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Lecture 7: Functions

Aaron Tan

Part of the contents here is taken from
AY2025/26 Semester 1  Dr Wong Tin Lok’s lecture notes. !
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Functions in C programming:

int f(int x, double y) { Many built-in math
return x * sqrt(y); functions in C:
} = floor(), round()

= ceil(), floor()

f(3,4) 2 6.0 = sin(), cos(), tan()
f(4, 3) =2 6.928203 = |og(), log10()
f(6,1) > 6.0 = sqrt(), pow()

= etc.

Applications of function in Computer Science:
computational complexity of algorithmes,
counting objects, study of sequences and
strings, etc.
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7. Functions

7.1 Definitions

e Definitions of function, arrow diagram, image, pre-image, setwise image,
setwise preimage, domain, co-domain, range.

e Sequences, strings.

e Function equality.

7.2 Injections, Surjections, Bijections and Inverse Functions

e Injections, surjections, bijections.
e Inverse functions.
e Bijectivity and invertibility.

7.3 Composition of Functions

e Composition with the identity function; composition with its inverse.
e Associativity and noncommutativity of function composition.
e Composition of injections; composition of bijections.

7.4 Addition and Multiplication on Z,,

Reference: Epp’s Chapter 7 Functions 3
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Recapitulation
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Recapitulation

Definition: Relation

Let X and Y be sets. A (binary) relation from X to Y is a subset of X X Y.
Given an ordered pair (x,y) in X X Y, xis related to y by R, or
x is R-related to y, written x R y, iff (x,y) € R.

X R, Y X R; Y X R3 14
A A A

X R4 Y X Rs Y X Re Y
A

%
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7.1 Definitions
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Injections, Surjections and Inverse Functions

Definitions
oNoNoNoXO]

Definitions: Function
7.1.1 Definitions

Definition: Function

A function f from aset X toasetY, denoted f: X — Y, is a relation

satisfying the following properties:

(F1) Vx e X3y eY (x,y) € f.

(F2) Vx € X Vy1,y, €Y (((x,yl) EfA(Y) Ef) >y = yz)-
(That is, the y in (F1) is unique.)

Or alternatively,
Let f be arelationonsets X andY,i.e.f S X XY.Then fisa

function from X to Y, denoted f: X - Y, iff
vxeX3AlyeY (x,y) €f.

Informally, A function from X to Y is an assignment to
each element of X exactly one element of Y.
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Definitions: Function

Example #1: A function f: R — R is defined as follows:
Vx € R, f(x) is the real number y such that x* + y? = 1.

Is the above a function? No!

Two reasons. For almost all values of x, either (1) thereisno y
that satisfies the given equation (eg: when x = 2), or (2) there

are two different values of y that satisfy the equation (eg: when
x = 0).
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Definitions: Arrow Diagrams

If X and Y are finite sets, you can define a function f
from X to Y by drawing an arrow diagram.

This arrow diagram defines a
function because

1. Every element of X has an arrow
coming out of it.
2. No element of X has two arrows

coming out of it that point to
two different elements of Y.

Figure 7.1.1
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Arrow Diagrams f is a function from X to Y, denoted f: X — Y, iff

Vx € X,3!y € Y such that (x,y) € f.

Example #2: Which of the following relations are
functions and which are not? Why?

X fi 14 X j_{g Y X 53 14

10
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Definitions: Argument, image, preimage, input, output
Definitions: Argument, image, preimage , input, output

Let f: X — Y be a function. We write f(x) = y iff (x,y) € f.

o ” H f
We say that “f sends/maps x to y” and we may also write x = y or

f:x — y.Also, x is called the argument of f.

f(x) isread “f of x”, or “the output of f for the input x”, or “the
value of f at x”, or “the image of x under f”.

If f(x) =y, then x is a preimage of y.

e Example #3: A function f:Z — Zis

input x definedas: Vx € Z, f(x) = 2x + 1.
/ N 0 1
output f(x) 1 3
7 15
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Definitions: Setwise image and preimage

f~1(B) is NOT an inverse
function! (Inverse function
to be defined later.)

Definitions: Setwise image and preimage

Let f: X — Y be a function from set X to set Y.
= IfAC X,thenlet f(4A) ={f(x) : x € A}.

= [fBCY,thenletf'(B)={x€X: f(x) € B}

We call f(A) the (setwise) image of 4, and f ~1(B) the (setwise) preimage
of B under f.

Note: We use different terminologies here from
Susanna Epp’s as the latter may cause confusion.

A —
]:> Fea) 76 =
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Definitions: Setwise image and preimage

Example #4:
A function g: Z — Z is defined by setting g(x) = x? Vx € Z.
What is g({—1,0,1})? What is g~1({0,1,2})?

g-1({0,1,2}) = {—1,0,1}. (Because g(0) = 0; g(—-1) = g(1) = 1.)

Let f: X — Y be a function from set X to set Y.
= IfAC X,thenlet f(A) ={f(x) : x € A}.
= [fBCY,thenletf"'(B)={x€X: f(x) € B}

13
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Definitions: Setwise image and preimage

Example #5: Let X = {1,2,3,4}and Y = {a, b, c,d, e},
and define f: X = Y by the following arrow diagram:

let A ={1,4}, B = {a, b}, and C = {c, e}. Find:
(a) f(4)  {b}

(b) f(X)  {ab,d}

(c) f7'(B) (1,24}

(d) F71(C) ¢

14
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Definitions: Setwise image and preimage

As the symbol for setwise preimage is f ~1(), which coincidentally is
identical to the symbol for inverse function (see section 7.2.4), we use
the notation f ~1(a) to refer to the setwise preimage of a set
(which is a subset of the co-domain), reserving the notation f~1(x)
(where x is a member of the co-domain) for the inverse function (if f
indeed has an inverse function). Note that in general f~!(a) needs
not be a function, whereas f ~1(x) must be a function.

Therefore, to denote the setwise
preimage of a single element in the
co-domain, eg: b, we would write
f~1({b}) instead of f ~1(b). (Because

f does not have an inverse function in this

case.)

(b = {14}

15
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Definitions: Domain, co-domain, range

Definitions: Domain, co-domain, range

Let f: X — Y be a function from set X to set Y.
= X is the domain of f and Y the co-domain of f.

= The range of f is the (setwise) image of X under f:
{yeY:y=f(x)forsomex € X}.
Range € Co-domain

Example #6: A function f:Z — Z is defined as:
Vx €Z, f(x)=2x+ 1.

What are the domain, co-domain, and range of f?
Domain: the set of integers, Z.
Co-domain: the set of integers, Z.
Range: the set of odd integers.
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Definitions: Domain, co-domain, range

Example #7: The function f: X — Y is shown below.

(a) Represent f as a set of ordered pairs.
{(1) a)) (2) b); (3) b); (4; e)}
b) The domainof f? X or {1,2,3,4}

c) Theco-domainof f? 'y o {ab,cd, e}

d) Therangeof f? {a,b,e}

e) Theimageof4,i.e. f(4)? e

(f) The (setwise) image of {3,4}, i.e. f({3,4})?
{b, e}

(
(
(
(

(g) A pre-imageofb? 2 or 3

(h) The (setwise) preimage of {b},i.e. f~1({b})? {23}

(i) The (setwise) preimage of {c,d},i.e. f1({c,d})? @

(j) The (setwise) preimage of {a, b, c},i.e. f~1({a,b,c})? {1,2,3}

17
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Sequences and Strings

7.1.2 Sequences and Strings

A sequence a,, a4, a,, - can be represented by a function a whose
domain is Z that satisfies a(n) = a,, for every n € Z,.

In this sense, any function whose domain is Z,,, for some m € Z
represents a sequence.

Example #8: Consider the sequence 2, 3,5,9, 17, 33, 65, .... We
may represent this sequence by the function a: Z-o —» Z™ that
satisfies, for eachn € Zsq,a(n) = 2™ + 1.
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Sequences and Strings

Definition: Fibonacci Sequence

The Fibonacci sequence Fy, F;, F,, - is defined by setting, for each
N € Zsg, Fop =0and F; =1and F,,, = F,41 + F,.

Fibonacci sequence: 0,1, 1, 2, 3,5, 8, 13, 21, 34, 55, ...

Example #9: We may represent the Fibonacci sequence
Fy, F1, F5, - by the function F: Z., — Zs( that satisfies, for
eachn € Z,,

F(O)=0and F(1)=1andF(n+2)=Fn+1) + F(n).
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Sequences and Strings

Definition: String

Let A be a set. A string or a word over A is an expression of the form

Apa1a, - a;_1 Where l € Zsg and ag, a4, a,,*+,a;_1 € A.
Here [ is called the length of the string. The empty string ¢ is the
string of length 0.

Let A denote the set of all strings over A.

Example #10: Let A = {s, u}. Some strings over A4 are s, ssuu,
susuussu and uuuuuuu with lengths 1, 4, 8 and 7 respectively.

One can represent a string aga,a, -+ a;_1 over A by the function
a:{0,1,...,l — 1} —» A satisfyinga(n) = a,, foralln € {0,1, ..., — 1}.
Every functiona:{m,m+1,..,m+ 10— 1} - Awherem € Z and

[ € Z- represents a string of length [ over A, namely,
a(m)a(m+1) ..a(m+1-1).
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Sequences and Strings

Equality of Sequences

Given two sequences a,, a4, a,, -+ and by, by, by, -+- defined
by the functions a(n) = a,, and b(n) = b,, respectively for
every n € Zsq, we say that the two sequences are equal if
and only if a(n) = b(n) for everyn € Z,.

Equality of Strings

Given two strings s; = aga,a, -~ a;_4 and
Sy, = bgb1b, - b;_1 where | € Zs,, we say that

sy = S, ifandonlyif a; = b; foralli € {0,1,2, ...,[ — 1}.
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Function Equality

7.1.3 Function Equality
Theorem 7.1.1 Function Equality

Two functions f:A - Band g:C = D are equal,i.e. f = g,
iff i) A = C and B = D, and (ii) f(x) = g(x) Vx € A.

Example #11: Let X = {0,1, 2} and define functions f and g on X
as follows: Vx € X,

f(x)=((x*+x+1)mod3 and g(x) = (x + 2)? mod 3

Isf =g7? Note: a mod b computes the
remainder of a = b.

Yes X X+x+1 fx)=x>+x+1)mod3 (x +2)? g(x) = (x+2)>mod 3
) 0 1 1 mod3 =1 4 4mod3 =1
1 3 3mod3=0 9 Omod3 =0
2

7 7Tmod3 =1 16 16 mod 3 =1

22
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Function Equality

Theorem 7.1.1 Function Equality

Two functions f: A - Band g:C = D areequal,i.e. f = g,
iff i) A = Cand B = D, and (ii) f(x) = g(x) Vx € A.

Example #12: Let f:{0,2} = Z and g: {0,2} — Z defined by
setting, for all x € {0,2}, f(x) = 2x and g(x) = x?2.

ISf =9? Yes. Their domains are the same, their co-domains
are the same, and f(x) = g(x) for every x € {0,2}.

Example #13: Let f:Z — Z and g: Z — Q defined by setting, for
allx €EZ, f(x) =x3=g(x).Isf = g?
No, because their co-domains are different.

23
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/.2 Injections, Surjections, Bijections
and Inverse Functions

24
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Injections (One-to-One Functions)

7.2.1 Injections (One-to-One Functions)

Definition: Injection (one-to-one function)

A function f: X — Y is injective (or one-to-one) iff

Vxy, %2 € X (f(x1) = f(x2) = x1 = xp).
or, equivalently (contrapositive), x; # x5, = f(x1) # f(xy).
An injective function is called an injection.

Which of the following is/are injections?

X Ra _y X Bs Y X Re _ v
A A A
[ ]
\ .- e
- ( >0
[\ .
Injection Not injection Injection
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Injections (One-to-One Functions)

A function f: X — Y is injective iff A function f: X — Y is not injective iff
Vxi, x5 €EX (f(x1) = f(xy) = x1 = x3). Ax1, %, € X (f(x1) = f(x2) Axg # x3).

Example #14: Define a function f: Q = Q by setting f(x) =3x + 1
forallx € Q. Is f injective?

Yes. Proof:

1. Letxq,x, € Qsuchthat f(x1) = f(x,).
2. Then3x; +1 = 3x, + 1.

3. Sox; = x,.

Example #15: Define g: Z — Z by setting g(x) = x? for every
X € Z.1s g injective?

No.g(1) =12 =1 = (-1)*=g(-1), but 1 # —1.

26
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Surjections (Onto Functions)

7.2.2 Surjections (Onto Functions)

Definition: Surjection (onto function)

A function f: X — Y is surjective (or onto) iff

VyeYaxeX (y=fx))
Every element in the co-domain has a preimage. So, range = co-domain.
A surjective function is called a surjection.

Which of the following is/are surjections?

X Ra Y X Bs Y X Re Y
A A A
[ ]
\ .- e
- .- »®
[\ .
Not surjection Surjection Surjection
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Surjections (Onto Functions)

A function f: X - Y is surjective iff A function f: X — Y is not surjective iff
vy eYax e X (y = f(x)). Jy eYVx €X (y # f(x)).

Example #16: Define a function f: Q = Q by setting f (x) =3x + 1
forall x € Q. Is f surjective?

Yes. Proof:
1. Takeanyy € Q.
2. Lletx=(y—1)/3.

3. Thean(@andf(x)=3x+1=3(yT_1)+1=y.

Example #17: Define g: Z — Z by setting g(x) = x? for every
X € 7. 1s g surjective?

No.
g(x) =x?>>0>—1forallx € Z.
So g(x) # —1 for all x € Z, although —1 € Z.
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Bijections (One-to-One Correspondences)

7.2.3 Bijections (One-to-One Correspondences)

Definition: Bijection (one-to-one correspondence)

A function f: X — Y is bijective iff f is injective and surjective, i.e.
VyeY3lxe X(y =f(x)).
A bijective function is called a bijection or one-to-one correspondence.

Which of the following is/are bijections?

X R v X B X~ Re ¥
= N T
- N
Injection Not injection Injection

Not surjection Surjection Surjection

Bijection
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Bijections (One-to-One Correspondences)

A function f: X - Y is:
» injective iff Vxy,x, € X (f(x1) = f(xy) = x1 = x5);
» surjectiveiff vy eYIx € X (y = f(x));
= bijectiveiff Yy €Y Ilx € X (y = f(x)).

(Injective) Informally, (Surjective) Informally, (Bijective) Informally,
every element in the every element in the every element in the
codomain must have /\ | codomain must have — | codomain must have
at most one arrow at least one arrow exactly one arrow
going into it. going into it. going into it.
X B _y X Bs Y X Be _ v
[ ]
= — —>0
( >0
[\ .
Injection Not injection Injection
Not surjection Surjection Surjection

& Bijection
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Inverse Functions

7.2.4 Inverse Functions

If f is a bijection from X to Y, then there is a function from Y to X that “undoes”
the action of f; that is, it sends each element of Y back to the element of X that
it came from. This function is called the inverse function for f, denoted as f 1.

Definition: Inverse function

let f: X —» Y.Then g:Y — X is an inverse of f iff

VxEXVyEY(yzf(x)@ng(y)).
We denote the inverse of f as f 1.

X Y

31
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Inverse Functions

Definition: Inverse function

Let f: X - Y.Then g:Y — X is an inverse of f iff
VxEXVyEy(y=f(x)<:>x=g(y)).
We denote the inverse of f as f 1.

Example #18: Define f: Q — Q by setting f (x) = 3x + 1 for all
x € Q. Notethatforallx,y e Qy=3x+1ox=(y—1)/3.

Llet g: Q » Q suchthat g(y) = (y —1)/3 forall y € Q. Then the
above tellsus Vx,y € Q (y =f(x) ®x = g(y)).

Therefore, g is the inverse of f.



Definitions Injections, Surjections and Inverse Functions amposition of Functions

ol eNoNe (ONoNoN Jo)

Definitions: Setwise image and preimage slide 15 repr

As the symbol for setwise preimage is f ~1(), which coincidentally is
identical to the symbol for inverse function (see section 7.2.4), we use
the notation f ~1(a) to refer to the setwise preimage of a set
(which is a subset of the co-domain), reserving the notation f~1(x)
(where x is a member of the co-domain) for the inverse function (if f
indeed has an inverse function). Note that in general f~!(a) needs
not be a function, whereas f ~1(x) must be a function.

Therefore, to denote the setwise
preimage of a single element in the
co-domain, eg: b, we would write
f~1({b}) instead of f ~1(b). (Because

f does not have an inverse function in this

case.)

(b = {14}

33
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Inverse Functions

Proposition: Uniqueness of inverses

If g, and g, are inversesof f: X = Y, then g; = g,.

Proof:

1. Note that g4,9,:Y — X.

2. Since g4 and g, are inverses of f, for all x € X and
yeEY, x=0,(y) @y =f(x) ®x=g,(y).

3. Therefore g, = g5.

34
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Bijectivity and Invertibility

7.2.5 Bijectivity and Invertibility

Theorem 7.2.3

If f:X > Y is a bijection, then f~1:Y — X is also a bijection.
In other words, f: X — Y is bijective iff f has an inverse.

Proof: (f: X — Y is bijective iff f has an inverse)

1. (“if”) Suppose f has aninverse,say g:Y — X.

1.1. We show injectivity of f.
1.1.1. Let x4, x, € X such that f(x;) = f(x,).
1.1.2. Definey = f(x;) = f(x,).
1.1.3. Thenx; = g(y) and x, = g(y) as g is an inverse of f.
1.1.4. Hence x; = x5.

1.2. We show surjectivity of f.
1.2.1.lety €Y.
1.2.2. Define x = g(y).
1.2.3.Theny = f(x) as g is an inverse of f.

1.3. Therefore f is bijective. 35
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Bijectivity and Invertibility

Theorem 7.2.3

If f:X - Y is a bijection, then f~1:Y - X is also a bijection.
In other words, f: X — Y is bijective iff f has an inverse.

Proof: (f: X — Y is bijective iff f has an inverse)
1. (“if”) Suppose f has aninverse,say g:Y — X.

2. (“only if”) Suppose f is bijective.
21.ThenVy eY3IlxeX (y = f(x)) by the definition of bijection.
2.2. Define the function g: Y — X by setting g(y) to be the unique x € X

suchthaty = f(x) forally €Y.
2.3. This g is well defined and is an inverse of f by the definition of

inverse functions.
3. Therefore f: X — Y is bijective iff f has an inverse.

36
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7.3 Composition of Functions

37
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Composition of Functions

7.3.1 Composition of Functions

Consider two functions, the successor function and the squaring function,
defined from Z to Z, and imagine that each is represented by a machine.

If the two machines are hooked up so that the output from the successor
function is used as input to the squaring function, then they work
together to operate as one larger machine.

In this larger machine, an integer n is first increased by 1 to obtainn + 1;
then the quantity n + 1 is squared to obtain
(n+1)2.

successor function squaring function

\ \

n+1 (n+])2

Combining functions in this way is called composing them; the

resulting function is called the composition of the two functions.
38
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Composition of Functions

Definition: Composition of Functions

Let f: X = Y and g:Y — Z be functions.
Define a new function g o f: X — Z as follows:
(g° ) =g(f(x) vx € X.
where g o f isread “g circle f” and g(f(x)) isread “g of f of x”.
The function g o f is called the composition of f and g.
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Composition of Functions

Example #19: Let X = {1,2,3},Y ={a,b,c,d}and Z = {x,y, z}.

Define functions f: X = Y and g:Y — Z by the arrow diagrams below.
X Y Z

Draw the arrow diagram for g o f.
What is the range of g o f?

(gof)(1) =g(f(l)) =gl(c) =z
(gof)2)=g(f(2) =gb) =y
(gof)3)=g(f(3) =gla) =Yy

Therefore the range of g o f is {y, z}.

40
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Composition with the Identity Function

7.3.2 Composition with the Identity Function

The identity function on a set X, id,, is the function
from X to X defined by ldX(.X') — x forall x € X.

letf: X > Y. idy
_ X—X
(1) f oidy = f because f
= Domains of f o idy and f are both X; xf
»  Co-domains of f o idy and f are both Y; v v
= (foidy)(x) = f(idy(x)) = f(x) forall x € X. “idy

(2) idy o f = f because
= Domains of idy o fand f are both X;
= Co-domains of idy o fand f are both Y;

= (idyo f)(x) = idy(f(x)) = f(x) forall x € X.
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Composition with the Identity Function

Example #20: Let X = {a,b,c,d}and Y = {u, v, w}, and
suppose f:X — Y is given by the arrow diagram:

foidy=f

Find f o idy
X id X f Y (f ° idX)(a) = f(ldx(a)) = f(a) = Uu
AN (f o id)(5) = £(idy (1)) = F(B) = v

(f e idy)(c) = f(idX(C)) =f(c)=v
(f o idy)(d) = f(idx(d)) = f(d) = u

(f o idy)(x) = f(x).

Y

_—
—
\ /
o O
. —

e~ o>~

oy,
(1Y
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Example #21: Let X = {a,b,c,d}and Y = {u, v, w}, and
suppose f:X — Y is given by the arrow diagram:

idyof =f

Flnd ldY o f

(idy o f)(a) = idy(f(a)) = f(@) =u
f idy (idy © /)(b) = idy(f (b)) = f(b) = v
(idy © f)(c) = idy(f(0)) = f(0) =v
(idy o )(d) = idy(f(d) = f(d) = u

(idy ° f)(x) = f(x).

LAS]

o O

°
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Theorem 7.3.1 Composition with an Identity Function

If f is a function from aset X toasetY, and idy is the
identity function on X, and idy is the identity function on
Y, then

foidy = f and

idyof =f
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7.3.3 Composing a Function with Its Inverse

Example #22: Let X = {a,b,c}and Y = {x, y, z}. Define
f:X — Y by the following arrow diagram.

Then f is a bijection. Thus f ! exists and is found by

tracing the arrows backwards, as shown below.

Y - X
f 1
—

L

| =
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Now f~1 o f is found by following the arrows from X to
Y by f and backto X by f 1.

S S (F1o F)(@) = F1(f(@) = f1(2) = a
FreHW =) =) =b
“
e <@ FreNE@=ffO)=f"=c
Y X

Therefore, f~1 o f = idy.

e"@ Similarly, f o f~1 = id,.

Theorem 7.3.2 Composition of a Function with Its Inverse

If f: X — Y is a bijection with inverse function f ~1:Y — X, then
f7lof =idy and fof 1 =idy
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Associativity of Function Composition

7.3.4 Associativity of Function Composition

Function composition. Let f: X - Y and g:Y — Z.
Then go f: X - Z such thatforeveryx € X, (g f)(x) = g(f(x)).

Theorem: Associativity of Function Composition

let f:A—> B,g:B —> Cand h:C - D.Then
(heg)of =ho(gef)

Function composition is associative.

AL p
“’J g
Proof: g°
1. The domainsof (heg)e fandho (go f) are both A. C—h> D

2. The codomainsof (heo g)o fandho (go f) are both D.

3. Foreveryx € A,
((hog)o @) = (ho g)(F®) = h(g(f())) = h((g * N@)) = (R (g > /) @).
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7.3.5 Noncommutativity of Function Composition

Function composition. Let f: X - Y and g:Y — Z.
Then go f: X - Z such thatforeveryx € X, (g f)(x) = g(f(x)).

Example #23: Let f, g: Z — Z such that for every x € Z,
f(x) =3x and g(x) = x + 1.

Then for every x € Z,
(goN) =g(f(x)) =9gBx) =3x+1

(feg)(x) = f(g(x) = f(x +1) = 3(x + D).
Note that (g o f)(0) =1+ 3 = (f o g)(0).

and
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7.3.6 Composition of Injections

Example #24:

let X = {a,b,c},Y = {w,x,y, 7}, and

Z =1{1,2,3,4,5}, and define injections
f: X—>Yandg:Y - Z as shown in the
arrow diagrams of Figure 7.3.1.

Then g o f is the function with the
arrow diagram shown in Figure 7.3.2.

Is g o f injective?  Yes.

Figure 7.3.2
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Theorem 7.3.3

If f: X - Yand g:Y — Z are both injective, then g o f is injective.

Proof:
1. Suppose f: X —» Y and g:Y — Z are injections and let x{, x, € X such

that (g ° f)(x1) = (g ° f)(xz).
Then (g(f(xl)) = g(f(xz)) by the definition of function composition.
Since g is injective, so f(x;) = f(x,) by the definition of injection,

Since f is injective, so x; = x, by the definition of injection.

=

Therefore g o f is injective.

A function f: X — Y is injective iff
Vxy, x5 € X (f (x1) = f(x2) = %1 = x3). 50
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7.3.7 Composition of Surjections

Example #25:

let X ={a,b,c,d,e},Y ={w,x,y,2z},and
Z = {1, 2, 3}, and define surjections

f:X —>Yandg:Y — Z asshownin the
arrow diagrams on the right.

Then g o f is the function with the 3
arrow diagram on the right.

Is g o f surjective?  Yes. l
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Theorem 7.3.4

If f: X - Yand g:Y — Z are both surjective, then g o f is surjective.

Proof:
1. Suppose f: X - Y and g:Y — Z are surjectionsand let z € Z.

2. Since g is surjective, so there is an element y € Y such that g(y) = z
by the definition of surjection.

3. Since f is surjective, so there is an element x € X such that f(x) =y
by the definition of surjection.

4. Hence there exists an element x € X such that
(G N =9(fx)=g@) ==z

5. Therefore g o f is surjective.

A function f: X — Y is surjective iff
vy eYax e X (y = f(x)). 52
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7.4.1 Definitions (from Lecture #6)

leta,b € Zandn € Z*. Then a is Congruence-mod n is an equivalence
congruent to b modulo n iff a — b = nk for relation on Z for everyn € Z*.
some k € Z. In other words, n | (a — b).

In this case, we write a = b (mod n).

Definition: Equivalence Class Definition: Set of equivalence classes

Suppose A is a set and ~ is an Let A be a set and ~ be an equivalence relation
equivalence relation on A. The on A. Denote by A/~ the set of all equivalence
equivalence class of a € 4, is classes with respect to ~, i.e.,

la].={x € A:a~x} A/~ ={[x].: x € A}.

We may read A/~ as “the quotient of A by ~”".

Now, we introduce a notation Z,,:

The quotient Z/~.,, where ~,, is the congruence-mod-n
relation on Z, is denoted Z,,.
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Definition: Z,,

The quotient Z/~,, where ~,, is the congruence-mod-n
relation on Z, is denoted Z,,

From Congruence modulo 2 Congruence modulo 3 Congruence modulo 4
Lecture #6: ) ) 7 e L N 7 / : | NZ
4 1 -3 6! -5 -4 LRI ECR
2001 31211 4031201
0! 1 01 11 2 0123
2 1 3 31415 41516 |7
4 | 5 617! 8 819110 11
\ ° ! * ) \ : : J \ | | . | J
Partition of Z: Partition of Z: Partition of Z:
{2k : k € 73, 3k : k €7}, {4k : k € 7},
{{2k+1:kEZ}} (Bk+1:kez} {4k +1: k € 7},
(3k+2:keT} {4k + 2 : k € 7},
{4k +3:k €T}

Z, = {{2k:k € 7}, {2k + 1: k € 7}
Zs = {{3k:k € Z},{3k + 1: k € Z},{3k + 2: k € 7.}

Ty = {{4k:k € T}, {4k + 1: k € Z},{4k + 2: k € 7}, {4k + 3: k € Z}}
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Addition and Multiplication on Z,,

7.4.2 Addition and Multiplication on Z,,

Definition: Addition and Multiplication on Z,,

Define addition + and multiplication - on Z,, as follows:

whenever [x], [y] € Z,,
[x] + 1yl =[x+y] and [x]-[y]=[x-y]

Example #26:

Take [0],[1] € Zs,

Then [0] + [1] = [0 + 1] = [1] (whichis{...,—5,—2,1,4,7, ...})
and [0] - [1] = [0 - 1] = [0] (whichis {...,—6,—3,0,3,6, ...}).
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Proposition: Addition on Z,, is well defined

Foralln € Z* and all [x{], [y1], [x2], [y2] € Z,,
[x1] = [x2] and [y1] = [y2] = [x1] + [y1] = [x2] + [y2].

Proof:
1. Let[xq], [y1], [x2], [y2] € Zy, such that [x;] = [x;] and [y;] = [y2].

2. Thenx; = x, (mod n) and y; = y, (mod n) by the definition of congruence.
3. Use the definition of congruence to find k, [ € Z such that
X1 — X, =nkandy; —y, =nl.
4. Note that (x;+y;) — (x, +y,) = (xy —x5) + (y; —y,) =nk +nl =n(k + D).
. Sox; +y; = x5 + y, (mod n) by the definition of congruence.
6. Therefore, [x{] + [y1] = [x1 + y1] = [x, + y,] = [x3] + [y3] by the lemma below.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set A. The following are
equivalent for all x, y € A. (i) x~v; (i) [x] = [y]; (i) [x] n [y] # @. 57
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Addition and Multiplication on Z,,

Proposition: Multiplication on Z,, is well defined

Foralln € Z* and all [x{], [y1], [x2], [y2] € Z,,
[x1] = [xz] and [y1] = [y2] = [x1] - [y1] = [x2] - [y2].

Proof:
1. Let[xq], [y1], [x2], [y2] € Zy, such that [x;] = [x;] and [y;] = [y2].

2. Thenx; = x, (mod n) and y; = y, (mod n) by the definition of congruence.
3. Use the definition of congruence to find k, [ € Z such that
X1 — X, =nkandy; —y, =nl.
4. Note that (x1- y;) — (x2 - y2) = (nk + x3) - (nl + y;) — (x3 - y2)
= n(nkl + ky, + lx,), where (nkl + ky, + lx,) € Z (by closure of integer addition)
5. Soxq -y = Xy Yy, (mod n) by the definition of congruence.

6. Therefore, [x{] - [y1] = [x1 - y1] = [x5 - y2] = [x2] - [V,] by the lemma below.

Lemma Rel.1 Equivalence Classes

Let ~ be an equivalence relation on a set A. The following are
equivalent for all x, y € A. (i) x~y; (i) [x] = [y]; (i) [x] n [y] # @. =5
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