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Mathematical Induction

= Avery powerful method for showing a property is true for natural
numbers (0, 1, 2, 3, ...)

= |t characterizes the natural numbers (by Dedekind-Peano axioms).

Importance of Mathematical Induction in Computer Science

= Mathematical induction (Ml) plays a central role in discrete mathematics
and computer science. It is a defining characteristics of discrete
mathematics.

= Ml and recursion are closely linked. Hence, proof of correctness for
recursive algorithms are usually done with M.

= Natural generalizations of induction characterize recursively defined
objects.
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8. Mathematical Induction

8.1 Sequences

e Definitions: Sequence, term, explicit formula.
e Summation notation; product notation; properties of summations and products.
® Change of variable; some common sequences.

8.2 Mathematical Induction |

* Principle of mathematical induction
e Examples: Sum of first n integers, sum of a geometric sequence

8.3 Mathematical Induction I

e Strong mathematical induction
e Example: Any integer > 1 is divisible by a prime number

8.4 Well-Ordering Principle

e Well-ordering principle for the integers

8.5 Recurrence Relations

¢ Definition
® Recursively defined sets
e Structural induction

Reference: Epp’s Chapter 5 Sequences, Mathematical Induction
and Recursion 3
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3.1 Sequences
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Sequences: Definitions
8.1.1. Definitions

Definitions: Sequence and Terms

A sequence is an ordered set with members called terms.
Usually, the terms are numbers. A sequence may have

infinite terms.

Examples: General form:
= 1,2,4,8, 16. Am» Am+1> Am+2, """ An
_ where m < n.
>,8,11,14,17, ... The k in a;is called a subscript or index.
18352739
2 4 816732 Infinite sequence:

Ams Am+1, Am+2,
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Sequences: Closed-form Formula

An explicit formula for a sequence is a rule that shows
how the values of a; depend on k.

Example #1: Compute the first 5 terms of the sequence:

K .
a;, = —forall integers k > 1.
k+1
—1I —2. —3l —4. —5
g =5502 = 5,03 =g =5, 45 = .

Does the following formula define the same sequence?

br—1 = %for all integers k = 2. yes.
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Sequences: Summation Notation

8.1.2. Summation Notation

If m and n are integers, m < n, the symbol

e

k=m

is the sum of all the terms a,,,, 41,41, Ams2, ) Apy-

We say thata,,, + a;, 41 + a2 + - + a,, is the expanded
form of the sum, and we write
Zf:m A = Ay T A1 T Ay T 00 1 Ay,

We call k the index of the summation, m the lower limit of
the summation and n the upper limit of the summation.
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Recurrence Relations
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Sequences: Summation Notation

Example #2: Write the following summation in

expanded form: 5 (= 1)
Lii+1
1=0
n q
(-D' (=D° (D' (=1  (=1)° (-n"
._Oi+1_0+1+1+1+2+1+3+1Jr o1
:l_|___1_|_l_|___1_|_..._|_(_1) =1 _l+l_l+...+(_1)
1 2 3 4 n+1 2 3 4 n+1

Example #3: Express the following expanded form
using summation notation:

1+ 2 N 3 N +n+1
n n+1 n+2 2n

n
zk+1
n+k
k=0
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Sequences: Summation Notation

Summation can be expressed using recursive definition.
If m is any integer, then

m
a, = a
k= m  and
k=m
n n—1
Z a, = Z ap | +a, forallintegersn > m.
k=m k=m

By convention, an empty sum (eg: X r—,, A
where m > n) is equal to the additive identity O.
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Sequences: Summation Notation

Some sums can be transformed into telescoping sums,
which then can be rewritten as a simple expression.

Example #4: Observe that
1 1 Gk+D-k 1
k k+1  k(k+1) ~ k(k+1)

o
Use the above to find a simple expression for z Kk + 1)
k=1

Zk(kl-l- 1)22;(%_1(—11)
=GA+E-D+ D)+ -+ (HE D)

=1-—

n+1

10
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Sequences: Product Notation

8.1.3. Product Notation

Definition: Product

If m and n are integers, m < n, the symbol

[]e

k=m

is the product of all the terms a,,;, A 41, A2, **, Qs

We write

n _
k=m Ak = Am " Am+1 " Am+2 ° " Ap.
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Sequences: Product Notation

Recursive definition for the product notation:
If m is any integer, then

m
a, =a
= "m  and
k=m
n n-—1
a, = ‘ ‘ a, |-a, forallintegersn > m.
k=m k=m

By convention, an empty product (eg: [1};=.,, ax
where m > n) is equal to the multiplicative identity 1.

12
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Sequences: Product Notation

5
Example #5: Compute the product H(k +2)
k=1

5
H(k+2)=3-4-5-6-7=2520
k=1

13
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Sequences: Properties of Summations and Products

8.1.4. Properties of Summations and Products

Theorem 5.1.1

If A, A1, Amaa, - and by, b1, byyn, -+ are sequences of real
numbers and c is any real number, then the following equations hold
for any integern = m:

k=m k=m k=m
n n
2 c z ay = Z C-ay (generalized distributive law)
k=m k=m

14
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Sequences: Properties of Summations and Products

Example #6: Let a, = k + 1 and b, = k — 1 for all integers k.
Write the following as a single summation.

(a) Z ai+2- z by = Z (k+1)+2- z (k — 1) (by substitution)
k=m k=m

k=m k=m

— Z (k+1)+ z 2-(k—1) (by Theorem 5.1.1 (2))

2 ((k +1)+2- (k- 1)) (by Theorem 5.1.1 (1))
2 (3k—1) (by basic algebra)

15
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Sequences: Properties of Summations and Products

Example #6: Let a;, = k + 1 and b, = k — 1 for all integers k.
Write the following as a single product.

o (1) (1

k=m k=m
— (k 4+ 1)) . ( (k — 1)) (by substitution)
- n(k +1)- (k- 1) (by Theorem 5.1.1 (3))
k=m
— n(kz - 1) (by basic algebra)
k=m

16
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Sequences: Change of Variable

8.1.5. Change of Variable
3 3 5
k2=) i2= ) (k-2)?
% /; 2

Dummy variables

Example #7: Transform the following summation by
changing the range of k from [1,n + 1] to [0, n].

n+1

Z<nfk) =i<nﬁil)

k=1 k=0

17
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Sequences: Some Common Sequences

3.1.6. Some Common Sequences

Definition: Arithmetic Sequence

A sequence agy, a4, a, , - is called an arithmetic sequence (or
arithmetic progression) iff there is a constant d such that

a, = ay_q1 +d forallintegersk = 1.
It follows that,

a, = ag +dn for all integersn = 0.

d is the common difference, a, Summing an arithmetic sequence
the initial value. of n terms:
Examples: n-1 n

= 1,5,9 13,17, ... z ax = E(Zao + (n—1)d)

= 12,7,2,-3,-8,-13, ... k=0
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Sequences: Some Common Sequences

Definition: Geometric Sequence

A sequence agy, a4, a,, - is called a geometric sequence (or
geometric progression) iff there is a constant r such that

Ay = ray_1q for all integers k > 1.
It follows that,
a, = apr™ for all integers n = 0.
r i.s.the common ratio, a, the Summing a geometric sequence
Examples: -1
: > e =50
n a, =a
1,3,9,27,81, .. 0= | T
k=0

= 8,4,2,1, %, %, ..
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Sequences: Some Common Sequences

Squares: 1, 4, 9, 16, 25, 36, 49, ... o o %
Triangle numbers: 1, 3, 6, 10, 15, 21, 28, ...

Fibonacci numbers: 1, 1, 2, 3,5, 8, 13, 21, 34, 55, ...

F1=1
F2=1
FTL — Fn—l + FTL—Z fOI”n > 2

Lazy Caterer’s Sequence: 1, 2,4, 7, 11, 16, ...
(See AY2018/19 Semester 1 Exam Paper.)

20
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8.2 Mathematical Induction |

21
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Mathematical Induction |

8.2.1. Climbing an Infinite Ladder

How do you prove that you
can climb an infinite ladder,
even though you would never
reach the top?

IH |||||| (e

Show that

(1) We can reach the first rung
of the ladder;

(2) If we can reach a particular
rung, we can reach the
next higher rung.

22



Sequences Mathematical Inductionl  Mathematical Induction Il Well-Ordering Principle Recurrence Relations
oNoNoNoNoNe) ®@ OO0 (oNeoNe] o [eNoNeoXe

Mathematical Induction |

Inductive step: If we
are on a rung of the
ladder, we can always
get to the next rung.

Conclusion: We can
—P get to every rung of
the ladder.

Base case: We can got Principle of Mathematical Induction

on the first rung of the
\ ladder. | Toprove that P(n) istrueforalln € Z*:
= Basis step: Show that P(1) is true.

= |nductive step: Show that

Inductive . .
hypothesis P(k+1)forallk € Z™.

» Therefore P(n) is true foralln € Z.

Note that in general, the basis step needs not be
P(1);it can be P(a) where a is a fixed integer.

23
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Mathematical Induction |

8.2.2. Principle of Mathematical Induction (PMI)

Principle of Mathematical Induction (PMI)

Let P(n) be a property that is defined for integers n, and let a
be a fixed integer. Suppose the following 2 statements are true:

1. P(a) is true.
2. Forallintegers k = a, if P(k) is true then P(k + 1) is true.

Then the statement “for all integers n = a, P(n)” is true.

The validity of proof by mathematical induction is generally
taken as an axiom. That is why it is referred to as the principle of
mathematical induction rather than as a theorem. We may use
PMI as a short-form for Principle of Mathematical Induction.
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Mathematical Induction |

Proving a statement by mathematical induction is a
two-step process. The first step is called the basis step,
and the second step is called the inductive step.

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n > a, a property P(n) is true.”
To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers k > a, if P (k) 1s true then
P(k + 1) is true. To perform this step,

suppose that P (k) is true, where k 1s any
particular but arbitrarily chosen integer with k > a.

[This supposition is called the inductive hypothesis. |
Then

show that P(k + 1) is true.

25
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Mathematical Induction I: Sum of the First n Integers

Example #8: Use mathematical induction to prove

Theorem 5.2.2 (5%: 5.2.1) Sum of the First n Integers

For all integersn > 1,

1+2+3++n="00
Proof (by mathematical induction):
1. LetP(n) = (1 +24+--+n= n(n;l)),‘v’n € Z™. (Set up predicate.)
2. Basisstep:1 = 1(1+1), therefore P(1) is true. Text in green are

comments that may

3. Assume P(k) is true for some k = 1. That is, L
be omitted in your

k(k+1) .
1+2+4tk=—7 solution.
4. Inductive step: (To show P(k + 1) is true.)
41.1+2++k+(k+1) = "("2“) +k+1) = (k+1>((;<+1)+1)

4.2. Therefore P(k + 1) is true. How we make
5. (We have proved P(1) as well as P(k) = P(k + 1)) | ;s0 of p(k).
Therefore, P(n) is true forn € Z*, 26
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Mathematical Induction I: Closed Form

Definition: Closed Form

If a sum with a variable number of terms is shown to be equal
to a formula that does not contain either an ellipsis (...) or a
summation symbol (X), we say that it is written in closed form.

Example:

n(nt1) is the closed form formulafor1 + 2+ 3 + -+ n.
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Mathematical Induction I: Sum of a Geometric Sequence

Example #9: Use mathematical induction to prove

Theorem 5.2.3 (5t: 5.2.2) Sum of a Geometric Sequence
For any real number r # 1, and any integersn = 0,

z i_rn+1_1
_ T r—1

Proof (by mathematical induction):

] n+1_
1. LetP(n) = ( ot = z — 1),r # 1,n = 0. (Set up predicate.)
1_
2. Basisstep:r?=1= rr 1, therefore P(0) is true.
3. Assume P(k) is true forsome k = 0. That is, ¥ ;' = k:l—l

4. Inductive step: (To show P(k + 1) is true.)

k+1 k+1 k+1
r -1 r —1+r r—1
4.1, YR pi = Yk gl opktl = I (r-1)
r((k“)“)—l

r—1 r—1

r—1
4.2. Therefore P(k + 1) is true.
5. Therefore, P(n) is true forn = 0. 28
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Mathematical Induction |

Example #10: Use mathematical induction to prove

Proposition 5.3.1 (5: 5.3.2)

For all integers n > 0, 2%™ — 1 is divisible by 3.

Proof (by mathematical induction):

1. LetP(n) = (3| (2°™ — 1)) for all integers n = 0.

2. Basis step: 22 — 1 = 0 is divisible by 3, therefore P(0) is
true.

3. Assume P (k) is true for some k > 0. That is, 3|(22% — 1).
3.1 This means that 2%% — 1 = 3r for some integer r (by defn of divisibility).

4. Inductive step: (To show P(k + 1) is true.)
4.1, 22041 1 =22k .4 -1 =2%.(3+1)—1=2%%.3+ (2% -1)
=22k .3+ 3r = 3(2%% + 1)
4.2. Since 3| (22*1) — 1), therefore P(k + 1) is true.
5. Therefore, P(n) is true for all integers n = 0.

29
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Mathematical Induction |

Example #11: Use mathematical induction to prove

Proposition 5.3.2 (5%: 5.3.3)

Forall integersn = 3, 2n+1 < 2™

Proof (by mathematical induction):
1. LetP(n) = 2n+1<2"),Vn € Z=5.

2. Basisstep:2:-3+ 1 =7 <8 =23, therefore P(3) is true.
3. Assume P (k) is true for some k > 3. That is, 2k + 1 < 2k,
4

Inductive step: (To show P(k + 1) is true.)

41.2(k+1)+1=2k+3=0Qk+1)+2 <2k +2<2F 42k =2kt
(because 2 < 2* for all integers k > 2)

4.2. Therefore P(k + 1) is true.

5. Therefore, P(n) is true for all integers n > 3.

30
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Mathematical Induction I: A Negative Example

Example #12: A Negative Example

Claim: All cows have the same colour.

31
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Mathematical Induction I: A Negative Example
Example #12: A Negative Example What is wrong with
Claim: All cows have the same colour. this proof?

Proof (by mathematical induction):

1.

2.
3.
4

Let P(n) = (Any group of n cows have the same colour), Vn € Z*
Basis step: Clearly, a single cow has one colour, so P(1) is true.
Assume P (k) is true for some k > 1.

Inductive step: (To show P(k + 1) is true.)

4.1.In any group of k + 1 cows, number them from 1to k + 1.

4.2. Then cows #1 to #k form a group of k cows, which have the same colour by the
Inductive Hypothesis.

4.3. Similarly, cows #2 to #k + 1 have the same colour.

4.4. Now, cows #2 to #k are common to both groups, and cows don’t change

colour!
4.5. Thus cow #k + 1 has the same colour as cow #1, which means all (k + 1) cows

have the same colour.
4.6. Therefore, P(k + 1) is true.

Therefore, P(n) is true, i.e., all cows have the same colour!
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Mathematical Induction |

Mathematical induction is not restricted to proving formulas.

Example #13: Forn € Z*, any 2™ X 2™ board with one square

removed can be tiled by L-trominoes. L-tromino

Proof (by mathematical induction):
1. Let P(n) = (2™ x 2™ board with one square removed can be tiled by L-

trominoes), Vn € Z™.
2. Basis step: P(1) is true as such a board is an L-tromino.
3. Assume P (k) is true for some k > 1.

4. Inductive step: (To show P(k + 1) is true.)
4.1.Let B be a 2¥*1 x 2k*1 poard with one square removed.
4.2.Divide B into four 2% x 2 quadrants.
4.3.Let Q be the quadrant containing the removed square.
4.4.Remove one L-tromino from the centre of B such that each quadrant
other than Q has one square removed.
4.5.We have four 2% x 2¥ quadrants, each with one square removed.
4.6.By the induction hypotheses, each quadrant can be tiled by L-trominoes.
4.7.Therefore, P(k + 1) is true.

5. Therefore Vn € Z* P(n) is true.
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Mathematical Induction |

Exercise: This is a past year’s assignment ® ®
: : O
question. Discuss on the Canvas forum or QnA. ® O

n red balls and n blue balls (n > 0) are arranged to form a
circle. You walk around the circle exactly once in a clockwise
direction and count the number of red and blue balls you
pass. If at all times during your walk, the number of red balls
(that you have passed) is greater than or equal to the
number of blue balls (that you have passed), then your trip is
said to be successful. (Note that whether successful or not,
you will pass exactly 2n balls after walking one round.)

Define P(n) = (In any circle formed by n red and n blue
balls, there exists a successful trip), Vn € Z*.

Prove by mathematical induction that you can always make a
successful trip if you can choose where you start.
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8.3 Mathematical Induction Il

35
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Mathematical Induction Il

8.3.1. Strong Mathematical Induction

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let @ and b be fixed integers
with @ < b. Suppose the following two statements are true:

I. P(a), P(a+ 1), ..., and P(b) are all true. (basis step)

2. For any integer k > b, if P (i) 1s true for all integers i from a through k, then
P(k + 1) 1s true. (inductive step)
Then the statement
for all integers n > a, P(n)
1s true. (The supposition that P (i) is true for all integers i from a through & is called
the inductive hypothesis. Another way to state the inductive hypothesis is to say
that P(a), P(a+ 1), ..., P(k) are all true.)

36
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Mathematical Induction Il
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Comparison between “weak” and “strong” induction.
Let P(n) denotes the property on all integersn > a.

Weak (regular) induction (or 1PI)
If
= P(a) holds

We may prove strong induction from weak and
weak induction from strong (proofs omitted).
This means both types of induction are equal in
“power”.

= Foreveryk >a,P(k) = P(k+1)

Then P(n) holds for alln = a.

Strong induction (or 2PI)
If
= P(a) holds

Hence, using more neutral terms, we can
call the regular/strong versions the First
Principle of Mathematical Induction (1PI)
and Second Principle of Mathematical
Induction (2Pl) respectively.

= Foreveryk = a, (P(a) AP(a@a+1)A-
Then P(n) holds for alln = a.

‘AP(k)) = P(k+1)

Strong induction (or 2Pl) (variation — other variations possible)

If

= P(a),P(a+1),..,P(b)hold

= Foreveryk=>a,P(k)>P(k+b—a+1)
Then P(n) holds for alln = a.
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Mathematical Induction Il: Any integer > 1 is divisible by a prime number

Exercise #14: Prove that
Any integer > 1 is divisible by a prime number.

|ldea: If a given integer greater than 1 is not itself prime, then it
is a product of two smaller positive integers, each of which is

greater than 1.

Since you are assuming that each of these smaller integers is
divisible by some prime number, by transitivity of divisibility,
those prime numbers also divide the integer you started with.

Theorem 4.3.3 (5%": 4.4.3) Transitivity of Divisibility

For all integersa, bandc,ifa|bandb | c,thena| c.

38
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Mathematical Induction Il: Any integer > 1 is divisible by a prime number

Prove: Any integer greater than 1 is divisible by a prime number.

Proof (by 2PI):

1.
2.
3.

Let P(n) = (n is divisible by a prime), forn > 1.
Basis step: P(2) is true since 2 is divisible by 2.

Inductive step: To show that for some k = 2, if P(i) is true for all

integers i from 2 through k, then P(k + 1) is also true.
3.1. Casel (k + 1isprime): Inthis case k + 1 is divisible by a prime
number which is itself.

3.2. Case2(k + 1isnotprime):Inthiscasek +1 = ab where a and b are
integerswithl <a<k+1landl<b<k+1.

3.2.1. Thus, in particular, 2 < a < k and so by inductive hypothesis, a is
divisible by a prime number p.

3.2.2. In addition, because k +1 = ab, so k + 1 is divisible by a.
3.2.3. By transitivity of divisibility, k + 1 is divisible by a prime p.
Therefore any integer greater than 1 is divisible by a prime.
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Mathematical Induction Il: Any amount = $12 can be formed by a combination of $4 and $5 coins

Example #15: Use 1Pl to prove that any whole amount of > $12 can
be formed by a combination of $4 and S5 coins.

Proof (by 1PI):

1. Let P(n) = (the amount of Sn can be formed by $4 and S5 coins) forn > 12.
2. Basisstep: 12 = 3 X 4, so three $4 can be used. Therefore P(12) is true.

3. Assume P(k) is true for some k = 12.
4

Inductive step: (To show P(k + 1) is true.)

4.1. Case 1: If a S4 coin is used for Sk amount, replace it by a S5 coin to
make S(k + 1).

4.2. Case 2: If no S4 coin is used for Sk amount, then k > 15, so there must
be at least three S5 coins. We can then replace three S5 coins with four
S4 coins to make S(k + 1).

4.3. In both cases, P(k + 1) is true.

5. Therefore, P(n) is true forn > 12.
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Mathematical Induction Il: Any amount = $12 can be formed by a combination of $4 and $5 coins

Example #16: Use 2Pl to prove that: Thisis the same problem as Example #15.

For all integersn = 12,n = 4a + 5b forsome a, b € N.

Proof (by 2PI):

1.
2.

Let P(n) = (n = 4a + 5b), forsomea,b € N,n > 12.
Basis step: Show that P(12), P(13), P(14), P(15) hold.

12 =4.-34+5:0;13 =4-24+5:1;14 =4-145-2;15 =4:-04+5-3;
Assume P (i) holds for 12 < i < k given some k > 15.
Inductive step: (To show P(k + 1) is true.)
4.1. P(k — 3) holds (by induction hypothesis),

so,k —3 =4a+ 5bforsomea,b €N

42. k+1 = (k—3)+4 =(4a+5b)+4 =4(a+1)+5b
4.3. Hence, P(k + 1) is true.
Therefore, P(n) is true forn > 12.
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8.4 Well-Ordering Principle
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Well-Ordering Principle

8.4.1. Well-Ordering Principle

Well-Ordering Principle for the Integers

Every nonempty subset of Z-, has a smallest element.

Note: The above is the generally accepted (and well-known) definition of
well-ordering principle. However, Epp’s definition extends the set to
include possibly negative integers: “Let S be a set of integers containing
one or more integers all of which are greater than some fixed integer.
Then S has a least element.” We will stick with the above more generally

accepted definition.

The well-ordering principle for the integers looks very different from both
the regular and the strong principles of mathematical induction, but it can
be shown that all three principles are equivalent (proof omitted).

(For our purpose, we will focus on using Mathematical Induction.) -
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Well-Ordering Principle

Well-Ordering Principle for the Integers

Every nonempty subset of Z-, has a smallest element.

Proof (by contradiction):
1. Suppose not,i.e.letS € Z., be nhon-empty with no smallest element.

2. Foreachn € Z.,, let P(n) be the proposition “n & S”.

3. Inductive step:
3.1. Letk € Zs( such that P(0), P(1),:--,P(k — 1) are true,
ie,0,1,---  k—1¢&S8.
3.2. If k € S, then k is the smallest element of S by the induction hypothesis
as S € Z-q, which contradicts our assumption that S has no smallest
element

3.3. Sok & S and thus P(k) is true.

4. HenceVn € Zsqo P(n) is true by 2PI.
5. Thisimplies S = @, contradicting line 1 that S is non-empty.
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Well-Ordering Principle

Example #17: For each of the following, if the set has a least
element, state what it is. If not, explain why the well-ordering
principle is not violated.
a. The set of all positive real numbers.
b. The set of all nonnegative integers n such that n? < n.
c. The set of all nonnegative integers of the form 46 — 7k, where k is
an integer.

a. There is no least positive real number. If x is any positive real number,
then x /2 is a positive real number smaller than x.

The well-ordering principle is not violated because the principle refers
only to sets of integers.

b. There is no least nonnegative integer n such that n® < n because there
is no nonnegative integer that satisfies this inequality.

The well-ordering principle is not violated because the principle refers
only to non-empty sets.
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Well-Ordering Principle

Example #17: For each of the following, if the set has a least
element, state what it is. If not, explain why the well-ordering

principle is not violated.
a. The set of all positive real numbers.
b. The set of all nonnegative integers n such that n? < n.
c. The set of all nonnegative integers of the form 46 — 7k, where k is
an integer.

c. Integers of the form 46 — 7k are ..., -10, -3, 4, 11, 18, 25, 32, 46, ...
So, 4 is the least nonnegative integer among them.
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8.5 Recurrence Relations
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Recurrence Relations

8.5.1. Definition

A recurrence relation for a sequence ag, aq, a,,---is a
formula that relates each term a;, to certain of its
predecessors dy_1,Ax_o, ", Ar_; , Where [ is an integer
withk —i = 0.

If i is a fixed integer, the initial conditions for such a
recurrent relation specify the values of ay, a{, a,, -+, a;_1.

If i depends on k, the initial conditions specify the values
of ag, a, a,, -, a,,, where mis an integer with m = 0.
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Recurrence Relations

Example #18: Recurrence relation for Fibonacci sequence F,.
FO — O
F]_ — 1
E,=F,_{+F, 5 forn>1
0,1,1,2,3,5, 8,13, 21, 34, 55, 89, ...

Sometimes, we call such a definition a recursive definition.
Examples:

= Recursive definition of factorial:
0l'=1

n=n-(n—1)!forn>1

= Recursive definition of power:

a® =1

a®=a" 1l.qforn>1
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Recurrence Relations

Recall the recursive definitions of summation and product in
sections 5.1.2 and 5.1.3 respectively.

n

n-—1

z a, | +a, forallintegersn > m.

k=m k=m

n n-—1
a, = ‘ ‘ ap |- a, forallintegersn > m.

k=m k=m

The recursive definitions are used with mathematical induction
to establish various properties of general finite sums and
products.
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Recurrence Relations
Example #19: Prove that for any p05|t|ve integer n, if al, az, ©, Ay
and b4, by, -+, by, are real numbers, then z(al +b) = Zal N zb

=1
Proof (by mathematical induction):
1. LetP(n) =Qt(a;+b) =Y,a;+XYby), forn=>1.
2. Basis step: P(1) is true since
i=1(a; +b)=a;+by =Yi_a; + X1 b
3. Inductive hypothesis: for some k = 1,
1(al + b; ) — l 1al Z?=1bl
4, Inductlve step:
Zk“(al + b;) = (Z (a; + bi)) + (a1 + br+1) (by definition of 3)
=Yk a; + 3% . b; + (g1 + br4+1) (by inductive hypothesis)
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Recurrence Relations

Example #20: Prove that for any positive integern, if a{, a,, -, a,

n

and by, b,, -+, b,, are real numbers, then =
Z(ai+bi) =Zai+2bi.
i=1 i=1

i=1

4. Inductive step:
Yetl(a; + b)) = (Zl 1(a; + b)) + (ag4q + brs1) (by definition of 3))
=Yk a; + X5, b; + (ags1 + br4+1) (by inductive hypothesis)
=YK a; + age1 + X5, b; + by,q (by the associative and
commutative laws of algebra)
ktla; + YK*1 b, (by definition of ¥)
Therefore P(k + 1) is true.
5. Therefore P(n) is true for any positive integer n.
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Recursively Defined Sets

8.5.3. Recursively Defined Sets

Let S be a finite set with at least one element. A string over S is a
finite sequence of elements from S. The elements of S are called
characters of the string, and the length of a string is the number of
characters it contains. The null string over S is defined to be the
“string” with no characters. It is usually denoted € and is said to have

length O.

Definition: String Recall in Lecture 7:

Let A be a set. A string or a word over A is an expression of the form

Apa,a, -~ a;_1 Where l € Z-o and ay, a4, a,, -+, a;_1 € A.

Here [ is called the length of the string. The empty string ¢ is the string of
length O.

Let A* denote the set of all strings over A.
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Recursively Defined Sets

Example #21: Certain configurations of parentheses in algebraic
expressions are legal [such as (())() and ()()()], whereas others are
not [such as (())) and ())()(].

Here is a recursive definition to generate the set P of legal
configurations of parentheses.

|. Base: ()isinP.
Il. Recursion:
a. IfEisinP,sois (E).
b. If E and F arein P, sois EF.

lll. Restriction: No configurations of parentheses
are in P other than those derived from 1 and 2
above.

Derive the fact that (())() isin P.
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Recursively Defined Sets

Example #21: Derive the fact that (())() isin P.

l. Base: ()isinP.

Il. Recursion:
a. IfEisinP,sois (E).
b. If E and F arein P, sois EF.

lll. Restriction: No configurations of parentheses
are in P other than those derived from 1 and 2
above.

1. Byl,()isinP.
2. By(l)andlla, (()isinP [letE = ()].
3. By(2),(1)andllb,(()))isinP [let E = (()) and F = ()].
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Recursively Defined Sets

Example #22: Recursive definition of Z,.

Zsq is the unique set with the following properties:
(1. what the founders are) 0 € Z,. (base clause)
(2. what the constructors are) If x € Zso, thenx + 1 € Z.,. (recursion clause)

(3. nothing more) Membership for Z-, can always be demonstrated
by (finitely many) successive applications of the
clauses above. (minimality clause)

+1 +1 +1 +1 +1
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Recursively Defined Sets

Example #23: Recursive definition of 2Z (the set of even integers).

27 is the unique set with the following properties:
(1. what the founders are) 0 € 27Z. (base clause)

(2. what the constructors are) If x € 2Z, thenx — 2, x + 2 € 2Z.
(recursion clause)

(3. nothing more) Membership for 27 can always be demonstrated
by (finitely many) successive applications of the
clauses above. (minimality clause)

27

—4 —2 0 2 4
—2 —2 -2 +2 +2 +2
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Structural Induction

8.5.4. Structural Induction

Recursive definition of of a set S.

(base clause) Specify that certain elements, called founders, are in S:
if c is a founder, then c € S.

(recursion clause) Specify certain functions, called constructors, under which the set S is
closed: if f is a constructor and x € §, then f(x) € S.

(minimality clause) Membership for S can always be demonstrated by (finitely many)
successive applications of the clauses above.

Structural induction over S.

To prove that Vx € S P(x) is true, where each P(x) is a proposition, it suffices to:
(basis step) show that P(c) is true for every founder c; and
(induction step) show that Vx € S (P(x) = P(f(x))) is true for every constructor f.

In words, if all the founders satisfy a property P, and P is preserved by all constructors,
then all elements of S satisfy P.

58
This is taken from Dr Wong Tin Lok’s notes.
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Structural Induction

Example #24: Define a set S recursively as follows:

(1) 1 €S. (base clause)
(2) Ifx €S,then2x € Sand 3x € §S. (recursion clause)
(3) Membership of S can always be demonstrated by (finitely

many) successive applications of the clauses above. (minimality clause)

Which of the numbers 9,10,11,12,13 are in S? Which are not?
et

912 €S %/'4«3\
x27 %3, )«2/'12

10,11,13 ¢ S 1%\ /6*\3\;
3 18

?8\9)/
X3s 5

Structural induction over S:
To prove that Vx € S P(n) is true, where each P(n) is a proposition, it suffices to:

(basis step): show that P(1) is true; and
(induction step): show that Vx € S(P(x) = P(2x) A P(3x)) is true.
< This is taken from Dr Wong Tin Lok’s notes.
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