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Lecture 9: Cardinality

AY2025/26 Semester 1
Part of the contents here is taken from 
Dr Wong Tin Lok’s lecture notes. 
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Aaron arrives at Hawaii for a long overdue vacation late one 
night. Tired, he walks into the famous Hilbert’s Hotel looking for a 
room with a comfortable bed for a good night rest. 
Unfortunately, the hotel is already full. However, fortunately, the 
night manager has a clever idea…

Hilbert’s Infinite Hotel:
https://www.youtube.com/watch?v=Uj3_KqkI9Zo

https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
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9. Countability

9.1 Cardinality
• Pigeonhole principle; dual pigeonhole principle. 
• Finite and infinite sets; cardinality; Cantor’s definition of same cardinality.
• Proving 2ℤ = |ℤ|.

9.2 Countably Infinite

• Definition of countably infinite; countable and uncountable sets.
• Proving ℤ , ℚ+ , and ℤ+ × ℤ+ are countable.
• Cartesian product; general Cartesian product, unions.

9.3 Countability via Sequences
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Reference: Epp’s Chapter 7 Section 7.4

• Countability and sequences.

9.4 Larger Infinities

• Proving (0,1) is uncountable; Cantor’s Diagonalization Argument.
• Cardinality of ℝ.
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9.1 Cardinality
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9.1.1 Pigeonhole Principle

Definitions: Injection, surjection, bijection, inverse function

Let 𝑋 and 𝑌 be sets and 𝑓: 𝑋 → 𝑌 be a function.

▪ 𝑓 is injective iff ∀𝑥1, 𝑥2 ∈ 𝑋 𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥1 = 𝑥2 .

▪ 𝑓 is surjective iff ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

▪ 𝑓 is bijective iff 𝑓 is injective and surjective, that is, 

∀𝑦 ∈ 𝑌 ∃! 𝑥 ∈ 𝑋 𝑦 = 𝑓 𝑥 .

▪ 𝑔: 𝑌 → 𝑋 is an inverse of 𝑓 (also denoted as 𝑓−1) iff 

∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝑦 = 𝑓 𝑥 ⇔ 𝑥 = 𝑔 𝑦 .

Theorem 7.2.3

If 𝑓: 𝑋 → 𝑌 is a bijection, then 𝑓−1: 𝑌 → 𝑋 is also a bijection.
In other words, a function is bijective iff it has an inverse.
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What injections and surjections tell us about cardinality.

Pigeonhole Principle

Let 𝐴 and 𝐵 be finite sets. If there is an injection 𝑓: 𝐴 → 𝐵, 
then |𝐴| ≤ |𝐵|. 

Contrapositive: Let 𝑚, 𝑛 ∈ ℤ+ with 𝑚 > 𝑛. If 𝑚 pigeons are 
put into 𝑛 pigeonholes, then there must be (at least) one 
pigeonhole with (at least) two pigeons. 

Dual Pigeonhole Principle

Let 𝐴 and 𝐵 be finite sets. If there is a surjection 𝑓: 𝐴 → 𝐵, 
then |𝐴| ≥ |𝐵|. 

Contrapositive: Let 𝑚, 𝑛 ∈ ℤ+ with 𝑚 < 𝑛. If 𝑚 pigeons are 
put into 𝑛 pigeonholes, then there must be (at least) one 
pigeonhole with no pigeons. 
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Pigeonhole Principle

Let 𝐴 and 𝐵 be finite sets. If there is an injection 𝑓: 𝐴 → 𝐵, 
then |𝐴| ≤ |𝐵|. 

Proof
1. Note that 𝐴 is finite. Suppose

𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑚} where 𝑚 = |𝐴|.

2. The injectivity of 𝑓 tells us that, if 𝑎𝑖 ≠ 𝑎𝑗, 

then 𝑓(𝑎𝑖) ≠ 𝑓(𝑎𝑗). 

3. So 𝑓(𝑎1), 𝑓(𝑎2), ⋯ , 𝑓(𝑎𝑚) are 𝑚 different 
elements of 𝐵.

4. This shows 𝐵 ≥ 𝑚 = |𝐴|.

𝐴 𝐵
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Proof

1. Note that 𝐵 is finite. Suppose
𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} where 𝑛 = |𝐵|.

2. For each 𝑏𝑖, use the surjectivity of 𝑓 to find 
𝑎𝑖 ∈ 𝐴 such that 𝑓(𝑎𝑖) = 𝑏𝑖. 

3. If 𝑏𝑖 ≠ 𝑏𝑗, then 𝑓(𝑎𝑖) ≠ 𝑓(𝑎𝑗) and so 𝑎𝑖 ≠ 𝑎𝑗 

as 𝑓 is a function.

4. So 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 are 𝑛 different elements of 𝐴.

5. This shows 𝐴 ≥ 𝑛 = |𝐵|.

Dual Pigeonhole Principle

Let 𝐴 and 𝐵 be finite sets. If there is a surjection 𝑓: 𝐴 → 𝐵, 
then |𝐴| ≥ |𝐵|. 

𝐴 𝐵
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We say that two finite sets whose elements can be 
paired by a bijection have the same size.

The elements of set 𝐴 can 
be put into a bijection with 
the elements of 𝐵.

Definitions: Finite set and Infinite set

Let ℤ𝑛 = {1,2,3, … , 𝑛}, the set of positive integers from 1 to 𝑛. 

A set 𝑆 is said to be finite iff 𝑆 is empty, or there exists a bijection 
from 𝑆 to ℤ𝑛 for some 𝑛 ∈ ℤ+.

A set 𝑆 is said to be infinite if it is not finite.

9.1.2 Cardinality



 Cardinality  Countably Infinite Countability via Sequences Larger Infinities

Cardinality

10

Definition: Cardinality

The cardinality of a finite set 𝑆, denoted |𝑆|, is

 (i) 0 if 𝑆 = ∅, or

 (ii) 𝑛 if 𝑓: 𝑆 → ℤ𝑛 is a bijection.

Theorem: Equality of Cardinality of Finite Sets

Let 𝐴 and 𝐵 be any finite sets. 

𝐴 = |𝐵| iff there is a bijection 𝑓: 𝐴 → 𝐵.

Proof (sketch)
1. (⇐) This follows from the two Pigeonhole Principles.
2. (⇒) If 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝑛} , then the 

function 𝑓: 𝐴 → 𝐵 satisfying 𝑓(𝑎𝑖) = 𝑏𝑖 for 𝑖 ∈ {1,2, ⋯ , 𝑛} is a 
bijection.
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Proof: By mathematical induction (omitted)

Theorem Cardinality.1: Subset of a Finite Set

Any subset of a finite set is finite.
That is, let 𝐴 ⊆ 𝐵. If 𝐵 is finite, then 𝐴 is finite.

The contrapositive of this theorem is:

Let 𝐴 ⊆ 𝐵. If 𝐴 is infinite, then 𝐵 is infinite.
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Definition: Same Cardinality (Cantor)

Given any two sets 𝐴 and 𝐵. 𝐴 is said to have the same cardinality 
as 𝐵, written as |𝐴| = |𝐵|, iff there is a bijection 𝑓: 𝐴 → 𝐵.

What about infinite sets?

We define what |𝐴| = |𝐵| means 
without defining what |𝐴| and |𝐵| mean!

https://en.wikipedia.org/wiki/Georg_Cantor 

Georg Cantor
(1845 – 1918)

https://en.wikipedia.org/wiki/Georg_Cantor
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Definition: Same Cardinality (Cantor)

Given any two sets 𝐴 and 𝐵. 𝐴 is said to have the same cardinality 
as 𝐵, written as |𝐴| = |𝐵|, iff there is a bijection 𝑓: 𝐴 → 𝐵.

Example #1: ℕ = | ℕ\ {0}| because the function 𝑓: ℕ →
ℕ \ 0  satisfying 𝑓 𝑥 = 𝑥 + 1 for all 𝑥 ∈ ℕ is a bijection.

Example #2: ℕ = |ℕ \ {1,3,5, ⋯ }| because the function 
𝑔: ℕ → ℕ \ 1,3,5, ⋯  satisfying 𝑔 𝑥 = 2𝑥 for all 𝑥 ∈ ℕ is a 
bijection.

0 1 2 3 4 ⋯

51 2 3 4 ⋯

𝑓

0 1 2 3 ⋯

𝑔

62 4 ⋯0

Recall we define ℕ = 0,1,2,3, ⋯ .
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Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.
For all sets 𝐴, 𝐵 and 𝐶:

a. Reflexive: 𝐴 = |𝐴|.
b. Symmetric: 𝐴 = 𝐵 → 𝐵 = |𝐴|.
c. Transitive: ( 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐶 ) → 𝐴 = |𝐶|.

Proof (reflexivity): To prove 𝐴 = |𝐴|.

It suffices to show that 𝑖𝑑𝐴 is a bijection 𝐴 → 𝐴.

1. 𝑖𝑑𝐴 is injective because if 𝑥1, 𝑥2 ∈ 𝐴 such that 𝑖𝑑𝐴 𝑥1 =
𝑖𝑑𝐴 𝑥2 , then 𝑥1 = 𝑥2.

2. 𝑖𝑑𝐴 is surjective because given any 𝑥 ∈ 𝐴, we have 𝑖𝑑𝐴 𝑥 = 𝑥.

3. Therefore 𝐴 = |𝐴|.
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Proof (symmetry): To prove 𝐴 = |𝐵| → 𝐵 = |𝐴| .
1. Suppose 𝐴 = |𝐵|.

2. Use Cantor’s definition of same-cardinality to find a bijection 
𝑓: 𝐴 → 𝐵.

3. By Theorem 7.2.3, 𝑓−1: 𝐵 → 𝐴 is also a bijection.

4. Therefore, 𝐵 = |𝐴|.

Theorem 7.2.3

If 𝑓: 𝑋 → 𝑌 is a bijection, then 𝑓−1: 𝑌 → 𝑋 is also a bijection.
In other words, 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse.

Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.
For all sets 𝐴, 𝐵 and 𝐶:

a. Reflexive: 𝐴 = |𝐴|.
b. Symmetric: 𝐴 = 𝐵 → 𝐵 = |𝐴|.
c. Transitive: ( 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐶 ) → 𝐴 = |𝐶|.
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Proof (transitivity): To prove ( 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐶 ) → 𝐴 = |𝐶|.

1. Suppose 𝐴 = |𝐵| and 𝐵 = |𝐶|.

2. Use Cantor’s definition of same-cardinality to find a bijection 
𝑓: 𝐴 → 𝐵 and a bijection 𝑔: 𝐵 → 𝐶.

3. From Tutorial 6 Q2, (𝑔 ∘ 𝑓)−1= 𝑓−1 ∘ 𝑔−1.

4. In particular, this means 𝑔 ∘ 𝑓 has an inverse.

5. So by Theorem 7.2.3, 𝑔 ∘ 𝑓 is a bijection 𝐴 → 𝐶.

6. Therefore, 𝐴 = |𝐶|.

Theorem 7.4.1 Properties of Cardinality

The same-cardinality relation is an equivalence relation.
For all sets 𝐴, 𝐵 and 𝐶:

a. Reflexive: 𝐴 = |𝐴|.
b. Symmetric: 𝐴 = 𝐵 → 𝐵 = |𝐴|.
c. Transitive: ( 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐶 ) → 𝐴 = |𝐶|.
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An infinite set can have the same cardinality as a proper 
subset of itself. (Refer to Example #2.)
Let 2ℤ be the set of all even integers. Prove that 2ℤand ℤ have 
the same cardinality. 

Consider the function 𝐻 from ℤ to 2ℤ defined as follows:

  𝐻 𝑛 =  2𝑛, ∀𝑛 ∈ ℤ 

A partial arrow 
diagram for 𝐻:

9.1.3 2ℤ = |ℤ|
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1. To show that 𝐻 is injective:
 1.1 Suppose 𝐻(𝑛1) = 𝐻(𝑛2) for some integers 𝑛1, 𝑛2.
 1.2 Then 2𝑛1 = 2𝑛2 (by the definition of 𝐻), and hence 𝑛1 = 𝑛2.
 1.3 Therefore 𝐻 is injective.

2. To show that 𝐻 is surjective:
 2.1 Suppose 𝑚 ∈ 2ℤ.
 2.2 Then 𝑚 is an even integer, so 𝑚 = 2𝑘 for some integer 𝑘 (by 

the definition of even integer)
 2.3 But 𝐻 𝑘 = 2𝑘 = 𝑚. 
 2.4 Thus ∃𝑘 ∈ ℤ s.t. 𝐻(𝑘) = 𝑚. 
 2.5 Therefore 𝐻 is surjective.

3. Therefore 𝐻 is a bijection, and so 2ℤ and ℤ have the same 
cardinality (by Cantor’s definition of cardinality). 
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Note that 2ℤ is a proper subset of ℤ, that is, 2ℤ ⊆ ℤ and 2ℤ ≠ ℤ. 
And yet 2ℤ = |ℤ|! How strange!

For a finite set 𝐴, any proper subset 𝐵 of 𝐴 will have 𝐵 < |𝐴|. 
But this is not true for infinite sets.

Some mathematicians have proposed to use this as the 
definition of an infinite set. That is, a set 𝐴 is infinite iff there 
exists a set 𝐵 such that 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ∧ 𝐵 = 𝐴 .
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9.2 Countably Infinite
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9.2.1 Countable Sets

The set ℤ+of counting numbers {1,2,3, … } is in a sense, the 
most basic of all infinite sets.

The set 𝐴 having the same cardinality as ℤ+ 
is called countably infinite.

The reason is that the bijection between the two sets can be 
used to “count” the elements of 𝐴: 

If 𝐹 is the bijection from ℤ+ to 𝐴, then “𝐹(1)” can be 
designated as the first element of 𝐴, “𝐹(2)” as the second 
element of 𝐴, and so forth.

Note: We may use ℕ or ℤ≥0 instead of ℤ+ in the definition. 
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Because 𝐹 is injective, every element of 𝐴 is counted 
at most once; because 𝐹 is surjective, every element 
of 𝐴 is counted at least once.

“Counting” a Countably Infinite Set
Figure 7.4.1
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Definition: Cardinal numbers

Define ℵ0 = |ℤ+|. (Some authors use ℕ instead of ℤ+.)

ℵ is pronounced “aleph”, the first letter of the Hebrew alphabet. 
This is the first transfinite cardinal number.

Definition: Countably infinite

A set 𝑆 is said to be countably infinite (or, 𝑆 has the cardinality 
of natural numbers) iff 𝑆 = ℵ0.

Definitions: Countable set and Uncountable set

A set is said to be countable iff it is finite or countably infinite.

A set is said to be uncountable if it is not countable 
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Example #3: Show that ℤ is countable.

The set ℤ is certainly not finite, so if it is countable, it has to be 
countably infinite.

To show that ℤ is countably infinite, find a bijection from ℤ+ to ℤ.

The appears to contradict common sense, as there appear to be 
more than twice as many integers as there are positive integers:

(Intuitively, ℤ contains twice as many numbers as ℤ+, so we expect 
ℤ = 2|ℤ+|. But this is not the case. They have the same cardinality!) 

9.2.2 ℤ is countable
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The trick is to start in the middle and work outward 
systematically. Let the first integer be 0, the second 1, the third 
-1, the fourth 2, the fifth -2, and so forth: 

“Counting” the Set of All Integers
Figure 7.4.2

Every integer in ℤ is counted at most once (so the function is 
injective) and every integer in ℤ is counted at least once (so 
the function is surjective).

Therefore ℤ is countably infinite and hence countable.
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The bijection as described earlier can be formulated as follows:

𝑓 𝑛 = ቊ
𝑛/2,

−(𝑛 − 1)/2,

if 𝑛 is an even positive integer
if 𝑛 is an odd positive integer

𝑓 1 = −(1 − 1)/2 = 0

𝑓 2 = 2/2 = 1

𝑓 3 = −(3 − 1)/2 = −1

𝑓 4 = 4/2 = 2

𝑓 5 = −(5 − 1)/2 = −2

etc.
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9.2.3 ℚ+ is countable

Example #4: Show that ℚ+ (the set of all positive 
rational numbers) is countable.

Display the elements of ℚ+ in a grid 
as shown:

Define a function F from ℤ+ to ℚ+ by 

starting to count at 
1

1
 and following 

the arrows as indicated, skipping over 
any number that has already been 
counted.

Figure 7.4.3








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So, set 𝐹 1 =
1

1
, 𝐹 2 =

1

2
, 𝐹 3 =

2

1
, 𝐹 4 =

3

1
.

Then skip 
2

2
 since 

2

2
=

1

1
 which was counted.

Followed by 𝐹 5 =
1

3
, 𝐹 6 =

1

4
, 𝐹 7 =

2

3
, etc.









Note that every positive rational number appears 
somewhere in the grid, and the counting 
procedure is set up so that every point in the grid 
is reached eventually. Thus 𝐹 is surjective.

Skipping numbers that have already been counted ensures that 
no number is counted twice. Thus 𝐹 is injective.

So 𝐹 is a bijection from ℤ+ to ℚ+. Therefore ℚ+ is countably 
infinite and hence countable. 
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9.2.4 ℤ+ × ℤ+is countable

The Infinite Hotel:
https://www.youtube.com/watch?v=Uj3_KqkI9Zo

https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
https://www.youtube.com/watch?v=Uj3_KqkI9Zo
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Theorem: ℤ+ × ℤ+ is countable.

Display the elements of ℤ+ × ℤ+ in a grid as shown:

The ordered pair (𝑥, 𝑦) 
denotes bus 𝑥 and guest 𝑦.

We then count the ordered 
paired in the following order 
according to this function 
𝑓: ℤ+ × ℤ+ → ℤ+ by:

What if an infinite number of buses, each carrying an infinite number of 
guests, arrive at the Infinite Hotel? Is there room for all of them?

Guests

B
u

s

𝑓 𝑥, 𝑦 =
(𝑥 + 𝑦 − 2)(𝑥 + 𝑦 − 1)

2
+ 𝑥
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9.2.5 Theorems

Theorem (Cartesian Product)

If sets 𝐴 and 𝐵 are both countably infinite, then so is 𝐴 × 𝐵. 

(Proof omitted. Similar to diagonal counting method in example #4.)

Corollary (General Cartesian Product)

Given 𝑛 ≥ 2 countably infinite sets 𝐴1, 𝐴2, ⋯ , 𝐴𝑛, the Cartesian 
product 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 is also countably infinite. 

(Proof omitted. Proof by induction on 𝑛.)

Theorem (Unions)

The union of countably many countable sets is countable. That is, 
if 𝐴1, 𝐴2, ⋯ are all countable sets, then so is

ራ

𝑖=1

∞

𝐴𝑖

(Proof omitted. Similar to 
diagonal counting method in 
example #4.)
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9.3 Countability via Sequences
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Definition: A set is said to be countable iff it is finite or 
countably infinite, that is, it has the same cardinality as ℤ≥0.

Definition: A sequence 𝑎0, 𝑎1, 𝑎2, ⋯ can be represented by a function 𝑎 
whose domain is ℤ≥0 that satisfies 𝑎(𝑛) = 𝑎𝑛 for every 𝑛 ∈ ℤ≥0.

Note: In this section, we use ℤ≥0 instead of ℤ+ as we are relating to sequences.

Proposition 9.1

An infinite set 𝐵 is countable if and only if there is a sequence 

𝑏0, 𝑏1, 𝑏2, ⋯ ∈ 𝐵 in which every element of 𝐵 appears exactly once. 

Justification:

function 𝑓: ℤ≥0 → 𝐵
𝑓 0 , 𝑓 1 , 𝑓 2 , ⋯

(surjectivity) ∀𝑏 ∈ 𝐵 ∃𝑖 ∈ ℤ≥0 𝑓 𝑖 = 𝑏
(injectivity) ∀𝑖, 𝑗 ∈ ℤ≥0 𝑓 𝑖 = 𝑓 𝑗 ⇒ 𝑖 = 𝑗

sequence of elements of 𝐵
𝑏0, 𝑏1, 𝑏2, ⋯

Every 𝑏 ∈ 𝐵 appears at least once.
Every 𝑏 ∈ 𝐵 appears at most once.

ℤ≥0

⋮

0

1

2

𝐵

⋮

𝑏0

𝑏1

𝑏2
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Proposition 9.1

An infinite set 𝐵 is countable if and only if there is a sequence 

𝑏0, 𝑏1, 𝑏2, ⋯ ∈ 𝐵 in which every element of 𝐵 appears exactly once. 

Lemma 9.2: Countability via Sequence

An infinite set 𝐵 is countable if and only if there is a sequence 

𝑏0, 𝑏1, 𝑏2, ⋯ in which every element of 𝐵 appears. 

Proof:
1. (“only if”) This follows directly from Proposition 9.1.
2. (“if”)

2.1. Let 𝑏0, 𝑏1, 𝑏2, ⋯ be a sequence in which every element of 𝐵 appears.
2.2. Remove those terms in the sequence that are not in 𝐵.
2.3. If an element of 𝐵 appears more than once, then remove all but the first 

appearance.
2.4. The result is a sequence in which every element of 𝐵 appears exactly once.
2.5. So 𝐵 is countable.
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Theorem: ℤ+ × ℤ+ is countable. (Revisit)

We will provide a proof sketch using sequence. 

Proof sketch:

The figure below describes a sequence: (1,1),(1,2),(2,1),(1,3),(2,2),…

in which every element of  ℤ+ × ℤ+ appears. 

So ℤ+ × ℤ+is countable by Lemma 9.2.

Guests

B
u

s
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9.4 Larger Infinities
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In 1874 the German mathematician 
Georg Cantor achieved success in the 
search for a larger infinity by showing that 
the set of all real numbers is uncountable. 
His method of proof was somewhat 
complicated, however. 

The uncountability of the set of all real numbers between 0 and 1 
using a simpler technique introduced by Cantor in 1891 is known 
as the Cantor’s diagonalization process. 

Over the intervening years, this technique and variations on it 
have been used to establish a number of important results in 
logic and the theory of computation.

Georg Cantor, the man who 
discovered different infinities.
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9.4.1 Cantor’s Diagonalization Argument

To prove that a set is uncountable means proving that 
there is no possibility of a bijection from that set to ℤ+.

The way to prove is by contradiction. Georg Cantor, who 
gave us set theory, also gave an ingenious proof for the 
above theorem, came to be known as the Cantor’s 
Diagonalization Argument.

Theorem 7.4.2 (Cantor)

The set of real numbers between 0 and 1, 

0,1 = 𝑥 ∈ ℝ 0 < 𝑥 < 1}

is uncountable.
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1. Suppose (0,1) is countable.

2. Since it is not finite, it is countably infinite.

3. We list the elements 𝑥𝑖  of (0,1) in a sequence as follows:

  𝑥1 = 0. 𝑎11 𝑎12𝑎13 ⋯ 𝑎1𝑛 ⋯

  𝑥2 = 0. 𝑎21 𝑎22𝑎23 ⋯ 𝑎2𝑛 ⋯

  𝑥3 = 0. 𝑎31 𝑎32𝑎33 ⋯ 𝑎3𝑛 ⋯

   ⋮

  𝑥𝑛 = 0. 𝑎𝑛1 𝑎𝑛2𝑎𝑛3 ⋯ 𝑎𝑛𝑛 ⋯

   ⋮

 where each 𝑎𝑖𝑗 ∈ {0,1, ⋯ , 9} is a digit.*

Sketch of proof (proof by contradiction):

* Note that some numbers have two representations, eg: 0.49999… = 
0.50000… We agree to use only the latter representation.
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4. Now, construct a number 𝑑 = 0. 𝑑1 𝑑2𝑑3 ⋯ 𝑑𝑛 ⋯ s.t.

  𝑑𝑛 = ቊ
1,  if 𝑎𝑛𝑛 ≠ 1;
2,  if 𝑎𝑛𝑛 = 1. 𝑥1 = 0. 𝑎11 𝑎12𝑎13 ⋯ 𝑎1𝑛 ⋯

𝑥2 = 0. 𝑎21 𝑎22𝑎23 ⋯ 𝑎2𝑛 ⋯

𝑥3 = 0. 𝑎31 𝑎32𝑎33 ⋯ 𝑎3𝑛 ⋯

 ⋮

𝑥𝑛 = 0. 𝑎𝑛1 𝑎𝑛2𝑎𝑛3 ⋯ 𝑎𝑛𝑛 ⋯

5. Note that ∀𝑛 ∈ ℤ+, 𝑑𝑛 ≠ 𝑎𝑛𝑛. 
Thus, 𝑑 ≠ 𝑥𝑛, ∀𝑛 ∈ ℤ+.

6. But clearly, 𝑑 ∈ (0,1), hence a 
contradiction. Therefore (0,1) is 
uncountable.

Illustration: 
 0.20148802 … 𝑑1 is 1 because 𝑎11 = 2
 0.11666021 … 𝑑2 is 2 because 𝑎22 = 1
 0.03853320 … 𝑑3 is 1 because 𝑎33 = 8
 0.96776809 … 𝑑4 is 1 because 𝑎44 = 7
 0.00031002 … 𝑑5 is 2 because 𝑎55 = 1

Hence 𝑑 = 0.12112 …, which is not in the list. So, the list is incomplete. 
This is true regardless of how the elements in (0,1) are listed.
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Theorem 7.4.3

Any subset of any countable set is countable.

Proof:

1. Let 𝐴 be any countable set and 𝐵 be any subset of 𝐴. 
2. If 𝐴 is finite then 𝐵 must be finite and hence countable – done.
3. Suppose 𝐴 is countably infinite. If 𝐵 is finite, then 𝐵 is 

countable – done.
4. Suppose 𝐵 is infinite.

4.1 Since 𝐴 is countable, there is a bijection 𝑓: ℤ+ → 𝐴.

4.2 Let 𝑀 = 𝑓−1(𝐵) (note that 𝑓−1 is a bijection), and define a function 
𝑔: ℤ+ → 𝐵 inductively as follows:

S1. Let 𝑔 1 = 𝑓 𝑖1 , where 𝑖1 is the minimum element in 𝑀.

S2. If 𝑔 1 , 𝑔 2 , ⋯ , 𝑔 𝑘 − 1  have been defined, … 
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4. Suppose 𝐵 is infinite.
4.1 Since 𝐴 is countable, there is a bijection 𝑓: ℤ+ → 𝐴.

4.2 Let 𝑀 = 𝑓−1(𝐵) (note that 𝑓−1 is a bijection), and define a function 
𝑔: ℤ+ → 𝐵 inductively as follows :

S1. Let 𝑔 1 = 𝑓 𝑖1 , where 𝑖1 is the minimum element in 𝑀.

S2. If 𝑔 1 , 𝑔 2 , ⋯ , 𝑔 𝑘 − 1  have been defined, let

 𝑔 𝑘 = 𝑓(𝑖𝑘), where 𝑖𝑘 = min{𝑚: 𝑚 > 𝑖𝑘−1, 𝑚 ∈ 𝑀}.

4.3  𝑔 is a bijection (why?), hence 𝐵 is countable.

ℤ+ 𝐴
𝑓

3

1
2

4

5

6
7 :

8

𝑎1

𝑎2 𝑎3

𝑎4 𝑎5

𝑎6

:

𝑎7

:

𝑎8

𝑎9

:

9

𝑓−1ℤ+ 𝐴

3

1
2

4

5

6
7 :

8

𝑎1

𝑎2 𝑎3

𝑎4 𝑎5

𝑎6

:

𝑎7

:

𝑎8

𝑎9

:

9

𝐵𝑀
𝑔

1

2
3

𝑎6

𝑎7

:
𝑎9

:

𝐵ℤ+
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Theorem 7.4.3

Any subset of any countable set is countable.

Corollary 7.4.4 (Contrapositive of Theorem 7.4.3)

Any set with an uncountable subset is uncountable.

Corollary 7.4.4 implies that ℝ is uncountable since (0,1) ⊆ ℝ 
and (0,1) is uncountable.
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Proposition 9.3

Every infinite set has a countably infinite subset.

Proof:

1. Let 𝐵 be an infinite set.

2. Keep choosing elements 𝑏0, 𝑏1, 𝑏2, ⋯ from 𝐵. 

3. When we choose 𝑏𝑛, where 𝑛 ∈ ℤ≥0, we can always make 
sure 𝑏𝑛 ≠ 𝑏𝑖 for any 𝑖 < 𝑛, because otherwise 𝐵 is equal 
to the finite set {𝑏0, 𝑏1, 𝑏2, ⋯ , 𝑏𝑛−1} which is a 
contradiction.

4. The result is a countably infinite set {𝑏0, 𝑏1, 𝑏2, ⋯ } ⊆ 𝐵.
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Lemma 9.4: Union of Countably Infinite Sets.

Let 𝐴 and 𝐵 be countably infinite sets. Then 𝐴 ∪ 𝐵 is countable.

Proof:
1. Apply Lemma 9.2 to find a sequence 𝑎0, 𝑎1, 𝑎2, ⋯ in which 

every element of 𝐴 appears.
2. Apply Lemma 9.2 to find a sequence 𝑏0, 𝑏1, 𝑏2, ⋯ in which 

every element of 𝐵 appears.
3. Then 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, ⋯ is a sequence in which every 

element of 𝐴 ∪ 𝐵 appears.
4. So 𝐴 ∪ 𝐵 is countable by Lemma 9.2.

Lemma 9.2: Countability via Sequence

An infinite set 𝐵 is countable if and only if there is a sequence 
𝑏0, 𝑏1, 𝑏2, ⋯ in which every element of 𝐵 appears. 
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9.4.2 Cardinality of ℝ

Example #5: Show that ℝ = |(0,1)|. 

Let 𝑆 = (0,1), that is, 𝑆 = 𝑥 ∈ ℝ | 0 < 𝑥 < 1 .

Imagine picking up 𝑆 and bending it into a circle:

Define a function 𝐹: 𝑆 → ℝ as follows:

Draw a number line and place the interval, 𝑆, 
bent into a circle as shown above, tangent to the 
line above the point 0, as shown below. 
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For each point 𝑥 on the circle 
representing 𝑆, draw a straight 
line 𝐿 through the topmost point 
of the circle and 𝑥.

Let 𝐹(𝑥) be the point of intersection of 𝐿 and the number line.

(𝐹(𝑥) is called the projection of 𝑥 onto the number line.)

It can be seen that 𝐹(𝑥) is injective and surjective. 

Hence 𝑆 and ℝ have the same cardinality, i.e. ℝ = |(0,1)|. 
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9.4.3 The Continuum Hypothesis

For reading only.

The Continuum Hypothesis

Recall that ℵ0 = |ℤ+|.

Cantor himself wondered if there exists a set 𝐴 such that:
ℵ0 < 𝐴 < |ℝ|

In 1964, Paul Cohen proved that the Continuum Hypothesis is 
undecidable.
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END OF FILE
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“No one shall drive us from the paradise 
which Cantor has created for us.”
~ David Hilbert.

David Hilbert
(1862 – 1943)

Georg Cantor (1845 – 1918)



51


	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51


