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Lecture 7: Functions

AY2025/26 Semester 1
Part of the contents here is taken from 
Dr Wong Tin Lok’s lecture notes. 
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Lecture 7: Functions

int f(int x, double y) {

 return x * sqrt(y);

}

Functions in C programming:

f(3, 4) → 6.0

f(4, 3) → 6.928203

f(6, 1) → 6.0

Many built-in math 
functions in C:
▪ floor(), round()
▪ ceil(), floor()
▪ sin(), cos(), tan()
▪ log(), log10()
▪ sqrt(), pow()
▪ etc.

Applications of function in Computer Science: 
computational complexity of algorithms, 
counting objects, study of sequences and 
strings, etc.
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7. Functions

7.1 Definitions

• Definitions of function, arrow diagram, image, pre-image, setwise image, 
setwise preimage, domain, co-domain, range.

• Sequences, strings.
• Function equality.

7.2 Injections, Surjections, Bijections and Inverse Functions

• Injections, surjections, bijections.

• Inverse functions.

• Bijectivity and invertibility.

7.3 Composition of Functions
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Reference: Epp’s Chapter 7 Functions

• Composition with the identity function; composition with its inverse.

• Associativity and noncommutativity of function composition. 

• Composition of injections; composition of bijections.

7.4 Addition and Multiplication on ℤ𝑛
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Recapitulation
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Definition: Relation

Let 𝑋 and 𝑌 be sets. A (binary) relation from 𝑿 to 𝒀 is a subset of 𝑿 × 𝒀. 
Given an ordered pair (𝑥, 𝑦) in 𝑋 × 𝑌, 𝒙 is related to 𝒚 by 𝑹, or 
𝒙 is 𝑹-related to 𝒚, written 𝒙 𝑹 𝒚, iff (𝒙, 𝒚) ∈ 𝑹. 

𝑅1𝑋 𝑌 𝑅2𝑋 𝑌 𝑅3𝑋 𝑌

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌 𝑅6𝑋 𝑌
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7.1 Definitions
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7.1.1 Definitions

Definition: Function

A function 𝑓 from a set 𝑋 to a set 𝑌, denoted 𝑓: 𝑋 → 𝑌, is a relation 
satisfying the following properties:

 (F1) ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥, 𝑦 ∈ 𝑓.

 (F2) ∀𝑥 ∈ 𝑋 ∀𝑦1, 𝑦2 ∈ 𝑌 𝑥, 𝑦1 ∈ 𝑓 ∧ 𝑥, 𝑦2 ∈ 𝑓 → 𝑦1 = 𝑦2 . 

 (That is, the 𝑦 in (F1) is unique.)

Or alternatively,

Let 𝑓 be a relation on sets 𝑋 and 𝑌, i.e. 𝑓 ⊆ 𝑋 × 𝑌. Then 𝑓 is a 
function from 𝑋 to 𝑌, denoted 𝑓: 𝑋 → 𝑌, iff

  ∀𝑥 ∈ 𝑋 ∃! 𝑦 ∈ 𝑌 𝑥, 𝑦 ∈ 𝑓.

Informally,
A function from 𝑋 to 𝑌 is an assignment to 
each element of 𝑋 exactly one element of 𝑌.
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Example #1: A function 𝑓: ℝ → ℝ is defined as follows:

∀𝑥 ∈ ℝ, 𝑓(𝑥) is the real number 𝑦 such that 𝑥2 + 𝑦2 = 1.

Is the above a function?

Two reasons. For almost all values of 𝑥, either (1) there is no 𝑦 
that satisfies the given equation (eg: when 𝑥 = 2), or (2) there 
are two different values of 𝑦 that satisfy the equation (eg: when 
𝑥 = 0).

No!
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If 𝑋 and 𝑌 are finite sets, you can define a function 𝑓  
from 𝑋 to 𝑌 by drawing an arrow diagram.

Figure 7.1.1

This arrow diagram defines a 
function because

1. Every element of 𝑋 has an arrow 
coming out of it.

2. No element of 𝑋 has two arrows 
coming out of it that point to 
two different elements of 𝑌.
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Example #2: Which of the following relations are 
functions and which are not? Why?



𝑅1𝑋 𝑌 𝑅2𝑋 𝑌 𝑅3𝑋 𝑌

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌

𝑓 is a function from 𝑋 to 𝑌, denoted 𝑓: 𝑋 → 𝑌, iff

 ∀𝑥 ∈ 𝑋, ∃! 𝑦 ∈ 𝑌 such that 𝑥, 𝑦 ∈ 𝑓.

𝑅6𝑋 𝑌
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Definitions: Argument, image, preimage , input, output

Let 𝑓: 𝑋 → 𝑌 be a function. We write 𝑓(𝑥) = 𝑦 iff (𝑥, 𝑦) ∈ 𝑓.

We say that “𝑓 sends/maps 𝑥 to 𝑦” and we may also write 𝑥 →
𝑓

𝑦 or 
𝑓: 𝑥 ⟼ 𝑦. Also, 𝑥 is called the argument of 𝑓.

𝑓(𝑥) is read “𝑓 of 𝑥”, or “the output of 𝑓 for the input 𝑥”, or “the 
value of 𝑓 at 𝑥”, or “the image of 𝑥 under 𝑓”. 

If 𝑓(𝑥) = 𝑦, then 𝑥 is a preimage of 𝑦.

𝑓

input 𝑥

output 𝑓(𝑥)

Example #3: A function 𝑓: ℤ → ℤ is 
defined as: ∀𝑥 ∈ ℤ, 𝑓(𝑥) = 2𝑥 + 1.

𝑥 𝑓(𝑥)

0 1

1 3

7 15

-5 -9
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Definitions: Setwise image and preimage 

Let 𝑓: 𝑋 → 𝑌 be a function from set 𝑋 to set 𝑌.

▪ If 𝐴 ⊆ 𝑋, then let 𝑓 𝐴 = 𝑓 𝑥 ∶ 𝑥 ∈ 𝐴 .
▪ If 𝐵 ⊆ 𝑌, then let 𝑓−1 𝐵 = 𝑥 ∈ 𝑋 ∶ 𝑓 𝑥 ∈ 𝐵

We call 𝑓(𝐴) the (setwise) image of 𝐴, and 𝑓−1 𝐵  the (setwise) preimage 
of 𝐵 under 𝑓.

Note: We use different terminologies here from 
Susanna Epp’s as the latter may cause confusion.

𝑓−1 𝐵  is NOT an inverse 
function! (Inverse function 
to be defined later.)

𝐴

𝑋

𝑓(𝐴)

𝑌𝑓

𝑓−1(𝐵)

𝑋

𝐵

𝑌𝑓
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𝐴

𝑋

𝑓(𝐴)

𝑌𝑓

𝑓−1(𝐵)

𝑋

𝐵

𝑌𝑓

Example #4: 

A function 𝑔: ℤ → ℤ is defined by setting 𝑔(𝑥) = 𝑥2 ∀𝑥 ∈ ℤ.

What is 𝑔( −1,0,1 )? What is 𝑔−1( 0,1,2 )? 

𝑔 −1,0,1 = 𝑔 −1 , 𝑔 0 , 𝑔 1 = 1,0,1 = 0,1 .

Let 𝑓: 𝑋 → 𝑌 be a function from set 𝑋 to set 𝑌.
▪ If 𝐴 ⊆ 𝑋, then let 𝑓 𝐴 = 𝑓 𝑥 ∶ 𝑥 ∈ 𝐴 .
▪ If 𝐵 ⊆ 𝑌, then let 𝑓−1 𝐵 = 𝑥 ∈ 𝑋 ∶ 𝑓 𝑥 ∈ 𝐵

𝑔−1 0,1,2 = −1,0,1 . (Because 𝑔(0) = 0; 𝑔(−1) = 𝑔(1) = 1.)
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Example #5: Let 𝑋 = {1, 2, 3, 4} and 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 
and define 𝑓: 𝑋 → 𝑌 by the following arrow diagram:

Let 𝐴 = {1, 4} , 𝐵 = {𝑎, 𝑏}, and 𝐶 = {𝑐, 𝑒}. Find:

(a) 𝑓 𝐴

(b) 𝑓 𝑋

(c) 𝑓−1 𝐵

(d) 𝑓−1(𝐶)

{𝑏}



{𝑎, 𝑏, 𝑑}

{1,2,4}

∅
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As the symbol for setwise preimage is 𝑓−1(), which coincidentally is 

identical to the symbol for inverse function (see section 7.2.4), we use 

the notation 𝑓−1(𝛼) to refer to the setwise preimage of a set 𝛼 

(which is a subset of the co-domain), reserving the notation 𝑓−1(𝑥) 

(where 𝑥 is a member of the co-domain) for the inverse function (if 𝑓 

indeed has an inverse function).  Note that in general 𝑓−1(𝛼) needs 

not be a function, whereas 𝑓−1(𝑥) must be a function.

Therefore, to denote the setwise 

preimage of a single element in the 
co-domain, eg: 𝑏, we would write 
𝑓−1({𝑏}) instead of 𝑓−1 𝑏 . (Because 

𝑓 does not have an inverse function in this 

case.)

𝑓−1 𝑏 = 1,4 .
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Definitions: Domain, co-domain, range

Let 𝑓: 𝑋 → 𝑌 be a function from set 𝑋 to set 𝑌.

▪ 𝑋 is the domain of 𝑓 and 𝑌 the co-domain of 𝑓.

▪ The range of 𝑓 is the (setwise) image of 𝑋 under 𝑓: 
 {𝑦 ∈ 𝑌 ∶ 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝑋}.

Example #6: A function 𝑓: ℤ → ℤ is defined as:

  ∀𝑥 ∈ ℤ, 𝑓(𝑥) = 2𝑥 + 1.

What are the domain, co-domain, and range of 𝑓?

Domain: the set of integers, ℤ.

Co-domain: the set of integers, ℤ.

Range: the set of odd integers. 

Range ⊆ Co-domain
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Example #7: The function 𝑓: 𝑋 → 𝑌 is shown below.

𝑓
𝑋 𝑌

1

2

3

4

a

b
c

d

e

(a) Represent 𝑓 as a set of ordered pairs. 

(b) The domain of 𝑓?

(c) The co-domain of 𝑓?

(d) The range of 𝑓?

(e) The image of 4, i.e. 𝑓(4)?

(f) The (setwise) image of {3,4}, i.e. 𝑓( 3,4 )? 

(g) A pre-image of 𝑏?

(h) The (setwise) preimage of {𝑏}, i.e. 𝑓−1( 𝑏 )? 

(i) The (setwise) preimage of {𝑐, 𝑑}, i.e. 𝑓−1( 𝑐, 𝑑 )?

(j) The (setwise) preimage of {𝑎, 𝑏, 𝑐}, i.e. 𝑓−1( 𝑎, 𝑏, 𝑐 )?



{𝑎, 𝑏, 𝑒}

𝑒

2 3or

{2,3}

∅

{1,2,3}

𝑋 or {1,2,3,4}

𝑌 or {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

{ 1, 𝑎 , 2, 𝑏 , 3, 𝑏 , 4, 𝑒 }

{𝑏, 𝑒}
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7.1.2 Sequences and Strings

In this sense, any function whose domain is ℤ≥𝑚 for some 𝑚 ∈ ℤ 
represents a sequence. 

Definition: Sequence

A sequence 𝑎0, 𝑎1, 𝑎2, ⋯ can be represented by a function 𝑎 whose 
domain is ℤ≥0 that satisfies 𝑎(𝑛) = 𝑎𝑛 for every 𝑛 ∈ ℤ≥0.

Example #8: Consider the sequence 2, 3, 5, 9, 17, 33, 65, .... We 
may represent this sequence by the function 𝑎: ℤ≥0 → ℤ+ that 
satisfies, for each 𝑛 ∈ ℤ≥0, 𝑎 𝑛 = 2𝑛 + 1.
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Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Definition: Fibonacci Sequence

The Fibonacci sequence 𝐹0, 𝐹1, 𝐹2, ⋯ is defined by setting, for each 
𝑛 ∈ ℤ≥0, 𝐹0 = 0 and 𝐹1 = 1 and 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛.

Example #9: We may represent the Fibonacci sequence 
𝐹0, 𝐹1, 𝐹2, ⋯ by the function 𝐹: ℤ≥0 → ℤ≥0 that satisfies, for 
each 𝑛 ∈ ℤ≥0,

𝐹(0) = 0 and 𝐹(1) = 1 and 𝐹(𝑛 + 2) = 𝐹(𝑛 + 1) + 𝐹(𝑛).
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Definition: String

Let 𝐴 be a set. A string or a word over 𝐴 is an expression of the form

𝑎0𝑎1𝑎2 ⋯ 𝑎𝑙−1 where 𝑙 ∈ ℤ≥0 and 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑙−1 ∈ 𝐴.

Here 𝑙 is called the length of the string. The empty string 𝜀 is the 
string of length 0.

Let 𝐴∗ denote the set of all strings over 𝐴. 

Example #10: Let 𝐴 = 𝑠, 𝑢 . Some strings over 𝐴 are 𝑠, 𝑠𝑠𝑢𝑢, 
𝑠𝑢𝑠𝑢𝑢𝑠𝑠𝑢 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢 with lengths 1, 4, 8 and 7 respectively.

One can represent a string 𝑎0𝑎1𝑎2 ⋯ 𝑎𝑙−1 over 𝐴 by the function 
𝑎: {0,1, … , 𝑙 − 1} → 𝐴 satisfying 𝑎 𝑛 = 𝑎𝑛 for all 𝑛 ∈ 0,1, … , 𝑙 − 1 .

Every function 𝑎: {𝑚, 𝑚 + 1, … , 𝑚 + 𝑙 − 1} → 𝐴 where 𝑚 ∈ ℤ and
𝑙 ∈ ℤ≥0 represents a string of length 𝑙 over 𝐴, namely,
𝑎 𝑚  𝑎 𝑚 + 1 … 𝑎 𝑚 + 𝑙 − 1 .
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Equality of Sequences

Given two sequences 𝑎0, 𝑎1, 𝑎2, ⋯ and 𝑏0, 𝑏1, 𝑏2, ⋯ defined 
by the functions 𝑎(𝑛) = 𝑎𝑛 and 𝑏(𝑛) = 𝑏𝑛 respectively for 
every 𝑛 ∈ ℤ≥0, we say that the two sequences are equal if 
and only if 𝑎(𝑛) = 𝑏(𝑛) for every 𝑛 ∈ ℤ≥0.

Equality of Strings

Given two strings 𝑠1 = 𝑎0𝑎1𝑎2 ⋯ 𝑎𝑙−1 and 
𝑠2 = 𝑏0𝑏1𝑏2 ⋯ 𝑏𝑙−1 where 𝑙 ∈ ℤ≥0, we say that 

 𝑠1 = 𝑠2 if and only if 𝑎𝑖 = 𝑏𝑖 for all 𝑖 ∈ {0,1,2, … , 𝑙 − 1}.
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7.1.3 Function Equality

Theorem 7.1.1 Function Equality

Two functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐶 → 𝐷 are equal, i.e. 𝑓 = 𝑔, 
iff (i) 𝐴 = 𝐶 and 𝐵 = 𝐷, and (ii) 𝑓 𝑥 = 𝑔 𝑥  ∀𝑥 ∈ 𝐴. 

Example #11: Let 𝑋 = {0,1, 2} and define functions 𝑓 and 𝑔 on 𝑋 
as follows: ∀𝑥 ∈ 𝑋,
 𝑓 𝑥 = 𝑥2 + 𝑥 + 1  𝑚𝑜𝑑 3   and   𝑔 𝑥 = (𝑥 + 2)2 𝑚𝑜𝑑 3

Is 𝑓 = 𝑔?

Yes.

Note: 𝑎 𝑚𝑜𝑑 𝑏 computes the 
remainder of 𝑎 ÷ 𝑏.
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Theorem 7.1.1 Function Equality

Two functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐶 → 𝐷 are equal, i.e. 𝑓 = 𝑔, 
iff (i) 𝐴 = 𝐶 and 𝐵 = 𝐷, and (ii) 𝑓 𝑥 = 𝑔 𝑥  ∀𝑥 ∈ 𝐴. 

Example #12: Let 𝑓: {0,2} → ℤ and 𝑔: {0,2} → ℤ defined by 
setting, for all 𝑥 ∈ 0,2 , 𝑓 𝑥 = 2𝑥 and 𝑔 𝑥 = 𝑥2.
Is 𝑓 = 𝑔? Yes. Their domains are the same, their co-domains 

are the same, and 𝑓(𝑥) = 𝑔(𝑥) for every 𝑥 ∈ 0,2 .

Example #13: Let 𝑓: ℤ → ℤ and 𝑔: ℤ → ℚ defined by setting, for 
all 𝑥 ∈ ℤ, 𝑓 𝑥 = 𝑥3 = 𝑔(𝑥). Is 𝑓 = 𝑔?

No, because their co-domains are different.
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7.2 Injections, Surjections, Bijections
and Inverse Functions
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7.2.1 Injections (One-to-One Functions)

Definition: Injection (one-to-one function) 

A function 𝑓: 𝑋 → 𝑌 is injective (or one-to-one) iff

∀𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥1 = 𝑥2 .

or, equivalently (contrapositive), 𝑥1 ≠ 𝑥2 ⇒ 𝑓 𝑥1 ≠ 𝑓 𝑥2 .
An injective function is called an injection.

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌



Which of the following is/are injections?

Injection Not injection Injection

𝑅6𝑋 𝑌
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A function 𝑓: 𝑋 → 𝑌 is injective iff 
∀𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥1 = 𝑥2 .

Example #14: Define a function 𝑓: ℚ → ℚ by setting 𝑓(𝑥) = 3𝑥 + 1 
for all 𝑥 ∈ ℚ. Is 𝑓 injective?

Yes. Proof:
1. Let 𝑥1, 𝑥2 ∈ ℚ such that 𝑓(𝑥1) = 𝑓(𝑥2).
2. Then 3𝑥1 + 1 = 3𝑥2 + 1.
3. So 𝑥1 = 𝑥2.

Example #15: Define 𝑔: ℤ → ℤ by setting 𝑔(𝑥) = 𝑥2 for every 
𝑥 ∈ ℤ. Is 𝑔 injective?

No. 𝑔 1 = 12 = 1 = (−1)2= 𝑔(−1), but 1 ≠ −1. 

A function 𝑓: 𝑋 → 𝑌 is not injective iff 
∃𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ∧ 𝑥1 ≠ 𝑥2 .
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7.2.2 Surjections (Onto Functions)

Definition: Surjection (onto function) 

A function 𝑓: 𝑋 → 𝑌 is surjective (or onto) iff

 ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

Every element in the co-domain has a preimage. So, range = co-domain. 

A surjective function is called a surjection.

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌

Which of the following is/are surjections?
𝑅6𝑋 𝑌

Not surjection Surjection Surjection


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A function 𝑓: 𝑋 → 𝑌 is surjective iff

∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

Example #16: Define a function 𝑓: ℚ → ℚ by setting 𝑓(𝑥) = 3𝑥 + 1 
for all 𝑥 ∈ ℚ. Is 𝑓 surjective?

Yes. Proof:
1. Take any 𝑦 ∈ ℚ.
2. Let 𝑥 = (𝑦 − 1)/3.

3. Then 𝑥 ∈ ℚ and 𝑓 𝑥 = 3𝑥 + 1 = 3
𝑦−1

3
+ 1 = 𝑦.

Example #17: Define 𝑔: ℤ → ℤ by setting 𝑔(𝑥) = 𝑥2 for every 
𝑥 ∈ ℤ. Is 𝑔 surjective?

No. 
𝑔 𝑥 = 𝑥2 ≥ 0 > −1 for all 𝑥 ∈ ℤ.
So 𝑔 𝑥 ≠ −1 for all 𝑥 ∈ ℤ, although −1 ∈ ℤ. 

A function 𝑓: 𝑋 → 𝑌 is not surjective iff 

∃𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 𝑦 ≠ 𝑓 𝑥 .
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7.2.3 Bijections (One-to-One Correspondences)

Definition: Bijection (one-to-one correspondence)

A function 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 is injective and surjective, i.e.

∀𝑦 ∈ 𝑌 ∃! 𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

A bijective function is called a bijection or one-to-one correspondence.

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌

Which of the following is/are bijections?
𝑅6𝑋 𝑌



Injection Not injection Injection

Not surjection Surjection Surjection

Bijection
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A function 𝑓: 𝑋 → 𝑌 is:
▪ injective iff ∀𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥1 = 𝑥2 ;

▪ surjective iff ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 ;

▪ bijective iff ∀𝑦 ∈ 𝑌 ∃! 𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

𝑅4𝑋 𝑌 𝑅5𝑋 𝑌 𝑅6𝑋 𝑌

(Surjective) Informally, 
every element in the 
codomain must have 
at least one arrow 
going into it.

(Injective) Informally, 
every element in the 
codomain must have 
at most one arrow 
going into it.

∧ ≡

(Bijective) Informally, 
every element in the 
codomain must have 
exactly one arrow 
going into it.



Injection Not injection Injection

Not surjection Surjection Surjection

Bijection
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7.2.4 Inverse Functions

If 𝑓 is a bijection from 𝑋 to 𝑌, then there is a function from 𝑌 to 𝑋 that “undoes” 
the action of 𝑓; that is, it sends each element of 𝑌 back to the element of 𝑋 that 
it came from. This function is called the inverse function for 𝑓, denoted as 𝑓−1.

Definition: Inverse function

Let 𝑓: 𝑋 → 𝑌. Then 𝑔: 𝑌 → 𝑋 is an inverse of 𝑓 iff

∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝑦 = 𝑓 𝑥 ⇔ 𝑥 = 𝑔 𝑦  .

We denote the inverse of 𝑓 as 𝑓−1.

𝑋 𝑌

𝑓

𝑔
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Definition: Inverse function

Let 𝑓: 𝑋 → 𝑌. Then 𝑔: 𝑌 → 𝑋 is an inverse of 𝑓 iff

∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑦 𝑦 = 𝑓 𝑥 ⇔ 𝑥 = 𝑔 𝑦  .

We denote the inverse of 𝑓 as 𝑓−1.

Example #18: Define 𝑓: ℚ → ℚ by setting 𝑓(𝑥) = 3𝑥 + 1 for all 
𝑥 ∈ ℚ. Note that for all 𝑥, 𝑦 ∈ ℚ, 𝑦 = 3𝑥 + 1 ⇔ 𝑥 = (𝑦 − 1)/3.

Let 𝑔: ℚ → ℚ such that 𝑔(𝑦) = (𝑦 − 1)/3 for all 𝑦 ∈ ℚ. Then the 

above tells us ∀𝑥, 𝑦 ∈ ℚ 𝑦 = 𝑓 𝑥 ⇔ 𝑥 = 𝑔 𝑦 .

Therefore, 𝑔 is the inverse of 𝑓.
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As the symbol for setwise preimage is 𝑓−1(), which coincidentally is 

identical to the symbol for inverse function (see section 7.2.4), we use 

the notation 𝑓−1(𝛼) to refer to the setwise preimage of a set 𝛼 

(which is a subset of the co-domain), reserving the notation 𝑓−1(𝑥) 

(where 𝑥 is a member of the co-domain) for the inverse function (if 𝑓 

indeed has an inverse function).  Note that in general 𝑓−1(𝛼) needs 

not be a function, whereas 𝑓−1(𝑥) must be a function.

Therefore, to denote the setwise 

preimage of a single element in the 
co-domain, eg: 𝑏, we would write 
𝑓−1({𝑏}) instead of 𝑓−1 𝑏 . (Because 

𝑓 does not have an inverse function in this 

case.)

𝑓−1 𝑏 = 1,4 .
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Proposition: Uniqueness of inverses

If 𝑔1 and 𝑔2 are inverses of 𝑓: 𝑋 → 𝑌, then 𝑔1 = 𝑔2.

Proof:

1. Note that 𝑔1, 𝑔2: 𝑌 → 𝑋.

2. Since 𝑔1 and 𝑔2 are inverses of 𝑓, for all 𝑥 ∈ 𝑋 and 
𝑦 ∈ 𝑌, 𝑥 = 𝑔1 𝑦 ⇔ 𝑦 = 𝑓(𝑥) ⇔ 𝑥 = 𝑔2 𝑦 .

3. Therefore 𝑔1 = 𝑔2.
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7.2.5 Bijectivity and Invertibility

Theorem 7.2.3

If 𝑓: 𝑋 → 𝑌 is a bijection, then 𝑓−1: 𝑌 → 𝑋 is also a bijection.
In other words, 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse.

Proof: (𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse)
1. (“if”) Suppose 𝑓 has an inverse, say 𝑔: 𝑌 → 𝑋.

1.1. We show injectivity of 𝑓.
1.1.1. Let 𝑥1, 𝑥2 ∈ 𝑋 such that 𝑓 𝑥1 = 𝑓 𝑥2 .
1.1.2. Define 𝑦 = 𝑓 𝑥1 = 𝑓 𝑥2 .
1.1.3. Then 𝑥1 = 𝑔(𝑦) and 𝑥2 = 𝑔(𝑦) as 𝑔 is an inverse of 𝑓. 
1.1.4. Hence 𝑥1 = 𝑥2.

1.2. We show surjectivity of 𝑓.
1.2.1. Let 𝑦 ∈ 𝑌.
1.2.2. Define 𝑥 = 𝑔(𝑦).
1.2.3. Then 𝑦 = 𝑓(𝑥) as 𝑔 is an inverse of 𝑓.

1.3. Therefore 𝑓 is bijective.
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Theorem 7.2.3

If 𝑓: 𝑋 → 𝑌 is a bijection, then 𝑓−1: 𝑌 → 𝑋 is also a bijection.
In other words, 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse.

Proof: (𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse)
1. (“if”) Suppose 𝑓 has an inverse, say 𝑔: 𝑌 → 𝑋.

2. (“only if”) Suppose 𝑓 is bijective.
2.1. Then ∀𝑦 ∈ 𝑌 ∃! 𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥  by the definition of bijection.

2.2. Define the function 𝑔: 𝑌 → 𝑋 by setting 𝑔(𝑦) to be the unique 𝑥 ∈ 𝑋 
such that 𝑦 = 𝑓(𝑥) for all 𝑦 ∈ 𝑌.

2.3. This 𝑔 is well defined and is an inverse of 𝑓 by the definition of 
inverse functions.

3. Therefore 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse.



 Definitions  One-to-One, Onto and Inverse Functions  Composition of Functions 

37

7.3 Composition of Functions
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7.3.1 Composition of Functions

Consider two functions, the successor function and the squaring function, 
defined from ℤ to ℤ, and imagine that each is represented by a machine.

If the two machines are hooked up so that the output from the successor 
function is used as input to the squaring function, then they work 
together to operate as one larger machine.

In this larger machine, an integer 𝑛 is first increased by 1 to obtain 𝑛 + 1; 
then the quantity 𝑛 + 1 is squared to obtain 
(𝑛 + 1)2.

Combining functions in this way is called composing them; the 
resulting function is called the composition of the two functions.
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Definition: Composition of Functions

Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be functions.

Define a new function 𝑔 ∘ 𝑓: 𝑋 → 𝑍 as follows:

𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥  ∀𝑥 ∈ 𝑋.

where 𝑔 ∘ 𝑓 is read “𝑔 circle 𝑓” and 𝑔 𝑓 𝑥  is read “𝑔 of 𝑓 of 𝑥”.

The function 𝑔 ∘ 𝑓 is called the composition of 𝑓 and 𝑔.
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Example #19: Let 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑍 = {𝑥, 𝑦, 𝑧}. 
Define functions 𝑓: 𝑋 → 𝑌  and 𝑔: 𝑌 → 𝑍 by the arrow diagrams below.

Draw the arrow diagram for 𝑔 ∘ 𝑓. 
What is the range of 𝑔 ∘ 𝑓?

Therefore the range of 𝑔 ∘ 𝑓 is {𝑦, 𝑧}.

𝑋

1

2

3

𝑌

𝑎

𝑏

𝑐

𝑑

𝑍

𝑥

𝑦

𝑧

𝑓 𝑔

𝑋

1

2

3

𝑍

𝑥

𝑦

𝑧

𝑔 ∘ 𝑓


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7.3.2 Composition with the Identity Function

The identity function on a set 𝑋, 𝑖𝑑𝑋, is the function 
from 𝑋 to 𝑋 defined by 𝑖𝑑𝑋 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

Let 𝑓: 𝑋 → 𝑌.

(1) 𝑓 ∘ 𝑖𝑑𝑋 = 𝑓 because
▪ Domains of 𝑓 ∘ 𝑖𝑑𝑋 and 𝑓 are both 𝑋;
▪ Co-domains of 𝑓 ∘ 𝑖𝑑𝑋 and 𝑓 are both 𝑌;

▪ 𝑓 ∘ 𝑖𝑑𝑋 𝑥 = 𝑓 𝑖𝑑𝑋 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

(2) 𝑖𝑑𝑌 ∘ 𝑓 = 𝑓 because
▪ Domains of 𝑖𝑑𝑌 ∘ 𝑓and 𝑓 are both 𝑋;
▪ Co-domains of 𝑖𝑑𝑌 ∘ 𝑓and 𝑓 are both 𝑌;

▪ 𝑖𝑑𝑌 ∘ 𝑓 𝑥 = 𝑖𝑑𝑌 𝑓 𝑥 = 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

𝑋 𝑋

𝑌 𝑌

𝑖𝑑𝑋

𝑖𝑑𝑌

𝑓 𝑓
𝑓
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Example #20: Let 𝑋 =  {𝑎, 𝑏, 𝑐, 𝑑} and 𝑌 = {𝑢, 𝑣, 𝑤}, and 
suppose 𝑓: 𝑋 → 𝑌 is given by the arrow diagram:

Find 𝑓 ∘ 𝑖𝑑𝑋

𝑓 ∘ 𝑖𝑑𝑋 = 𝑓 

𝑖𝑑𝑋

𝑓 ∘ 𝑖𝑑𝑋 𝑎 = 𝑓 𝑖𝑑𝑋 𝑎 = 𝑓 𝑎 = 𝑢

𝑓 ∘ 𝑖𝑑𝑋 𝑏 = 𝑓 𝑖𝑑𝑋 𝑏 = 𝑓 𝑏 = 𝑣

𝑓 ∘ 𝑖𝑑𝑋 𝑐 = 𝑓 𝑖𝑑𝑋 𝑐 = 𝑓 𝑐 = 𝑣

𝑓 ∘ 𝑖𝑑𝑋 𝑑 = 𝑓 𝑖𝑑𝑋 𝑑 = 𝑓 𝑑 = 𝑢

𝑓 ∘ 𝑖𝑑𝑋 𝑥 = 𝑓 𝑥 .
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Find 𝑖𝑑𝑌 ∘ 𝑓

𝑖𝑑𝑌 ∘ 𝑓 = 𝑓 

Example #21: Let 𝑋 =  {𝑎, 𝑏, 𝑐, 𝑑} and 𝑌 = {𝑢, 𝑣, 𝑤}, and 
suppose 𝑓: 𝑋 → 𝑌 is given by the arrow diagram:

𝑖𝑑𝑌 ∘ 𝑓 𝑎 = 𝑖𝑑𝑌 𝑓 𝑎 = 𝑓 𝑎 = 𝑢

𝑖𝑑𝑌 ∘ 𝑓 𝑏 = 𝑖𝑑𝑌 𝑓 𝑏 = 𝑓 𝑏 = 𝑣

𝑖𝑑𝑌 ∘ 𝑓 𝑐 = 𝑖𝑑𝑌 𝑓 𝑐 = 𝑓 𝑐 = 𝑣

𝑖𝑑𝑌 ∘ 𝑓 𝑑 = 𝑖𝑑𝑌 𝑓 𝑑 = 𝑓 𝑑 = 𝑢

𝑖𝑑𝑌 ∘ 𝑓 𝑥 = 𝑓 𝑥 .

𝑖𝑑𝑌
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Theorem 7.3.1 Composition with an Identity Function

If 𝑓 is a function from a set 𝑋 to a set 𝑌, and 𝑖𝑑𝑋 is the 
identity function on 𝑋, and 𝑖𝑑𝑌 is the identity function on 
𝑌, then
 𝑓 ∘ 𝑖𝑑𝑋 = 𝑓 and

 𝑖𝑑𝑌 ∘ 𝑓 = 𝑓 
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7.3.3 Composing a Function with Its Inverse 

Example #22: Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {𝑥, 𝑦, 𝑧}. Define 
𝑓: 𝑋 → 𝑌 by the following arrow diagram.

Then 𝑓 is a bijection. Thus 𝑓−1 exists and is found by 
tracing the arrows backwards, as shown below.
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Now 𝑓−1 ∘ 𝑓 is found by following the arrows from 𝑋 to 
𝑌 by 𝑓 and back to 𝑋 by 𝑓−1. 

Therefore, 𝑓−1 ∘ 𝑓 = 𝑖𝑑𝑋. 

Similarly, 𝑓 ∘ 𝑓−1 = 𝑖𝑑𝑌. 

Theorem 7.3.2 Composition of a Function with Its Inverse

If 𝑓: 𝑋 → 𝑌 is a bijection with inverse function 𝑓−1: 𝑌 → 𝑋, then
 𝑓−1 ∘ 𝑓 = 𝑖𝑑𝑋  and  𝑓 ∘ 𝑓−1 = 𝑖𝑑𝑌

𝑓−1 ∘ 𝑓 𝑎 = 𝑓−1 𝑓 𝑎 = 𝑓−1 𝑧 = 𝑎

𝑓−1 ∘ 𝑓 𝑏 = 𝑓−1 𝑓 𝑏 = 𝑓−1 𝑥 = 𝑏

𝑓−1 ∘ 𝑓 𝑐 = 𝑓−1 𝑓 𝑐 = 𝑓−1 𝑦 = 𝑐



 Definitions  One-to-One, Onto and Inverse Functions  Composition of Functions

Associativity of Function Composition

47

7.3.4 Associativity of Function Composition

Function composition. Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍.

Then 𝑔 ∘ 𝑓: 𝑋 → 𝑍 such that for every 𝑥 ∈ 𝑋, 𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 .

Theorem: Associativity of Function Composition

Let 𝑓: 𝐴 → 𝐵, 𝑔: 𝐵 → 𝐶 and ℎ: 𝐶 → 𝐷. Then 
ℎ ∘ 𝑔 ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓).

Function composition is associative. 

Proof:
1. The domains of ℎ ∘ 𝑔 ∘ 𝑓 and ℎ ∘ (𝑔 ∘ 𝑓) are both 𝐴.

2. The codomains of ℎ ∘ 𝑔 ∘ 𝑓 and ℎ ∘ (𝑔 ∘ 𝑓) are both 𝐷.

3. For every 𝑥 ∈ 𝐴,

ℎ ∘ 𝑔 ∘ 𝑓 𝑥 = ℎ ∘ 𝑔 𝑓 𝑥 = ℎ 𝑔 𝑓 𝑥 = ℎ 𝑔 ∘ 𝑓 𝑥 = ℎ ∘ 𝑔 ∘ 𝑓 (𝑥).

𝐴 𝐵

𝐶 𝐷

𝑓

ℎ

𝑔 ℎ ∘ 𝑔
𝑔 ∘ 𝑓
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7.3.5 Noncommutativity of Function Composition

Function composition. Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍.

Then 𝑔 ∘ 𝑓: 𝑋 → 𝑍 such that for every 𝑥 ∈ 𝑋, 𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 .

Then for every 𝑥 ∈ ℤ,

𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 = 𝑔 3𝑥 = 3𝑥 + 1

and

𝑓 ∘ 𝑔 𝑥 = 𝑓 𝑔 𝑥 = 𝑓 𝑥 + 1 = 3(𝑥 + 1).

Note that 𝑔 ∘ 𝑓 0 = 1 ≠ 3 = (𝑓 ∘ 𝑔)(0).

Example #23: Let 𝑓, 𝑔: ℤ → ℤ such that for every 𝑥 ∈ ℤ,
 𝑓 𝑥 = 3𝑥  and  𝑔 𝑥 = 𝑥 + 1.
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7.3.6 Composition of Injections

Example #24: 
Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝑌 = {𝑤, 𝑥, 𝑦, 𝑧}, and 
𝑍 = {1, 2, 3, 4, 5}, and define injections 
𝑓:  𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 as shown in the 
arrow diagrams of Figure 7.3.1.

Figure 7.3.1

Then 𝑔 ∘ 𝑓 is the function with the 
arrow diagram shown in Figure 7.3.2.

Figure 7.3.2

Is 𝑔 ∘ 𝑓 injective? Yes.
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Theorem 7.3.3

If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are both injective, then 𝑔 ∘ 𝑓 is injective.

Proof:
1. Suppose 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are injections and let 𝑥1, 𝑥2 ∈ 𝑋 such 

that 𝑔 ∘ 𝑓 𝑥1 = 𝑔 ∘ 𝑓 𝑥2 .

2. Then (𝑔 𝑓 𝑥1 = 𝑔 𝑓 𝑥2  by the definition of function composition.

3. Since 𝑔 is injective, so 𝑓 𝑥1 = 𝑓 𝑥2  by the definition of injection.

4. Since 𝑓 is injective, so 𝑥1 = 𝑥2 by the definition of injection.

5. Therefore 𝑔 ∘ 𝑓 is injective.

A function 𝑓: 𝑋 → 𝑌 is injective iff 
∀𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥1 = 𝑥2 .
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7.3.7 Composition of Surjections

Example #25: 
Let 𝑋 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑌 = 𝑤, 𝑥, 𝑦, 𝑧 , and 
𝑍 = {1, 2, 3}, and define surjections
𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 as shown in the 
arrow diagrams on the right.

Then 𝑔 ∘ 𝑓 is the function with the 
arrow diagram on the right.

Is 𝑔 ∘ 𝑓 surjective? Yes.
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Theorem 7.3.4

If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are both surjective, then 𝑔 ∘ 𝑓 is surjective.

A function 𝑓: 𝑋 → 𝑌 is surjective iff

∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

Proof:
1. Suppose 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are surjections and let 𝑧 ∈ 𝑍.

2. Since 𝑔 is surjective, so there is an element 𝑦 ∈ 𝑌 such that 𝑔(𝑦) = 𝑧 
by the definition of surjection.

3. Since 𝑓 is surjective, so there is an element 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦 
by the definition of surjection.

4. Hence there exists an element 𝑥 ∈ 𝑋 such that 

𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 = 𝑔 𝑦 = 𝑧.

5. Therefore 𝑔 ∘ 𝑓 is surjective.
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7.4 Addition and Multiplication 
Functions on ℤ𝑛
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7.4.1 Definitions (from Lecture #6)

Definition: Congruence

Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℤ+. Then 𝑎 is 
congruent to 𝑏 modulo 𝑛 iff 𝑎 − 𝑏 = 𝑛𝑘 for 
some 𝑘 ∈ ℤ. In other words, 𝑛 | 𝑎 − 𝑏 . 

In this case, we write 𝑎 ≡ 𝑏 (mod 𝑛).

Proposition

Congruence-mod 𝑛 is an equivalence 
relation on ℤ for every 𝑛 ∈ ℤ+.

Definition: Equivalence Class

Suppose 𝐴 is a set and ~ is an 
equivalence relation on 𝐴. The 
equivalence class of 𝑎 ∈ 𝐴, is
 [𝑎]~= {𝑥 ∈ 𝐴 ∶ 𝑎~𝑥 }.

Definition: Set of equivalence classes

Let 𝐴 be a set and ~ be an equivalence relation 
on 𝐴. Denote by 𝐴/~ the set of all equivalence 
classes with respect to ~, i.e.,
  𝐴/~ = 𝑥 ~ ∶ 𝑥 ∈ 𝐴 .

We may read 𝐴/~ as “the quotient of 𝐴 by ~”.

Now, we introduce a notation ℤ𝑛:

The quotient ℤ/~𝑛 where ~𝑛 is the congruence-mod-𝑛 
relation on ℤ,  is denoted ℤ𝑛.
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The quotient ℤ/~𝑛 where ~𝑛 is the congruence-mod-𝑛 
relation on ℤ,  is denoted ℤ𝑛.

Congruence modulo 2 Congruence modulo 3 Congruence modulo 4

:
-4
-2
0
2
4
:

:
-3
-1
1
3
5
:

ℤ :
-6
-3
0
3
6
:

:
-5
-2
1
4
7
:

ℤ:
-4
-1
2
5
8
:

:
-8
-4
0
4
8
:

:
-7
-3
1
5
9
:

ℤ:
-6
-2
2
6

10
:

:
-5
-1
3
7

11
:

Partition of ℤ:
2𝑘 ∶ 𝑘 ∈ ℤ ,

2𝑘 + 1 ∶ 𝑘 ∈ ℤ

Partition of ℤ:

3𝑘 ∶ 𝑘 ∈ ℤ ,
3𝑘 + 1 ∶ 𝑘 ∈ ℤ ,
3𝑘 + 2 ∶ 𝑘 ∈ ℤ

Partition of ℤ:
4𝑘 ∶ 𝑘 ∈ ℤ ,

4𝑘 + 1 ∶ 𝑘 ∈ ℤ ,

4𝑘 + 2 ∶ 𝑘 ∈ ℤ ,
4𝑘 + 3 ∶ 𝑘 ∈ ℤ

From 
Lecture #6:

ℤ2 = 2𝑘: 𝑘 ∈ ℤ , {2𝑘 + 1:  𝑘 ∈ ℤ}

ℤ3 = 3𝑘: 𝑘 ∈ ℤ , 3𝑘 + 1:  𝑘 ∈ ℤ ,{3𝑘 + 2:  𝑘 ∈ ℤ}

ℤ4 = 4𝑘: 𝑘 ∈ ℤ , 4𝑘 + 1:  𝑘 ∈ ℤ , 4𝑘 + 2:  𝑘 ∈ ℤ , {4𝑘 + 3:  𝑘 ∈ ℤ}
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7.4.2 Addition and Multiplication on ℤ𝑛 

Definition: Addition and Multiplication on ℤ𝑛

Define addition + and multiplication ∙ on ℤ𝑛 as follows: 

whenever 𝑥 , [𝑦] ∈ ℤ𝑛,

𝑥 + 𝑦 = [𝑥 + 𝑦]    and    𝑥 ∙ [𝑦] = [𝑥 ∙ 𝑦]

Example #26: 

Take [0], [1] ∈ ℤ3,

Then 0 + 1 = 0 + 1 = [1] (which is {… , −5, −2,1,4,7, … })

and 0 ∙ 1 = 0 ∙ 1 = 0  (which is {… , −6, −3,0,3,6, … }).
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Proposition: Addition on ℤ𝑛 is well defined

For all 𝑛 ∈ ℤ+ and all 𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 ∈ ℤ𝑛,

𝑥1 = [𝑥2] and 𝑦1 = 𝑦2 ⇒ 𝑥1 + 𝑦1 = 𝑥2 + 𝑦2 .  

Proof:
1. Let 𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 ∈ ℤ𝑛 such that 𝑥1 = [𝑥2] and 𝑦1 = 𝑦2 .

2. Then 𝑥1 ≡ 𝑥2 (mod 𝑛) and 𝑦1 ≡ 𝑦2 (mod 𝑛) by the definition of congruence.

3. Use the definition of congruence to find 𝑘, 𝑙 ∈ ℤ such that 

 𝑥1 − 𝑥2 = 𝑛𝑘 and 𝑦1 − 𝑦2 = 𝑛𝑙. 

4. Note that (𝑥1+𝑦1) − 𝑥2 + 𝑦2 = 𝑥1 − 𝑥2 + 𝑦1 − 𝑦2 = 𝑛𝑘 + 𝑛𝑙 = 𝑛 𝑘 + 𝑙 .

5. So 𝑥1 + 𝑦1 ≡ 𝑥2 + 𝑦2 (mod 𝑛) by the definition of congruence.

6. Therefore, 𝑥1 + 𝑦1 = 𝑥1 + 𝑦1 = 𝑥2 + 𝑦2 = 𝑥2 + 𝑦2  by the lemma below.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The following are 
equivalent for all 𝑥, 𝑦 ∈ 𝐴. (i) 𝑥~𝑦; (ii) 𝑥 = 𝑦 ; (iii) 𝑥 ∩ [𝑦] ≠ ∅.
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Proposition: Multiplication on ℤ𝑛 is well defined

For all 𝑛 ∈ ℤ+ and all 𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 ∈ ℤ𝑛,

𝑥1 = [𝑥2] and 𝑦1 = 𝑦2 ⇒ 𝑥1 ∙ 𝑦1 = 𝑥2 ∙ 𝑦2 .  

Proof:
1. Let 𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 ∈ ℤ𝑛 such that 𝑥1 = [𝑥2] and 𝑦1 = 𝑦2 .

2. Then 𝑥1 ≡ 𝑥2 (mod 𝑛) and 𝑦1 ≡ 𝑦2 (mod 𝑛) by the definition of congruence.

3. Use the definition of congruence to find 𝑘, 𝑙 ∈ ℤ such that 

 𝑥1 − 𝑥2 = 𝑛𝑘 and 𝑦1 − 𝑦2 = 𝑛𝑙. 

4. Note that (𝑥1∙ 𝑦1) − 𝑥2 ∙ 𝑦2 = 𝑛𝑘 + 𝑥2 ∙ 𝑛𝑙 + 𝑦2 − 𝑥2 ∙ 𝑦2

  = 𝑛 𝑛𝑘𝑙 + 𝑘𝑦2 + 𝑙𝑥2 , where (𝑛𝑘𝑙 + 𝑘𝑦2 + 𝑙𝑥2) ∈ ℤ (by closure of integer addition)

5. So 𝑥1 ∙ 𝑦1 ≡ 𝑥2 ∙ 𝑦2 (mod 𝑛) by the definition of congruence.

6. Therefore, 𝑥1 ∙ 𝑦1 = 𝑥1 ∙ 𝑦1 = 𝑥2 ∙ 𝑦2 = 𝑥2 ∙ 𝑦2  by the lemma below.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set 𝐴. The following are 
equivalent for all 𝑥, 𝑦 ∈ 𝐴. (i) 𝑥~𝑦; (ii) 𝑥 = 𝑦 ; (iii) 𝑥 ∩ [𝑦] ≠ ∅.
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