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10. Counting and Probability 1

This lecture is based on Epp’s book chapter 9.
9.1 Introduction Hence, the section numbering is according to the book.

e Random process, sample space, event and probability

9.2 Possibility Trees and the Multiplication Rule

e Possibility trees
e The multiplication/product rule
e Permutations

9.3 Counting Elements of Disjoint Sets

e The addition/sum rule
e The difference rule

e The inclusion/exclusion rule

9.4 The Pigeonhole Principle (PHP)

e Pigeonhole principle, general pigeonhole principle

Reference: Epp’s Chapter 9 Counting and Probability 2



Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets The Pigeonhole Principle
@O O ool oNONO) O NON®) oNoNe)

9.1 Introduction
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Introduction

= Counting schemes covered

= Basics of counting: product/multiplication rule and
sum/addition rule

=  Permutations, with or without repetitions

=  Combinations, with or without repetitions

= |nclusion-exclusion principle

= Pigeonhole principle (Dirichlet drawer principle)
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Introduction

= Counting has important applications in Computer
Science

=  Determining complexity of algorithms

=  Computing discrete probability of some events

= Example: How many times is the routine this() called in
the following algorithm?

process(n, m) {
while (n>0) {
for j € 1 tom {
this(3);
}
n =n/2;
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Introduction

Tossing two coins

e

= (0, 1o0r2heads?
= Does each of these events
occur about 1/3 of the time?

Two heads
obtained

No heads
obtained




Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets The Pigeonhole Principle
@O O ool oNONO) O NON®) oNoNe)

Introduction

Table 9.1.1. Relative frequencies.

Frequency Relative Frequency

(Number of times (Fraction of times

Event Tally the event occurred) the event occurred)
2 heads obtained W | 11 22%
I head obtained W I I LA | 27 54%
0 heads obtained W 12 24%

Formalizing the analysis, we introduce:
" random process
" sample space
= event
= probability
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Introduction

To say that a process is random means that when it
takes place, one outcome from some set of outcomes is
sure to occur, but it is impossible to predict with
certainty which outcome that will be.

A sample space is the set of all possible outcomes of a
random process or experiment.
An event is a subset of a sample space.
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Equally Likely Probability

For a finite set A, |A| denotes the number of elements in A.

Note: Epp uses N(A) to denote the number of elements in A.
For consistency with earlier topic (Sets), we shall use |A]|.

Also, we deal with finite sets here. Infinite sets will be
discussed another time.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are
equally likely and E is an event in S, then the
probability of £, denoted P(E), is

The number of outcomesin E ||
The total number of outcomesinS S|

P(E) =
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Equally Likely Probability

Rolling a Pair of Dice
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Equally Likely Probability

A more compact notation identifies, say, with
the notation 24, with 53, and so forth.

a. Use the compact notation to write the sample

space S of possible outcomes.

$={11,12,13,14,15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36,
41,42,43,44,45, 46,51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66 }

b. Use set notation to write the event E that the
numbers showing face up have a sum of 6 and find
the probability of this event.

E={15,24,33,42,51) P(E) = 5/36

Q} 11
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Counting the Elements of a List

Counting the Elements of a List

Some counting problems are as simple as counting the
elements of a list.

Eg: How many integers are there from 5 through 127
list: 5 6 7 8 9 10 11 12

N

count: 1 2 3 4 5 6 7 8

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and m < n, then there are

n—-—m+1
integers from m to n inclusive.
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Counting the Elements of a List

a. How many 3-digit integers (from 100 to 999 E['JIIE
inclusive) are divisible by 57 —

100 101 102 103 104 105 106 107 108 109 110..994 995 996 997 998 999
5x20 5x21 5x22 5x199

From Theorem 9.1.1, there are 199 — 20 + 1 = 180 such integers.
Hence, there are 180 3-digit integers that are divisible by 5.

b. What is the probability that a randomly chosen 3-digit
integer is divisible by 5?

By Theorem 9.1.1, total number of integers
from 100 through 999 =999 — 100 + 1 = 900.

By part (a), 180 of these are divisible by 5.

Hence, answer = 180/900 = 1/5.
‘d} 13
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9.2 Possibility Trees and the Multiplication Rule

14
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Counting Elements of Disjoint Sets

Possibility Trees and Multiplication Rule
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00 O
Possibility Trees
Possibility Trees

A tree structure is a useful tool for
keeping systematic track of all Coin 1 /H\ PN

possibilities in situations in which  coin2 T H
events happen in order. /N /N /N N
Com3 H T H T H T H T

Introduction
OO O

Example 1: Possibilities for Tournament Play

Teams A and B are to play each other repeatedly until
one wins two games in a row, or a total of three games.

One way in which this tournament can be played is for
A to win the first game, B to win the second, and A to
win the third and fourth games. Denote this by writing

A—-B—-A-A.
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Possibility Trees

Example 1: Possibilities for Tournament Play

a. How many ways can the tournament be played?

Possible ways are represented by the distinct paths from
“root” (the start) to “leaf” (a terminal point) in the tree below.

Winner of Winner of Winner of Winner of Winner of
game 1 game 2 game 3 game 4 game 5
A (A wins) A (A wins)
A A A (A wins)
B B
B (B wins) B (B wins)
Start A (A wins) A (A wins)
A A
B B (B wins)
B B (B wins) B (B wins)

Figure 9.2.1 The Outcomes of a Tournament
16
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Possibility Trees

Example 1: Possibilities for Tournament Play

a. How many ways can the tournament be played?

Ten paths from the root of the tree to its leaves =»
ten possible ways for the tournament to be played.

1. A-A 6. B-A-A

2. A-B-A-A /. B-A-B-A-A
3. A-B-A-B-A 8. B-A-B-A-B
4. A-B-A-B-B 9. B-A-B-B

5. A-B-B 10. B-B

17
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Possibility Trees

Example 1: Possibilities for Tournament Play

b. Assuming that all the ways of playing the tournament
are equally likely, what is the probability that five
games are needed to determine the tournament

winner?
1. A-A 6. B-A-A
2. A-B-A-A 7.[B-A-B-A-A ]
3.[A-B-A-B-A] 8.| B-A-B-A-B
4.\ A-B-A-B-B 9. B-A-B-B
5. A-B-B 10. B-B

Probability that 5 games are needed = 4/10 = 2/5

18
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The Multiplication/Product Rule

The Multiplication/Product Rule

Consider the following example.

Suppose a computer installation has four input/output
units (A, B, C, and D) and three central processing units
(X, Y, and 2).

Any input/output unit can be paired with any central

processing unit. How many ways are there to pair an
input/output unit with a central processing unit?

19
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The Multiplication/Product Rule

. Step 1: Choose the Step 2: Choose the
Possibility tree:
input/output unit.  central processing unit.
X
A
The total number of ¥
. VA
ways to pair the two
types of units... 5 X
Y
V4
Start
X
¢ - Y
is the same as the ;
number of branches
of the tree: D -
3+3+3+3=4%x3= 7
12 Figure 9.2.2 Pairing Objects

Using a Possibility Tree -
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The Multiplication/Product Rule

Theorem 9.2.1 The Multiplication/Product Rule

If an operation consists of k steps and
the first step can be performed in n, ways,
the second step can be performed in n, ways

(regardless of how the first step was performed),

the k" step can be performed in n, ways
(regardless of how the preceding steps were performed),
Then the entire operation can be performed in

Ny XN, X Ny X ... X N, Ways.

21



Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets The Pigeonhole Principle
OO O o} NoNONO) O NON®) oNoNe)

The Multiplication/Product Rule

Example 2: No. of Personal Identification Numbers (PINs)

A typical PIN is a sequence of any four symbols chosen from
the 26 letters in the alphabet and the ten digits, with
repetition allowed. Examples: CARE, 3387, B32B, and so forth.

How many different PINs are possible?
SN

You can think of forming
a PIN as a four-step
operation to fill in each
of the four symbols in

sequence. 2

Pool of available /
symbols: A, B, C, D, E, F, G,

H I,J, K L MN,O,P,Q, R,
ST.UV.WXYZ
0.1,2,3,4,5,6,7.8,9, I
e

\ ’/\—/\\—f\/\/,\ /‘J ]

Hence, by the multiplication rule, there are:
36x36x36x36 = 36*=1,679,616 PINs in all.

22
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The Multiplication/Product Rule

Example 3: No. of PINs without Repetition

Now, suppose that repetition is not allowed.
a. How many different PINs are there?

Step 1: Choose the 1t symbol. 36 ways Hence, by the multiplication rule,
Step 2: Choose the 2" symbol. 35 ways there are:

Step 3: Choose the 3@ symbol. 34 ways 36x35x34x33 =1,413,720 PINs in
Step 4: Choose the 4" symbol. 33 ways all with no repeated symbol.

b. If all PINs are equally likely, what is the probability that
a PIN chosen at random contains no repeated symbols?

1,679,616 PINS in all.
1,413,720 PINs with no repeated symbol.

1,413,720 .
Hence, probability that a PIN chosen at 1679616 0.8417

random contains no repeated symbols:

23
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The Multiplication/Product Rule

Theorem 5.2.4 (Sets)

Suppose A is a finite set. Then |P(4)| = 2/4l.

Let A = {aq, a,, -, a,}. Then |A| = n.

A subset of A is formed by picking or dropping a; from A4,
fori =1,2,...,n.

Examples: {la; ay a3 a, -  ap} m) {a,, a3 a,}
v

X X X X X

{ap a; a3 a - ap} mm) 1)
X

Since there are 2 choices (pick or drop) for every element q;

and there are n elements, by the multiplication rule there
are 2™ ways of forming a subset.

24
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When the Multiplication Rule is Difficult or Impossible to Apply

When the Multiplication Rule is Difficult/Impossible to Apply

Example 4: Consider the following problem:

Three officers — a president, a treasurer, and a secretary —are to
be chosen from among four people: Ann, Bob, Cyd, and Dan.
Suppose that, for various reasons, Ann cannot be president and
either Cyd or Dan must be secretary. How many ways can the

officers be chosen? e

It is natural to try to solve this problem using the multiplication
rule. A person might answer as follows:

There are three choices for president (all except Ann), three
choices for treasurer (all except the one chosen as president),
and two choices for secretary (Cyd or Dan).

Therefore, by the multiplication rule, 3x3x2 =18

25
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When the Multiplication Rule is Difficult or Impossible to Apply

It is incorrect. The number of ways to choose the
secretary varies depending on who is chosen for
president and treasurer.

For instance, if Bob is chosen for president and Ann
for treasurer, then there are two choices for
secretary: Cyd and Dan.

But if Bob is chosen for president and Cyd for
treasurer, then there is just one choice for secretary:

Dan.
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When the Multiplication Rule is Difficult or Impossible to Apply

The clearest way to see all the possible choices is to
construct the possibility tree, as shown below.

Step 1: Choose Step 2: Choose Step 3: Choose
the president. the treasurer. the secretary.
Cyd
Ann

* Pa How many ways?

e Dan

8 ways.

L ]

Cyd

Start

e Dan

¢ Dan

Figure 9.2.3

¢ Cyd
27
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When the Multiplication Rule is Difficult or Impossible to Apply

Example 5: A More Subtle Use of the Multiplication Rule

Reorder the steps for choosing the officers in the
previous example so that the total number of ways to
choose officers can be computed using the

multiplication rule. .
/ 2 ways: Either Cyd or Dan.

Step 1: Choose the secretary.
Step 2: Choose the president.——
Step 3: Choose the treasurer.

2 ways: Neither Ann nor
the person chosen in step

s 1 may be chosen, but
2 ways: Either of the 2 persons either of the other two
not chosen in steps 1 and 2 may may.
be chosen.

Hence, total number of ways =2 x2 x2=8 .



Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets The Pigeonhole Principle
OO O ool NONO©) O NON®) oNoNe)

When the Multiplication Rule is Difficult or Impossible to Apply

A possibility tree illustrating this sequence of choices:

Step I: Choose Step 2: Choose  Step 3: Choose
the secretary. the president. the treasurer.

Ann
Bob

Dan

Ann

Start Bob
Ann

Cyd

Ann

Figure 9.2.4
Bob

29
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Given 26 scrabble tiles with letters ‘A’ to ‘Z’,

what is the probability of drawing
“ICANDOIT” if...

a. you must not return the tile after it is
drawn. O

b. you must return the tile after it is drawn.

(1/26)°

{}} 30
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Summary

Principle of Product (or the Multiplication Principle)

If there are m ways of doing something and n ways of doing
another thing, then there are mn ways of performing both

actions.

Principle of Sum (or the Addition Principle)

If we have m ways of doing something and n ways of doing
another thing and we cannot do both at the same time, then
there are m+n ways to choose one of these actions.

31
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Permutations

A permutation of a set of objects is an ordering of the

objects in a row. For example, the set of elements a, b,
and c has six permutations.

abc acb cba bac bca cab

In general, given a set of n objects, how many
permutations does the set have?

32
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Permutations

Imagine forming a permutation as an n-step operation:

Step 1: Choose an element to write first. < n ways
Step 2: Choose an element to write second. & n—1 ways
Step 3: Choose an element to write third. & n—2 ways

Step n: Choose an element to write nth. < 1 way

By the multiplication rule, there are
nx(n-1)x(n—2)x..x2x1=nl
ways to perform the entire operation.

33
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Permutations

Theorem 9.2.2 Permutations

The number of permutations of a set with n
(n > 1) elements is n!

/

Note Ol is defined to be 1.

(See https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-
comb/x9e81a4f98389efdf:combinatorics-precalc/v/zero-factorial-or-0)

34
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Permutations

Example 6 — Permutations of the Letters in a Word

a. How many ways can the letters in the word COMPUTER be
arranged in a row?

All the eight letters in the word COMPUTER are distinct.
Hence, 8! = 40320.

b. How many ways can the letters in the word COMPUTER be
arranged if the letters CO must remain next to each other (in

d it?
order) as a uni 21 = 5040.

c. If letters of the word COMPUTER are randomly arranged in a
row, what is the probability that the letters CO remain next
to each other (in order) as a unit? 711

8l 8
{}} 35
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Permutations of Selected Elements

Permutations of Selected Elements

Given the set {q, b, c}, there are six ways to select two
letters from the set and write them in order.

ab ac ba bc ca cb

Each such ordering of two elements of {a, b, c} is called
a 2-permutation of {a, b, c}?.

An r-permutation of a set of n elements is an ordered
selection of r elements taken from the set.
The number of r-permutations of a set of n elements

is denoted P(n, r).

Other notations: P, , P/

36
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Permutations of Selected Elements

Theorem 9.2.3 r-permutations from a set of n elements

If nand r are integers and 1 <r <n, then the
number of r-permutations of a set of n elements

is given by the formula
P(n, I‘) = n(n — 1)(n — 2) (n —r+ 1) first version

or, equivalently, |
n!
P(n, I') = second version
(n—r)!

37
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© Can Stock Phofo

Permutations of Selected Elements

a. Evaluate P(5, 2).
P(5,2)=5!/(5-2)=5x4=20

b. How many 4-permutations are there of a set of
seven objects?

P(7,4)=71/(7-4)=7x6 x5 x4=2840

c. How many 5-permutations are there of a set of five
objects?

P(5,5)=5!/(5-5)=5! =120

38
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9.3 Counting Elements of Disjoint Sets

39
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Counting Elements of Disjoint Sets: The Addition/Sum Rule

The addition rule (or sum rule) states that the number of
elements in a union of mutually disjoint finite sets equals the
sum of the number of elements in each of the component sets.

Theorem 9.3.1 The Addition/Sum Rule

Suppose a finite set A equals the union of k
distinct mutually disjoint subsets A, A,, ..., A,.
Then

|A| = |AL] + |A,| +... + |A,].

40
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Example 7 — Counting Passwords with 3 or fewer Letters

A computer access password consists of from one to
three letters chosen from the 26 letters in the
alphabet with repetitions allowed. How many
different passwords are possible?

The set of all passwords can be partitioned into

subsets consisting of those of length 1, length 2, and
length 3:

Figure 9.3.1

Set of all passwords pa}sswords pa}sswords pz}sswords
of length < 3 of length 1 of length 2 of length 3

41
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Example 7 — Counting Passwords with 3 or fewer Letters

By the addition rule, the total number of passwords
equals the sum of the number of passwords of length
1, length 2, and length 3.

Number of passwords of length 1 = 26

Number of passwords of length 2 = 262

Number of passwords of length 3 = 263

Hence, total number of passwords = 26 + 262 + 263
= 18,278.

42
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The Difference Rule

The Difference Rule

An important consequence of the addition rule is the
fact that if the number of elements in a set A and the
number in a subset B of A are both known, then the

number of elements that are in A and not in B can be
computed.

Theorem 9.3.2 The Difference Rule

If A is a finite set and B — A, then
|A\B| = |A] - |B].

43
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The Pigeonhole Principle
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The Difference Rule

The difference rule holds for the following reason:
If B A, then the two sets Band A \ B have no
elements in common and BU (A \ B) = A.

Hence, by the addition rule,
|B] + |[A\B| = |A].

Subtracting | B| from both sides gives the equation
|A\B| =|A| - |B].

44
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The Difference Rule

Example 8 — Counting PINs with Repeated Symbols

A typical PIN (personal identification number) is a
sequence of any four symbols chosen from the 26

letters in the alphabet and the ten digits, with
repetition allowed.

a. How many PINs contain repeated symbols?
There are 36* =1,679,616 PINs when repetition is

allowed, and there are 36 x 35 x 34 x 33 =1,413,720
PINs when repetition is not allowed.

By the difference rule, there are
1,679,616 — 1,413,720 = 265,896
PINS that contain at least one repeated symbol.
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The Difference Rule

Example 8 — Counting PINs with Repeated Symbols

b. If all PINs are equally likely, what is the probability
that a randomly chosen PIN contains a repeated
symbol?

There are 1,679,616 PINs in all, and by part (a) 265,896
of these contain at least one repeated symbol.

Thus, the probability that a randomly chosen PIN
contains a repeated symbol is

265,896
1,679,616

~ (0.158
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The Difference Rule

Example 8 — Counting PINs with Repeated Symbols

An alternative solution to part (b) is based on the

observation that if S is the set of all PINs and A is the
set of all PINs with no repeated symbol, then S\ A is
the set of all PINs with at least one repeated symbol.

It follows that:

_IS\A| IS -|A] 1,413,720
PONAY = =g = T ) PlA) =1 679,616

S 1Sl A - 0.842

— S S|

P(S\A)=1-0.842
=1-P(A) ~ 0.158
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The Difference Rule

Probability of the Complement of an Event

This solution illustrates a more general property of
probabilities: that the probability of the complement of
an event is obtained by subtracting the probability of
the event from the number 1.

Formula for the Probability of the Complement of

an Event

If Sis a finite sample space and A is an event in S, then

P(A) = 1 — P(A)
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The Inclusion/Exclusion Rule

The Inclusion/Exclusion Rule

The addition rule says how many elements are in a
union of sets if the sets are mutually disjoint. Now
consider the question of how to determine the number
of elements in a union of sets when some of the sets
overlap.

For simplicity, begin by
looking at a union of
two sets A and B, as
shown in Figure 9.3.5. U B

Figure 9.3.5
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The Inclusion/Exclusion Rule

To get an accurate count of the elementsin A U B, it
is necessary to subtract the number of elements that
are in both Aand B, i.e. AN B,

IAUB|=|A| + |B| — |AN B|

Theorem 9.3.3 The Inclusion/Exclusion Rule for 2 or 3 Sets

If A, B, and C are any finite sets, then
|AUB| =|A|+ |B| —|A N B
and
IAUBUC| = |A| +|B| +|C| — |A N B|
—|AnC|—|BNnC|+|AnBNC]
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The Inclusion/Exclusion Rule

Example 9 — Counting Elements of a General Union

a. How many integers from 1 through 1,000 are multiples of 3 or

multiples of 5? Let A = the set of all integers in [1, 1000] that are multiples of 3.
Let B = the set of all integers in [1, 1000] that are multiples of 5.

Then A U B = the set of all integers in [1, 1000] that are multiples of 3 or 5.

Then A N B = the set of all integers in [1, 1000] that are multiples of both 3 and 5
= the set of all integers in [1, 1000] that are multiples of 15.

Every multiple of 3 in [1, 1000] has the form 3k,

for some integer kin [1, 333]. Hence, |A| =333

Every multiple of 5 in [1, 1000] has the form 5k, Hence, | B| = 200
for some integer k in [1, 200]. ’

Every multiple of 15 in [1, 1000] has the form 15k, Hence,|A N B| = 66
for some integer k in [1, 66].

|AUB| =|A| +|B|—-|AnNB]| Thus, 467 integers from 1 through 1000
=333+200-66 =467 are multiples of 3 or multiples of 5.
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The Inclusion/Exclusion Rule

b. How many integers from 1 through 1,000 are neither
multiples of 3 nor multiples of 57

There are 1000 integers in [1, 1000].
By part (a), 467 of these are multiples of 3 or multiples of 5.

Thus, by the difference rule, there are 1000 — 467 = 533 that
are neither multiples of 3 nor multiples of 5.

Note that the solution to part (b) hid a use of De Morgan’s law.
The number of elements that are neither in A norin Bis |4 N B].
By De Morgan’s law, AN B = (AU B).

So |A U B| was then calculated using the set difference rule:
JAUB| = |U|—|AUB|
where the universe U was the set of all integers in [1, 1000].
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9.4 The Pigeonhole Principle (PHP)
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The Pigeonhole Principle: Introduction

The Pigeonhole Principle: Introduction

If n pigeons fly into m pigeonholes and n > m,

then at least one hole must contain two or
more pigeons.

= /2 “'?‘» @ @.‘SA)‘.3\:~
= =N
a4 “% ; ;‘a;( ' s \i

Pigeons Pigeonholes

#

L
b ”
po
8
£
SHC
\
£
&

Figure 9.4.1n=5and m=4
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The Pigeonhole Principle: Introduction

The pigeonhole principle is sometimes called the
Dirichlet box principle because it was first stated
formally by J. P. G. L. Dirichlet (1805-1859).

Mathematical formulation:

Pigeons Pigeonholes

Pigeonhole Principle (PHP)

A function from one finite set to a
smaller finite set cannot be one-to-
one: There must be at least 2
elements in the domain that have
the same image in the co-domain.

Ve L
5 &
&

Epp uses the terms one-to-one for
injective, and onto for surjective. >
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The Pigeonhole Principle: Introduction

Example 10 — Applying the Pigeonhole Principle s

a. In agroup of six people, must there be at least
two who were born in the same month? No.

In a group of 13 people, must there be at least
two who were born in the same month? Why?

13 people (pigeons) 12 months (pigeonholes)

B

—

Yes. At least 2
people must
have been
born in the
same month.

B(x;) = birth month of x;
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The Pigeonhole Principle: Introduction VIV
Example 10 — Applying the Pigeonhole Principle m

b. Among the population of Singapore, are there
at least two people with the same number of
hairs on their heads? Why?

Population of Singapore: 5.47m (June 2014).

LA

Hairs on head: average up to 150,000; no more
than 300,000.

Define a function H from the set of people in
Singapore {x;, X,, ... xp} to the set {0, 1, 2, ...
300000} as shown in the next slide.
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The Pigeonhole Principle: Introduction

Example 10 — Applying the Pigeonhole Principle

b. Among the population of Singapore, are
at least two people with the same number of
hairs on their heads? Why?

People in Singapore Possible number of hairs on

(pigeons) a person's head (pigeonholes)
H

—

Yes. At least 2
people must
have the same
number of hairs
on their heads.

H(x;) = the number of
hairs on x;'s head
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Application to Decimal Expansions of Fractions

Application to Decimal Expansions of Fractions

One important consequence of the pigeonhole principle
is the fact that the decimal expansion of any rational
number either terminates or repeats.

A terminating decimal: 3.625

A repeating decimal: 2.38246 (2.38246246246246...)

A rational number can be written as a fraction a/b, bz0.

When one integer is divided by another, it is the
pigeonhole principle (together with the quotient-
remainder theorem) that guarantees that such a

repetition of remainders (and hence decimal digits) must
always occur.

59



Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets The Pigeonhole Principle
OO0 O OO0 00O OO0 O (oX Ne)

Application to Decimal Expansions of Fractions

Consider a/b, where for simplicity assume that a and b are
positive. The decimal expansion of a/b is obtained by dividing a
by b as illustrated here for a =3 and b = 14.

Letro=aandletry, ry, r3, ... bethe successive 2142857142857,

remainders obtained in the long division of a '4%) 200000000000000
by b. 20

- ®0 o
By the quotient-remainder theorem (Theorem 28
8.1.16: Division Theorem), each remainder must 2 )
be between 0 and b — 1. (Here, b is 14, and so 12 =1
the remainders are from 0 to 13.) o

aoo .

If some remainder r; = 0, then the division %9 o
terminates and a/b has a terminating decimal 1

expansion. If no r; = 0, then the division process and s "
hence the sequence of remainders continues L
forever. -
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Application to Decimal Expansions of Fractions

By the PHP, since there are more remainders than values that the
remainders can take, some remainder value must repeat: r;=ry,
for some indices j and k with j < k.

Sequence of remainders Values of remainders when b = 14

It follows that the .0
decimal digits obtained .
\

from the divisions F(r;) = value "“\

1

. \
between r;and r, / j |
repeat forever. T

In the case of 3/14, the repetltlon begins with r;, =2 =r; and the
decimal expansion repeats the quotients obtained from the
divisions from r; through r forever:

3/14 =0.2142857
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Generalized Pigeonhole Principle
Generalized Pigeonhole Principle

If n pigeons fly into m pigeonholes and, for some positive
integer k, k < n/m, then at least one pigeonhole contains

k + 1 or more pigeons.

Generalized Pigeonhole Principle

For any function f from a finite set X with n elements
to a finite set Y with m elements and for any positive

integer k, if k < n/m, then there is some y € Y such
that y is the image of at least k + 1 distinct elements

of X.
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Generalized Pigeonhole Principle
Example 11 — Applying the General Pigeonhole Principle

Show how the generalized pigeonhole principle
implies that in a group of 85 people, at least 4 must

have the same last initial (‘A’, ‘B, ..., ‘Z’).

In this example the pigeons are the 85 people and the
pigeonholes are the 26 possible last initials of their

names. Note that
3<85/26=3.27
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Generalized Pigeonhole Principle
Example 11 — Applying the General Pigeonhole Principle

85 people (pigeons) 26 initials (pigeonholes)

Consider the function

L from people to
initials defined by the

following arrow
diagram.

—

L(x;) = the initial of
X;'s last name

Since 3 < 85/26, the generalized pigeonhole principle
states that some initial must be the image of at least

four (3 + 1) people.

Thus, at least 4 people have the same last initial. =
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Generalized Pigeonhole Principle

Consider the following contrapositive form of the
generalized pigeonhole principle. You may find it
natural to use the contrapositive form of the
generalized pigeonhole principle in certain situations.

Generalized Pigeonhole Principle (Contrapositive Form)

For any function f from a finite set X with n elements
to a finite set Y with m elements and for any positive

integer k, if for each y € Y, f~}({y}) has at most k
elements, then X has at most km elements; in other

words, n < km.
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Generalized Pigeonhole Principle

For instance, the result of Example 11 can be explained
as follows:

Suppose no 4 people out of the 85 had the same last
initial. Then at most 3 would share any particular one.

By the generalized pigeonhole principle (contrapositive
form), this would imply that the total number of
people is at most 3 x 26 = 78. But this contradicts the
fact that there are 85 people in all.

Hence at least 4 people share a last initial.
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Example 12 — Using the General Pigeonhole Principle (Contrapositive)

There are 42 students who are to share 12 computers.

Each student uses exactly 1 computer, and no
computer is used by more than 6 students. Show that

at least 5 computers are used by 3 or more students.

Using an Argument by Contradiction: Suppose not.

Suppose that 4 or fewer computers are used by 3 or
more students. [A contradiction will be derived.] Then 8

or more computers are used by 2 or fewer students.
Divide the set of computers into two subsets: C, and

C,.
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Generalized Pigeonhole Principle

Into C, place 8 of the computers used by 2 or fewer
students; into C, place the computers used by 3 or
more students plus any remaining computers (to make
a total of 4 computers in G,).

VIR RIS | VR VR

Each of these computers Some or all of these computers serve v"‘
serves at most 2 students. 3 or more students. Each computer  /
So the maximum number serves at most 6 students. So the
served by these computers is maximum number served by these
2 -8=:16: computers is 6 - 4 = 24,

€ C,

Figure 9.4.3 The set of 12 computers 68
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Generalized Pigeonhole Principle

Since at most 2 students are served by Since at most 6 students are served by
any one computer in C;, by the sl Gle computer in G, bY the
generalized pigeonhole principle generalized pigeonhole principle

(contrapositive form), the computers in (contrapositive form), the computers in
’ set C, serve at most 6 x 4 = 24 students.
set C; serve at most 2 x 8 = 16 students.

Total number of students served by the computers is at most 24 + 16 = 40.
This contradicts that there are 42 students, each served by a computer.

Therefore, the supposition is false.

NSNSV ISR | VR

Each of these computers Some or all of these computers serve

serves at most 2 students. 3 or more students. Each computer

So the maximum number serves at most 6 students. So the

served by these computers is maximum number served by these

2 -8=:16: computers is 6 - 4 = 24,
C, c,

Figure 9.4.3 The set of 12 computers 69
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Generalized Pigeonhole Principle

Using a Direct Argument: Let k be the number of
computers used by 3 or more students. [We must show that k> 5.]

Because each computer is used by at most 6 students, these computers are
used by at most 6k students (by the generalized PHP (contrapositive form)).

Each of the remaining 12 — k computers is used by at most 2 students.

Taken together, they are used by at most 2(12 — k) = 24 — 2k students (again, by
the generalized PHP).

Thus the maximum number of students served by the computers
is 6k + (24 — 2k) = 4k + 24.

Because 42 students are served by the computers, 4k + 24 > 42.

Solving for k gives k > 4.5, and since k is an integer, this implies
that k> 5.



Next week’s lectures

More on Counting!

= Combinations

* r-Combinations

" Pascal’s Formula and the Binomial Theorem

= Probability Axioms and Expected Value

* Conditional Probability, Bayes’ Formula, and
Independent Events
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