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Lecture 9: Cardinality

Aaron Tan

Part of the contents here is taken from
AY2025/26 Semester 1  Dr Wong Tin Lok’s lecture notes. !
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Aaron arrives at Hawaii for a long overdue vacation late one
night. Tired, he walks into the famous Hilbert’s Hotel looking for a
room with a comfortable bed for a good night rest.

Unfortunately, the hotel is already full. However, fortunately, the
night manager has a clever idea...

Hilbert’s Infinite Hotel:

https://www.youtube.com/watch?v=Uj3 Kqgkl9Zo
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9. Countability

9.1 Cardinality

e Pigeonhole principle; dual pigeonhole principle.
e Finite and infinite sets; cardinality; Cantor’s definition of same cardinality.
e Proving |2Z| = |Z|.

9.2 Countably Infinite

e Definition of countably infinite; countable and uncountable sets.
e ProvingZ, Q" ,and Z* x Z* are countable.
e Cartesian product; general Cartesian product, unions.

9.3 Countability via Sequences

e Countability and sequences.

9.4 Larger Infinities

* Proving (0,1) is uncountable; Cantor’s Diagonalization Argument.
e Cardinality of R.

Reference: Epp’s Chapter 7 Section 7.4 3
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9.1 Cardinality
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Pigeonhole Principle

9.1.1 Pigeonhole Principle

Definitions: Injection, surjection, bijection, inverse function

Let X and Y be sets and f: X — Y be a function.
= fisinjectiveiff Vx;,x, € X (f(x) = f(xy) = x1 = x5).
» fissurjectiveiff VyeY Ix € X (y = f(x)).
= f is bijective iff f is injective and surjective, that is,
VyeyYalx EX(y = f(x)).
= g:Y - X isaninverse of f (also denoted as f 1) iff
VxeXVyeY(y=f(x) ©x=g@y)).

Theorem 7.2.3

If f:X — Y is a bijection, then f~1:Y - X is also a bijection.
In other words, a function is bijective iff it has an inverse.
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Pigeonhole Principle

What injections and surjections tell us about cardinality.

Pigeonhole Principle

Let A and B be finite sets. If there is an injection f: A = B,
then |A| < |B].
Contrapositive: Let m,n € Z* with m > n. If m pigeons are

put into n pigeonholes, then there must be (at least) one
pigeonhole with (at least) two pigeons.

Dual Pigeonhole Principle

Let A and B be finite sets. If there is a surjection f: A — B,
then |A| = |B].
Contrapositive: Let m,n € Z* with m < n. If m pigeons are

put into n pigeonholes, then there must be (at least) one
pigeonhole with no pigeons.
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Pigeonhole Principle

Pigeonhole Principle

Let A and B be finite sets. If there is an injection f: A = B,
then |A| < |B|.

Proof
1. Note that A is finite. Suppose B
A ={aq,a,, -, a,} where m = |A]. -
2. The injectivity of f tells us that, if a; # a;, o ®
then f(al-) = f(a]) e @
)e ©
3. Sof(aq),f(ay), -, f(a,,) are m different re

elements of B.
4. This shows |B| = m = |A|.
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Pigeonhole Principle

Dual Pigeonhole Principle

Let A and B be finite sets. If there is a surjection f: A — B,
then |A| = |B].

Proof

1. Note that B is finite. Suppose
B ={b4,b,,:+, b, } wheren = |B|.

2. For each b;, use the surjectivity of f to find
a; € A such that f(a;) = b;.

3. If bi == b], then f(al-) - f(a]) and so a; + aj
as f is a function.

. Soaq,a,,,a, are n different elements of A.
5. Thisshows |A| = n = |B].
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Cardinality

9.1.2 Cardinality

Definitions: Finite set and Infinite set

Let Z,, = {1,2,3, ..., n}, the set of positive integers from 1 to n.

A set S is said to be finite iff S is empty, or there exists a bijection
from S to Z,, forsome n € Z*.

A set S is said to be infinite if it is not finite.

We say that two finite sets whose elements can be
paired by a bijection have the same size.

The elements of set A can
be put into a bijection with
the elements of B.
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Cardinality

Definition: Cardinality

The cardinality of a finite set S, denoted |S|, is

(i) 0ifS =0, or
(ii) nif f:S — Z,, is a bijection.

Theorem: Equality of Cardinality of Finite Sets

Let A and B be any finite sets.
|A| = |B| iff there is a bijection f: A — B.

Proof (sketch)
1. (&) This follows from the two Pigeonhole Principles.

2. (®)fA={aq,ay,a,}and B = {by,b,,:+, b,}, then the
function f: A - B satisfying f(a;) = b; fori € {1,2,---,n}is a

bijection.
10
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Finite sets|

Theorem Cardinality.1: Subset of a Finite Set

Any subset of a finite set is finite.
That is, let A € B. If B is finite, then A is finite.

The contrapositive of this theorem is:
Let A € B. If A is infinite, then B is infinite.

Proof: By mathematical induction (omitted)

11
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Cardinality

What about infinite sets?

Georg Cantor
(1845 — 1918)

https://en.wikipedia.org/wiki/Georg Cantor

Definition: Same Cardinality (Cantor)

Given any two sets A and B. A is said to have the same cardinality
as B, written as |A| = |B|, iff there is a bijection f: A — B.

We define what |A| = |B| means
without defining what |A| and |B| mean!

12
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Cardinality

Definition: Same Cardinality (Cantor)

Given any two sets A and B. A is said to have the same cardinality
as B, written as |A| = |B|, iff there is a bijection f: A = B.

Example #1: [N| = | N\ {0}| because the function f: N —
N \ {0} satisfying f(x) = x + 1 for all x € N is a bijection.

Example #2: [N| = [N\ {1,3,5, ::- }| because the function
g:N - N\ {1,3,5, :-- } satisfying g(x) = 2x forallx € Nis a
bijection.

Recall we define N = {0,1,2,3,--- }.
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Cardinality

Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.
For all sets A, B and C:

a. Reflexive: |A| = |A].

b. Symmetric: |[A| = |B| — |B| = |A].

c. Transitive: (|JA| = [B]) A (|B| = |C]) — |A| = |C].

Proof (reflexivity): To prove |A| = |A].
It suffices to show that id, is a bijection A — A.

1. id, is injective because if x1,x, € A such that ids(x;) =
id,(x5), then x; = x,.

2. id, is surjective because given any x € A, we have id (x) = x.
3. Therefore |A| = |A|.

14
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Cardinality

Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.

For all sets A, B and C:
a. Reflexive: |A| = |A].
b. Symmetric: |[A| = |B| — |B| = |A].
c. Transitive: (|JA| = [B]) A (|B| = |C]) — |A| = |C].

Proof (symmetry): To prove |A| = |B| — |B| = |4] .

1. Suppose |A| = |B].

2. Use Cantor’s definition of same-cardinality to find a bijection
f:A - B.

3. By Theorem 7.2.3, f ~1: B — A is also a bijection.

4. Therefore, |B| = |A].

Theorem 7.2.3

If f: X > Y is a bijection, then f~1:Y - X is also a bijection.
In other words, f: X — Y is bijective iff f has an inverse. 15



Cardinality Countably Infinite Countability via Sequences Larger Infinities
ceo Ol oNONONG ON@) ONONG®)

Cardinality

Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.

For all sets A, B and C:
a. Reflexive: |A| = |A].
b. Symmetric: |[A| = |B| — |B| = |A].
c. Transitive: (|JA| = [B]) A (|B| = |C]) — |A| = |C].

Proof (transitivity): To prove (|A| = |B]) A (IB| = |C]) = |A]| = |C].
1. Suppose |A| = |B| and |B| = |C]|.

2. Use Cantor’s definition of same-cardinality to find a bijection
f:A - B and a bijection g:B - C.

From Tutorial 6 Q2, (g o f) 1= f"to g1

In particular, this means g o f has an inverse.

So by Theorem 7.2.3, g o f is a bijection A — C.

Therefore, |A| = |C]|.

A

16
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Cardinality: |2Z| = |Z|

9.1.3 27| = |Z|

An infinite set can have the same cardinality as a proper
subset of itself. (Refer to Example #2.)

Let 27Z be the set of all even integers. Prove that 2Zand Z have
the same cardinality.

Consider the function H from Z to 27 defined as follows:
H(n) = 2n,Vvn € Z

A partial arrow
diagram for H:

17
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Cardinality: |2Z| = |Z|

1. To show that H is injective:
1.1 Suppose H(n,) = H(n,) for some integers nq, n,.
1.2 Then 2n,; = 2n, (by the definition of H), and hence n; = n,.
1.3 Therefore H is injective.

2. To show that H is surjective:
2.1 Supposem € 27Z.
2.2 Then m s an even integer, so m = 2k for some integer k (by
the definition of even integer)
2.3 ButH(k) =2k =m.
2.4 Thus3dk € Zs.t. H(k) = m.
2.5 Therefore H is surjective.

3. Therefore H is a bijection, and so 2Z and Z have the same
cardinality (by Cantor’s definition of cardinality).

18
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Cardinality: |2Z| = |Z|

Note that 27 is a proper subset of Z, that is, 27 € 7 and 27 + Z.
And yet |2Z| = |Z|! How strange!

For a finite set A, any proper subset B of A will have |B| < |A]|.
But this is not true for infinite sets.

Some mathematicians have proposed to use this as the
definition of an infinite set. That is, a set A is infinite iff there
exists a set B suchthat (B € A) A (B # A) A (|B| = |4)).

19
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9.2 Countably Infinite

20
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Countably Infinite: Countable Sets

9.2.1 Countable Sets

The set Z* of counting numbers {1,2,3, ... } is in a sense, the
most basic of all infinite sets.

The set 4 having the same cardinality as Z*
is called countably infinite.

The reason is that the bijection between the two sets can be
used to “count” the elements of A:

If F is the bijection from Z* to A4, then “F(1)” can be
designated as the first element of 4, “F(2)” as the second
element of 4, and so forth.

Note: We may use N or Zs, instead of Z* in the definition.

21
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Countably Infinite: Countable Sets

F
—a

/ > o “First” element of A
> @ “Second” element of A

[ > @ “Third” element of A “Counting” a Countably Infinite Set
K ' Figure 7.4.1

Because F is injective, every element of A is counted
at most once; because F is surjective, every element
of A is counted at least once.

22
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Countably Infinity: Countable Sets

Definition: Cardinal numbers

Define X, = |Z™|. (Some authors use N instead of Z*.)

X is pronounced “aleph”, the first letter of the Hebrew alphabet.
This is the first transfinite cardinal number.

Definition: Countably infinite

A set S is said to be countably infinite (or, S has the cardinality
of natural numbers) iff |S| = X,.

Definitions: Countable set and Uncountable set

A set is said to be countable iff it is finite or countably infinite.
A set is said to be uncountable if it is not countable
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Countably Infinite: Z is countable

9.2.2 7 is countable

Example #3: Show that Z is countable.

(Intuitively, Z contains twice as many numbers as Z*, so we expect
|Z| = 2|Z™|. But this is not the case. They have the same cardinality!)

The set Z is certainly not finite, so if it is countable, it has to be
countably infinite.

To show that Z is countably infinite, find a bijection from Z* to Z.

The appears to contradict common sense, as there appear to be
more than twice as many integers as there are positive integers:

positive integers
=5 —4 -3 —2 -1 0 1 2 3 4 5...

all integers

24
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Countably Infinite: Z is countable

The trick is to start in the middle and work outward
systematically. Let the first integer be 0, the second 1, the third

-1, the fourth 2, the fifth -2, and so forth:

Integers: =-- .5 4 3 2 -1 0 1 2 3 4 5
The “count ” of each integer: 11 9 7 5 3 1 2 4 6 Q 10

“Counting” the Set of All Integers
Figure 7.4.2

Every integer in Z is counted at most once (so the function is
injective) and every integer in Z is counted at least once (so

the function is surjective).
Therefore Z is countably infinite and hence countable.

25
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Countably Infinite: Z is countable

The bijection as described earlier can be formulated as follows:

B n/2, if n is an even positive integer
fn) = —(n —1)/2, if nis an odd positive integer

f)=-1-1/2=0

fF2)=2/2=1
fBA=-B-1/2=-1
F(4)=4/2 =2

f(5) ==(5-1)/2 = -2

etc.

26
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Countably Infinite: Q is countable
9.2.3 Q7 is countable
Example #4: Show that Q% (the set of all positive
rational numbers) is countable. o

Display the elements of Q™ in a grid
as shown:

Define a function F from Z* to Q* by
: 1 .
starting to count at " and following

the arrows as indicated, skipping over
any number that has already been

counted.

Figure 7.4.3 27



Cardinality Countably Infinite Countability via Sequences Larger Infinities
OO0O (oNoN NeNe) (o} @) (ONoNe)

Larger Infinities

l l | l l 1

So,5et (1) = ,F(@) =LF®) =L P =2
1R /3 A /5 6
Then skip % since% = %which was counted. ?//;/ / Z/-: .
1 1 2 [ S S u
Followed by F(5) = Y F(6) = o F(7) = -, etc. ¥ /g/g N
5/ 5// 5 5 5 5
Note that every positive rational number appears ' /2 * ¢ 5 ¢
somewhere in the grid, and the counting SR

procedure is set up so that every point in the grid
is reached eventually. Thus F is surjective.

Skipping numbers that have already been counted ensures that
no number is counted twice. Thus F is injective.

So F is a bijection from Z* to Q™. Therefore Q¥ is countably
infinite and hence countable.
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Countably Infinite: Zt X Z™ is countable

9.2.4 7% X Z%is countable

The Infinite Hotel:
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Countably Infinite: Zt X Z™ is countable

Theorem: Z* X Z¥ is countable.

What if an infinite number of buses, each carrying an infinite number of
guests, arrive at the Infinite Hotel? Is there room for all of them?

Display the elements of Z* X Z* in a grid as shown:

Guests
1 2 3 4

The ordered pair (x,y)

(1,1) —(1,2)_~(1,3) _~ (1,4)

denotes bus x and guest v.
BUESLY (2,1)‘/(4' 5o (@4
We then count the ordered s - /(3’2)/(3’3) ]

paired in the following order
according to this function

f:Z* X Z* > 7% by:
x+y—2)(x+y—1)
5 + X

[y

B WN

(4,1)/ (42) (43) (4,4)

flx,y) =

30
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Countably Infinite: Theorems

9.2.5 Theorems

Theorem (Cartesian Product)
If sets A and B are both countably infinite, then sois A X B.

(Proof omitted. Similar to diagonal counting method in example #4.)
Corollary (General Cartesian Product)
Given n = 2 countably infinite sets A4, 4,, -+, A,,, the Cartesian
product A; X 4, X --- X A,, is also countably infinite.

(Proof omitted. Proof by induction on n.)
Theorem (Unions)

The union of countably many countable sets is countable. That is,
if A1, A5, -+ are all countable sets, then so is

> (Proof omitted. Similar to
U A; diagonal counting method in
=1 example #4.)
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9.3 Countability via Sequences

32
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Definition: A set is said to be countable iff it is finite or
countably infinite, that is, it has the same cardinality as Z,.

Note: In this section, we use Z, instead of Z* as we are relating to sequences.

Proposition 9.1

An infinite set B is countable if and only if there is a sequence
by, b1, by, -+ € B in which every element of B appears exactly once.

Lo B
Justification:
2 e b,
. 1@ ®h,
function f:Z-y —» B e ob sequence of elements of B
f(O), f(]-)r f(Z), bOr bli b2'
(surjectivity) Vb € BAi € Zso f(i) = b Every b € B appears at least once.
(injectivity) Vi,j € Zso (f() = f() =i =) Every b € B appears at most once.

Definition: A sequence a, a4, a,, :-- can be represented by a function a
whose domain is Z- that satisfies a(n) = a,, foreveryn € Z,. .



Cardinality Countably Infinite Countability via Sequences Larger Infinities
ONONO) Ol oNONONG ®O ONONG®)

Proposition 9.1

An infinite set B is countable if and only if there is a sequence
by, b1, by, -+ € B in which every element of B appears exactly once.

Lemma 9.2: Countability via Sequence

An infinite set B is countable if and only if there is a sequence
by, b1, b5, -+ in which every element of B appears.

Proof:
1. (“onlyif”) This follows directly from Proposition 9.1.
2. (“if”)

2.1. Let by, by, by, -+ be a sequence in which every element of B appears.

2.2. Remove those terms in the sequence that are not in B.

2.3. If an element of B appears more than once, then remove all but the first
appearance.

2.4. The result is a sequence in which every element of B appears exactly once.

2.5. So B is countable.

34
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Theorem: Z* X Z* is countable. (Revisit)

We will provide a proof sketch using sequence.

Proof sketch:

The figure below describes a sequence: (1,1),(1,2),(2,1),(1,3),(2,2),...
in which every element of Z* X Z* appears.

So Z* X Z%is countable by Lemma 9.2.

Guests
1 3 3 4

1| (1,1)—(1,2) »(1,3) _» (1,4)
(2,1)% = 150
(3,1/ (3,2)/ (33) (3,4)

(4,1)/ 42) (43) (4,4)

N

Bus

W
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9.4 Larger Infinities
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Larger Infinities

In 1874 the German mathematician
Georg Cantor achieved success in the
search for a larger infinity by showing that
the set of all real numbers is uncountable.
His method of proof was somewhat

complicated, however.
m Georg Cantor, the man who
discovered different infinities.

The uncountability of the set of all real numbers between 0 and 1
using a simpler technique introduced by Cantor in 1891 is known
as the Cantor’s diagonalization process.

Over the intervening years, this technique and variations on it
have been used to establish a number of important results in
logic and the theory of computation.

37
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Larger Infinities: Cantor’s Diagonalization Argument

9.4.1 Cantor’s Diagonalization Argument

Theorem 7.4.2 (Cantor)

The set of real numbers between 0 and 1,
0,1))={xeR|0<x <1}
is uncountable.

To prove that a set is uncountable means proving that
there is no possibility of a bijection from that set to Z™.

The way to prove is by contradiction. Georg Cantor, who
gave us set theory, also gave an ingenious proof for the
above theorem, came to be known as the Cantor’s
Diagonalization Argument.

38
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Larger Infinities: Cantor’s Diagonalization Argument

Sketch of proof (proof by contradiction):

1. Suppose (0,1) is countable.

2. Since itis not finite, it is countably infinite.

3. We list the elements x; of (0,1) in a sequence as follows:
x1 =0.a11 A12043 *** A1y "
Xy = 0.a31 az2a53 Az

x3 = 0.a3;1 azyazz - azy
Xn = 0. Ap1 An2Qn3 " App -
where each a;; € {0,1,--+,9} is a digit.”

* Note that some numbers have two representations, eg: 0.49999... =
0.50000... We agree to use only the latter representation.
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Larger Infinities: Cantor’s Diagonalization Argument

4. Now, construct a numberd = 0.d; d,d3 - d,, - s.t.

q = 1, ifa,, #1;
"2, ifa,, =1.

5. NotethatVn € Z%,d,, # a,,.
Thus, d # x,,Vn € Z™.

6. Butclearly, d € (0,1), hence a

contradiction. Therefore (0,1) is
uncountable.

lllustration:
0.20148802 ... dq is 1 because a;; = 2
0.11666021 ... d, is 2 because a,, = 1
0.03853320 ... ds is 1 because az3 = 8
0.96776809 ... d, is 1 because ayy =7
0.00031002 .. ds is 2 because ass = 1

Henced = 0.12112 ..., which is not in the list. So, the list is incomplete.
This is true regardless of how the elements in (0,1) are listed.
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Larger Infinities: Any subset of any countable set is countable

Theorem 7.4.3

Any subset of any countable set is countable.

Proof:

1. Let A be any countable set and B be any subset of A.

2. If Ais finite then B must be finite and hence countable — done.

3. Suppose A is countably infinite. If B is finite, then B is
countable — done.

4. Suppose B is infinite.
4.1 Since A is countable, there is a bijection f: Z* — A.

4.2 LetM = f~1(B) (note that f 1 is a bijection), and define a function
g:Z* - B inductively as follows:

S1. Let g(1) = f (i), where i; is the minimum element in M.
S2. If g(1),9(2),:-,g(k — 1) have been defined, ...
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Larger Infinities: Any subset of any countable set is countable

4. Suppose B is infinite.
4.1 Since A is countable, there is a bijection f: Z* — A.

4.2 LetM = f~1(B) (note that f ~1 is a bijection), and define a function
g:Z* - B inductively as follows :

S1. Let g(1) = f(iy), where i; is the minimum element in M.
S2. If g(1),9(2),:--,g(k — 1) have been defined, let
g(k) = f(iy), where i, = min{m: m > i,_,,m € M}.
4.3 g is a bijection (why?), hence B is countable.
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Larger Infinities: Any subset of any countable set is countable

Theorem 7.4.3

Any subset of any countable set is countable.

Corollary 7.4.4 (Contrapositive of Theorem 7.4.3)

Any set with an uncountable subset is uncountable.

Corollary 7.4.4 implies that R is uncountable since (0,1) € R
and (0,1) is uncountable.
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Larger Infinities: Every infinite set has a countably infinite subset

Proposition 9.3

Every infinite set has a countably infinite subset.

Proof:

1. Let B be an infinite set.

2. Keep choosing elements by, by, b,, -+ from B.

3. When we choose b,,, where n € Z,, we can always make
sure b,, # b; for any i < n, because otherwise B is equal
to the finite set {by, b1, by, -**, by,_1} Which is a
contradiction.

4. The result is a countably infinite set {by, b1, b,, -} € B.
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Larger Infinities: Union of countably infinite sets

Lemma 9.4: Union of Countably Infinite Sets.

Let A and B be countably infinite sets. Then A U B is countable.

Proof:

1. Apply Lemma 9.2 to find a sequence ag, a4, a,, -+ in which
every element of A appears.

2. Apply Lemma 9.2 to find a sequence by, by, by, -+ in which
every element of B appears.

3. Then ay, by, a4, by, a,, by, -+ is a sequence in which every
element of A U B appears.

4. So A U B is countable by Lemma 9.2.

Lemma 9.2: Countability via Sequence

An infinite set B is countable if and only if there is a sequence
by, b1, by, -+ in which every element of B appears. 45
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Larger Infinities: Cardinality of R

9.4.2 Cardinality of R

Example #5: Show that |R| = |(0,1)].
Let S = (0,1), thatis,S={x e R|0<x <1}
Imagine picking up S and bending it into a circle:

Define a function F: S — IR as follows:

Draw a number line and place the interval, S,
bent into a circle as shown above, tangent to the
line above the point 0, as shown below.

Number line
< I
3 _
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Larger Infinities: Cardinality of R

For each point x on the circle

representing S, draw a straight

line L through the topmost point

of the circle and x. Number line

-3 -2 -1 0 1 2 3

F(x)

i
<

Let F'(x) be the point of intersection of L and the number line.
(F (x) is called the projection of x onto the number line.)

It can be seen that F(x) is injective and surjective.
Hence S and R have the same cardinality, i.e. |R| = [(0,1)].
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Larger Infinities: The Continuum Hypothesis

9.4.3 The Continuum Hypothesis

For reading only.

The Continuum Hypothesis

Recall that 8, = |ZY|.

Cantor himself wondered if there exists a set A such that:
No < |4] < |R]

In 1964, Paul Cohen proved that the Continuum Hypothesis is
undecidable.
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“No one shall drive us from the paradise

which Cantor has created for us.”
~ David Hilbert.

David Hilbert
(1862 — 1943)

Georg Cantor (1845 —1918)
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