta,b € Z such thata = b (mod n) . (xRyAYyRz= xR 7).

2.2. Thenthereisa k € Z such thata — b = nk.
2.3. Thenb —a = —(a — b) = —nk = n(—k).
2.4. —k € 7Z (by closure of integers under X),
so b = a (mod n) by the definition of congruence.
3. (Transitivity)
3.1. Leta,b,c € Z such thata = b (mod n) and b = ¢ (mod n) .
3.2. Thentherearek,l € Z suchthata — b = nk and b — ¢ = nl.
33. Thena—c=(a—b)+ (b—c) =nk +nl=n(k+1).
3.4. k+ [ € Z(byclosure of integers under +),
so a = ¢ (mod n) by the definition of congruence. 54
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Definition: Equivalence Class

Suppose A is a set and ~ is an equivalence relation on A.
The equivalenceclassofa € 4,is [a].={x €A : a~x }.

Congruence

Congruence: Equivalence classes Congruence modulo 4
ﬂ AR NZ
Let n € Z*. The equivalence classes w.r.t. the 8171615
congruence-mod-n relation on are of the form: 4 302 -1
0:1:2 3
x| ={y €Z: x =y (modn)} 4 516 |7
={y €Z:x—y = nk for some k € Z} 819 11011
={x+nk:k€Z} U J

={..,x—2n,x—n,x,x+n,x+ 2n,...} where x € Z.
Note thatforallx € Z,[x +n] ={...,.x —n,x,x + n,x + 2n,x + 3n, ...} = [x].
For example, if n = 4, then
= [-8]=[~4] = [0] = [4] = ~~and = [-7] = [-3] = [1] = [5] = -~

and so on.
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Dividing a Set by an Equivalence Relation
6.3.5 Dividing a Set by an Equivalence Relation

Definition: Set of equivalence classes

Let A be a set and ~ be an equivalence relation on A. Denote by
A/~ the set of all equivalence classes with respect to ~, i.e.,

A/~ ={[x].:x € A}.
We may read A/~ as “the quotient of A by ~”.

Example #18: Let n € Z*. If ~,, denotes the congruence-mod-n

relation on Z, then

L]~n={lx]:x €Z}
={{nk:keZ}(nk+1:k €L}, (nk+(n—1):keT}
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Dividing a Set by an Equivalence Relation

Theorem Rel.2 Equivalence classes form a partition [EEYSER]EYEF AP}

G is a partition of a set A4 if:
(1) Gis aset of which all
elements are nonempty
subsets of A.

Every element of A is in
1. A/~ is by definition a set. exactly one element of G.

Let ~ be an equivalence relation on a set A.
Then A/~ is a partition of A.

Proof: (2)

2. We show that every element of A/~ is a nonempty subset of A.

2.1. LetS € A/~.

2.2. Use the definition of A/~ to find x € A such that S = [x].

2.3. Then S = [x] € A in view of the definition of equivalence classes.
2.4. x~x by the reflexivity of ~.

2.5. Hence x € [x] = S by the definition of [x].

2.6. In particular, we know § is nonempty.

3. We show that every element of A is in at least one element of A/~.

4. We show that every element of A isin at most one element of A/~.
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Dividing a Set by an Equivalence Relation

Theorem Rel.2 Equivalence classes form a partition [EEYSER]EYEF AP}

G is a partition of a set A4 if:

Let ~ be ar.l equiva!e.nce relation on a set A. (1) Gisa set of which al

Then A/~ is a partition of A. elements are nonempty
subsets of A.

Proof: (2) Everyelement of A isin

1. A/~ is by definition a set. exactly one element of C.

2. We show that every element of A/~ is a nonempty subset of A.

3. We show that every element of A isin at least one element of A/~.

3.1. Letx € A.
3.2. x~x by the reflexivity of ~.
3.3. Sox € [x] e A/~.

4. We show that every element of A isin at most one element of A/~.
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Dividing a Set by an Equivalence Relation

Theorem Rel.2 Equivalence classes form a partition [EEYSER]EYEF AP}

G is a partition of a set A4 if:

Let ~ be ar.1 equwa!e.nce relation on a set A. (1) Tisa set of which all
Then A/~ is a partition of A. elements are nonempty

_ subsets of A.
Proof: (2) Everyelement of A isin
1. A/~ is by definition a set. exactly one element of G.
2. We show that every element of A/~ is a nonempty subset of A.
3. We show that every element of A isin at least one element of A/~.
4. We show that every element of A isin at most one element of A/~.

4.1. Let x € A thatisin two elements of A/~, say §; and S,.
4.2. Use the definition of A/~ to find y;,y, € A such that$; = [y;] and S, = [y,].
4.3. x € [y1] N [y,] by lines 4.1 and 4.2.

4.4. So [y1] N [y,] # 9.
4.5. Therefore S; = [y;] = [y,] = S, by lemma: equivalence classes.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set A. The following are
equivalent for all x, y € A. (i) x~v; (i) [x] = [y]; (i) [x] n [y] # @. 59
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Summary

6.3.6 Summary

Definition: A relation on set A is a subset of AZ2.

Definition: If R is a relation on a set A, then we write x R y for (x,y) € R.

Definition: A partition of a set A is a set 'G of non-empty subsets of A such that
Vx e AI'S e GC(x €S).

Definition: A relation R on A is an equivalence relation if
= (reflexivity) Vx € A (x R x);
= (symmetry) Vx,y € A(x Ry =y R x); and
" (transitivity) Vx,y,z€ A(x Ry AyRz = y R z).

Definition: Let ~ be an equivalence relation on A. Then the set of equivalence classes
is denoted by A/~ = {[x]. : x € A}, where [x]. ={y € A: x~y}.

Proposition: The same-component relation w.r.t. a partition is an equivalence relation.

Theorem Rel.2: If ~ is an equivalence relation on 4, then A/~ is a partition of A.
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Summary

Informal descriptions of the terms

1. underlying set A  the set to be “partitioned”

2. components S subsets of A, mutually disjoint,
together unionto A

3. partition G the set of all components

4. same-component relation ~  equivalence relation

A={b,e, f, k,m,p}

1. underlying set A the set of all vertices
2. relation R  the set of all arrows
3. equivalence relation ~ ifignoring directions of arrows

one can walk from x to y, then ¢ _ {{b, p}, {f, m}, (K}, {e})
there is an arrow from x to y

4. equivalence classes [x] connected components

5. quotient A/~ the set of all connected components
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6.4 Partial Order Relations
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Antisymmetry

6.4.1 Antisymmetry
Definition: Antisymmetry
Let R be a relation on a set A. R is antisymmetric iff

Vx,yEA(XRYAYyRxXx = x=1Yy).

.®. 0/\0 or @ (]
'\_/

By taking the negation of the definition, you can see that a

relation R is not antisymmetric iff
dx,yEA(XRYAYRXAX #Y).
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Antisymmetry

The big question: Is antisymmetry = ~(symmetry)?

-

O Let R be a relation on a set A.

R is symmetric
iff Vx,y € A (xRy = yRx).

R is not symmetric R is antisymmetric )
iff Vx,y € A(xRyAyRx > x =y).

iff 3x,y € A (xRy A yRx).

/'
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Antisymmetry

Example #19: Let R, be the “divides” relation on the set of all
positive integers, and let R, be the “divides” relation on the set

of all integers.

Ya, b € Z™, aR{b © alb.
Va,b € Z, aR,b & alb.

a. Is R; antisymmetric? Prove or give a counterexample.

R is antisymmetric:

1.
2.

w

Suppose a,b € Z* such that aR,b and bR, a.
Then b = ra and a = sb for some integers r and s (by
definition of “divides”). It follows that b = ra = r(sb).

. Dividing both sides by b gives 1 = rs.

The only product of two positive integers that equals 1 is
1-1.

. Thusr=s=1,andsoa=sb=1:b =b.
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Antisymmetry

Example #19: Let R, be the “divides” relation on the set of all
positive integers, and let R, be the “divides” relation on the set

of all integers. va b € Z*, aRb < alb.
Va,b € Z, Cleb = alb-

a. Is R; antisymmetric? Prove or give a counterexample.

Alternatively, we may use Theorem 4.3.1 (see lecture #4):
Foralla,b € Z%,ifa | b thena < b.

R is antisymmetric:

1. Suppose a, b € Z* such that aR{b and bR;a.
2. Thena < band b < a by Theorem 4.3.1.
3. Soa = b.
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Antisymmetry

Example #19: Let R, be the “divides” relation on the set of all
positive integers, and let R, be the “divides” relation on the set

of all integers. va b € Z*, aRb < alb.
Va,b € Z, Cleb = alb-

b. Is R, antisymmetric? Prove or give a counterexample.

R, is not antisymmetric.

Counterexample:

lLeta = 2and b = —2. Then a|b and b]|a.
Hence aR,b and bR,a but a + b.
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Partial Order Relations
6.4.2 Partial Order Relations
Definition: Partial Order Relation
Let R be a relation on a set A. Then R is a partial order
relation (or simply partial order) iff R is reflexive,

antisymmetric and transitive.

Two fundamental partial order relations are the “less than or
equal to (<)” relation on a set of real numbers and the “subset

(€)” relation on a set of sets.

Definition: Partially Ordered Set

A set A is called a partially ordered set (or poset) with
respect to a partial order relation R on A, denoted by (4, R).
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Partial Order Relations

Example #20: Let | be the “divides” relation on a set A
of positive integers. That is, Va, b € A,

a|lb & b = ka for some integer k.

Prove that | is a partial order relation on A.

| is reflexive: Suppose a € A. Then a = 1-a, so ala (by the
definition of divisibility).

| is antisymmetric: To show that Va,b € A,alb Abla - a = b.
Proof identical to Exercise #19a.

| is transitive: To show that for Va, b,c € A,alb A b|c — alc.
This is Theorem 4.3.3 (5t: 4.4.3).

Theorem 4.3.3 (5%: 4.4.3) Transitivity of Divisibility

For all integersa, bandc,ifa|bandb | c,thena | c.

639



Relations on Sets Reflexivity, Symmetry and Transitivity Equivalence Relations Partial Order Relations
0000 (ON®) OO000O0 o} NoJoJoXoXe

Partial Order Relations

Theorem 4.3.3 (5%: 4.4.3) Transitivity of Divisibility

For all integersa, bandc,ifa|band b | c,thena | c.

Proof:

1. Suppose a, b, c are integers suchthata | band b | c.

2. Then b = ar and ¢ = bs for some integers r and s by the
definition of divisibility.

3. ¢ =bs = (ar)s = a(rs) by basic algebra.

Therefore a | ¢ since rs is an integer (by closure of integers
under X).
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Partial Order Relations

Exercise: Let < be the “less than or equal to” relation
on Q. Show that < is a partial order.

Because of the special paradigmatic role played by the <
relation in the study of partial order relations, the symbol <
is often used to refer to a general partial order, and the
notation x < y is read “x is curly less than or equal to y”.

Question: The “less than” relation on QQ is denoted as
<.lIs < apartial order? Why?  No. < is not reflexive.

Question: Fixann € Z™*. Let R denote the congruence-
mod-n relation on Z. Is R a partial order? Why?

No. R is not antisymmetric.
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Partial Order Relations

One

way of viewing partial orders.

We may view the set A as a set of tasks.

Suppose x,y € A. We write x < y iff task x must be done
before or at the same time as task y.

For some elements x and vy, it could be that neitherx < y

nory < x (thatis, x and y are not “comparable” —to be
defined later).

Hence, the order is “partial”, that is, there may not be an
order between certain elements.

This is clearer when we get to the Hasse Diagram.
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Hasse Diagrams
6.4.3 Hasse Diagrams

Example #21: Let A = {1, 2, 3,9, 18} and consider the
“divides” relation on A: Va, b € A4,

a|b < b = ka for some integer k.

The directed graph of this relation, which is a partial
order, is as follows:
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Hasse Diagrams

Note that there is a loop at every vertex, all

other arrows point in the same direction *" [5’" )
(upward), and any time there is an arrow yan /,,_,...---;-/-f;t;"
from one point to a second and fromthe [ ,? /‘f Y
second point to a third, there is an arrow I

from the first point to the third.

Given any partial order relation defined on a finite set, it is
possible to draw the directed graph in such a way that all of these
properties are satisfied.

This makes it possible to associate a somewhat simpler graph,
called a Hasse diagram (after Helmut Hasse, a twentieth-century
German number theorist), with a partial order relation defined
on a finite set.
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Hasse Diagrams

To obtain a Hasse diagram, proceed as follows:

Start with a directed graph of the relation, placing vertices on the

page so that all arrows point upward. Then eliminate
1. the loops at all the vertices,

2. all arrows whose existence is implied by the transitive property,

3. the direction indicators on the arrows.

" 3

\
2 \J 2 3

|

Directed graph of the “divides” Hasse diagram of the “divides”
relation on {1,2,3,9,18} relation on {1,2,3,9,18}
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Hasse Diagrams

Definition: Hasse Diagram

Let < be a partial order on a set A. A Hasse diagram of <
satisfies the following condition for all distinct x, y, m € A:

fx < yandnom € Aissuchthatx < m <y,
then x is placed below y with a line joining them,
else no line joins x and y.

I’/ ‘\:‘ 18
1 8 4'$J — //" '\\_\‘
/ ,-,':\.iii?%;?)‘/ Y
N~ K S AN )
N L/ ~ 2 3
A
\\,_,/J 1
Directed graph of the “divide” Hasse diagram of the “divide”

relation on {1,2,3,9,18} relation on {1,2,3,9,18}
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Hasse Diagrams

Example #22: Consider P({1,2,3}) partially ordered by
the subset relation €. Draw its Hasse diagram.

(The directed graph would be too complex. Recall that P(A4) denotes
The Hasse diagram carries the same information.) the power set of A.
{1,2,3} Note that certain elements,

/ ‘ \ say x and y, of P({1,2,3}
are not comparable, that is,
{1'2} {1’3} {2’3} neither x < y nory < x.

>< >< {1,2} and {1,3} are two such

elements, as neither
il 12 3 {1,2} < {1,3} nor

\ {‘} / (1,3} € {1,2}.
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Comparability

6.4.4 Comparability

Given any two real numbers x and y, either x < y or
y < x. In a situation like this, the elements x and y are
said to be comparable.

On the other hand, given two subsets A and B of
{a, b, c}, it may be the case that neither A € B nor
B C A.

For instance, let A = {a,b}and B = {b,c}. ThenA € B
and B € A.

In such a case, A and B are said to be noncomparable.
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Comparability

Definition: Comparability

Suppose < is a partial order relation on a set A. Elements a
and b of A are said to be comparable iff eithera < b or
b < a. Otherwise, a and b are noncomparable.

c on P({1,2,3}) Which of the following pairs of

elements are comparable?
{1,2,3}

/ | \ (a) {1}and{1,3} Yes
{12} {13} {23} (b) {23}and{2}  Yes

> X (9 {(1}and{3} Mo
{1} {2} {3} (d) {1,2}and {3} No

\ {l} / (e) {3}and{1,2,3} Yes
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Maximal/Minimal/Largest/Smallest Element

6.4.5 Maximal/Minimal/Largest/Smallest Element

Let a set A be partially ordered with respect to a relation < and ¢ € A.

1. cis a maximal element of A4 iff Vx € A, either x < ¢, or x and c are
not comparable. Alternatively, ¢ is a maximal element of A iff

Vx€EA(csSx>c=2x.)

2. cis a minimal element of A iff Vx € 4, either ¢ < x, or x and c are
not comparable. Alternatively, ¢ is a minimal element of A iff

Vx €EA(x < c>c=x).

3. cisthe largest element of A iff Vx € A (x < ¢).

4. cis the smallest element of A iff Vx € A (¢ < x).

Note: Alternative terms
= Jargest element = greatest element = maximum;

m  smallest element = least element = minimum.
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Maximal/Minimal/Largest/Smallest Element

Example #23: Let A = {a, b, c,d, e, f, g, h, i} have the partial
ordering defined by the following Hasse diagram. Find all
maximal, minimal, largest, and smallest elements of A.

8
There is just one maximal element,
@ " g, which is also the largest element.
b i The minimal elements are ¢, d, and

i, and there is no smallest element.

Let a set A be partially ordered with respect to a relation < and ¢ € A.
1. cisamaximalelementof AiffVx€EA(c<x=>c=x.)
C=>c=x).

c).

c is the smallest element of A iff Vx € A (¢ < x). 81

2. cis a minimal element of 4 iff Vx € A (x <
3. cisthe largest elementof Aiff Vx € A (x <
4
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Maximal/Minimal/Largest/Smallest Element

Example #24: The divisibility relation |on A = {1, 2,---, 10} is
has the following Hasse diagram. Find all maximal, minimal,
largest, and smallest elements of A.

/ Maximal: 6,7,8,9,10
\T>< ><9 Minimal: 1

2

\

Largest:  No largest element

3 5 7
l / Smallest: 1

Let a set A be partially ordered with respect to a relation < and ¢ € A.

\

1. cisamaximalelementof AiffVx€EA(c<x=>c=x.)
2. cisaminimal elementof Aiff Vx €A (x < c = c =x).
3. cisthe largest element of Aiff Vx € A (x < ¢).
4

c is the smallest element of A iff Vx € A (¢ < x). 82
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Maximal/Minimal/Largest/Smallest Element

Proposition: A smallest element is minimal.

Consider a partial order < on a set A. Any smallest element

is minimal. (Likewise, any largest element is maximal.)

smallest & everything is above Being above and below implies
U equality by antisymmetry

Vx,y €A

minimal & nothing is below
(XRy AyRx > x =y)

Proof:

1. Let c be a smallest element.

2. Take any x € A such that x < c.

3. By smallestness, we know ¢ < x too.

4. So c = x by antisymmetry.
Let a set A be partially ordered with respect to a relation < and ¢ € A.
2. cisaminimal elementof Aiff Vx €A (x < ¢ = ¢ = x).

4. cisthe smallest element of A iff Vx € A (¢ < x). 83
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Linearization

6.4.6 Linearization

Let < be a partial order relation on a set A. Suppose we view A as a
set of tasks and x < y to mean x must be performed before or at
the same time as y. How can we “line up” the tasks in A assuming
that we cannot perform two tasks simultaneously?

18 Possible “line-ups”: A “line-up” is
18 18 18 called a
9 linearization of <.
9 9 2 Such a “line-up”
2 3 or or or... | (linearization)
3 2 9 happens to be a
I total order (to be
Hasse diagram of the “divides” 2 3 3 defined later).
relation on {1,2,3,9,18}
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Linearization

Example #25: Consider the subset relation € on P({1,2,3}). The

Hasse Diagram is shown below. Which of the following is a
linearization of (P({1,2,3}), €)?

/123 x{1,2,3} x{1,2,3}
C on P({1,2,3)) ) (23} (23}
{1,2,3} {1,2} {1} {1,2)
(1,2}  {1,3} {23} 1,3} {1,2} (1}
| > X 2 ) o’
{1 {2y {3
\ {l} / {1} {1,3} {1,3)
{3} {3} {3}

& U U U ”
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Total Order Relations

6.4.7 Total Order Relations

When all the elements of the set in a partial order relation are comparable,
the relation is called a total order. (Some call it a linear order.)

Definition: Total Order Relations

If R is a partial order relation on a set A4, and for any two elements
x and yin A4, eitherx R yory R x, then R is a total order relation
(or simply total order) on A.

In other words, R is a total order iff
R is a partial orderand Vx,y € A(x Ry VYR x).

Example #25: The divisibility relation | on Z™ is a partial order but not a
total order because 3 and 5 are not comparable (i.e., 3+ 5and 5 t 3).

Example #26: The < relation on Q is a total order because for every
XLYEQ(x <yvy<ux).
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Total Order Relations

It follows that the Hasse diagram of a total order is one single line
(chain). Hence, the linearization of a total order is the total order
itself.

A linearization of a partial order can be seen as deriving one total
order (among many possible total orders) from that partial order.

Definition: Linearization of a partial order

Let < be a partial order on a set A. A linearization of < is a
total order <* on A such that

Vx,yEAXx<y=>x<"y).
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Linearization of Partial Orders

Example #25 (revisit): Consider the subset relation € on P ({1,2,3}).

Which of the following is a
linearization of (P({1,2,3}), €)?

1,2,3} {1,2,3} {1,2,3}
| |
C onP({1,2,3}) (2,3} {2,3} {2i3}
{1,2,3} {1,2} (1,2}
(1,2} {1,3} {23} {1,3} {1iz}

{l} (2) {l} ) 2) 2}
\ | / (1} < {1,3}) ‘ ‘
4 but @ @

(1} ¢ {1,3} {T} 3}
I
& {3 {3 {3 .
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Khan’s Algorithm

Kahn’s Algorithm (1962)

Input: A finite set A and a partial order < on A.

1. SetAy:=Aandi:= 0.

2. Repeatuntil4; =0
2.1. find a minimal element ¢; of 4; wrt <
2.2. set Ai+1 — Ai \ {Ci}
2.3. seti=i+1

Output: A linearization <* of < defined by setting, for all
indices i, J,
e is].

89



Relations on Sets Reflexivity, Symmetry and Transitivity Equivalence Relations Partial Order Relations

OO000O0 oo OO0O0O0O0 OO0OO0O0O0O0Oe
Khan’s Algorithm
. 30

Example #26: A run of the Kahn’s algorithm N 30
onthe set {d € Z* : d|30} partially ordered 6><10><15 1|0
by the divisibility relation |. i ; L |
+ SetAd,:={d € Z* : d|30}. \i/ 1|5
+ 1listheonly mil.qifﬂal element of Ap. ¢, ¢y = 1and Ay == Ag \ {1}. 5
4+ 2,3,5 are the minimal elements of 4;. Setc, = 3and A, == 4, \ {3},
4+ 2,5 are the minimal elements of 4. 6
. cé he minimal el ¢ Setc, := 2and A5 == A4, \ {2}.

! are the merlr.na elements of A45. Set ¢y = 6and A, == 4, \ {6). )
4+ 5is the only minimal element of A,4. Setc, = 5and Ag = A, \ {5}
+ 10,15 the minimal el ts ofA:.

- are the m!n!ma elements ofAg Set . == 15 and A, = A \ {15).

+ 10 !s the only m!n!mal element of Ag. Set cg == 10 and A, == A \ {10}. 1
4+ 30is the only minimal element of 4. Set ¢, = 30 and Ag == A, \ {30}.
+ Ag = 0@ and so we stop.
4+ Alinearization is obtained: 1 <" 3 <" 2<"6 <" 5<" 15 <" 10 <" 30.
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Well-Ordered Set

Definition: Well-Ordered Set

Let < be a total order on a set A. A is well-ordered iff every
non-empty subset of A contains a smallest element.
Symbolically,

VS €P(A),S 0= (IxESVYYyES (x <X y)).

Example #27:
* (N, <) is well-ordered.
* (Z,<) is not well-ordered.
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Summary

Relations allow us to model and study many real-world
relationships.

Relations may be inverted and composited.

Important properties are: reflexivity, symmetry, transitivity, anti-
symmetry.

An Equivalent Relation is the generalization of the notion of
“equality”.

A partition of a set and an equivalence relation are two sides of
the same coin.

A Partial Order is the generalization of the notion of “less than or
equal to”.

Maximal and minimal elements are generalizations of upper and
lower bounds.
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Recap: Concepts in Sets that are needed
in Relations

= Sets (membership €, subset €, power set P(4),
union U, intersection N, difference \)

= Cartesian Products (A X B) and ordered pairs

= Partition of a set
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Today’s focus:
" Definition of Relations
= Common properties of Relations
= Equivalence Relation

The 6 Basic Animal Groups

Thought <
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Let A be a set and R a relation on A.
R E F LEXIVITY R is reflexive: Vx € A (xRx).

Given aset A = {a, b, c} and a binary relation defined on A as follows.
Which of the relations below are REFLEXIVE?

Q M D le T . M D

a b| a /ba b a b

c c Cc c

°
9
©
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REFLEXIVITY

Given aset A = {a, b, c} and a binary relation defined on A as follows.

Let A be a set and R a relation on A.
R is reflexive: Vx € A (xRx).

Which of the relations below are REFLEXIVE?

R3

X

R, p

x b
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SYMMETRY

Given aset A = {a, b, c} and a binary relation defined on A as follows.
Which of the relations below are SYMMETRIC?

Let A be a set and R a relation on A.
R is symmetric: Vx,y € A (xRy = yRx).

R4 R, R R,
9‘ pb 9 pb o pb
C C C
® 5 9 b 9 ®,
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SYM M ET RY Let A be a set and R a relation on A.

R is symmetric: Vx,y € A (xRy = yRx).

Given aset A = {a, b, c} and a binary relation defined on A as follows.
Which of the relations below are SYMMETRIC?
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TRANSITIVITY Let A be a set and R a relation on A.

R is transitive: Vx,y,z € A (xRy A yRz = xRz).

Given aset A = {a, b, c} and a binary relation defined on A as follows.
Which of the relations below are TRANSITIVE?

Q M D le T . ™ D

a bl a /ba b a b

c c Cc c

. /ba /-b
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TRANSITIVITY Let A be a set and R a relation on A.

R is transitive: Vx,y,z € A (xRy A yRz = xRz).

Given aset A = {a, b, c} and a binary relation defined on A as follows.
Which of the relations below are TRANSITIVE?

S
Q
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Partitions of a set

Le={{x}y}{z}} 2.¢c={{x2033} 3.¢={}){z}}

A=1{xy,2z}

4.C ={x,y,z } 5.C = {{x, Y, Z}} 6.C = {{x, v} {y, Z}} 7.C = {{x, yhiz}, {}}
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Partial order
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