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10. Counting and Probability 1

9.1 Introduction

• Random process, sample space, event and probability

9.2 Possibility Trees and the Multiplication Rule

• Possibility trees

• The multiplication/product rule

• Permutations

9.3 Counting Elements of Disjoint Sets

• The addition/sum rule

• The difference rule

• The inclusion/exclusion rule

9.4 The Pigeonhole Principle (PHP)

• Pigeonhole principle, general pigeonhole principle
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Reference: Epp’s Chapter 9 Counting and Probability

This lecture is based on Epp’s book chapter 9. 
Hence, the section numbering is according to the book.
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9.1 Introduction
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▪ Counting schemes covered

▪ Basics of counting: product/multiplication rule and 
sum/addition rule

▪ Permutations, with or without repetitions

▪ Combinations, with or without repetitions

▪ Inclusion-exclusion principle

▪ Pigeonhole principle (Dirichlet drawer principle)

Counting
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Counting

▪ Counting has important applications in Computer 
Science

▪ Determining complexity of algorithms

▪ Computing discrete probability of some events

▪ Example: How many times is the routine this() called in 
the following algorithm? 

process(n, m) {
 while (n>0) {
  for j  1 to m {
   this(j);
  }
  n = n/2;
 }
}
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
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Two heads 
obtained

One head obtained
No heads 
obtained

1/4 2/4 1/4

▪ 0, 1 or 2 heads?
▪ Does each of these events 

occur about 1/3 of the time?

Tossing two coins
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Table 9.1.1. Relative frequencies.
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Formalizing the analysis, we introduce:
▪ random process
▪ sample space
▪ event
▪ probability
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To say that a process is random means that when it 
takes place, one outcome from some set of outcomes is 
sure to occur, but it is impossible to predict with 
certainty which outcome that will be.
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Definitions

A sample space is the set of all possible outcomes of a 
random process or experiment. 
An event is a subset of a sample space.
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Equally Likely Probability
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Notation

For a finite set A, |A| denotes the number of elements in A.

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are 
equally likely and E is an event in S, then the 
probability of E, denoted P(E), is

P(E) = The number of outcomes in E
The total number of outcomes in S

=
|E|

|S|

Note: Epp uses N(A) to denote the number of elements in A.
 For consistency with earlier topic (Sets), we shall use |A|. 

Also, we deal with finite sets here. Infinite sets will be 
discussed another time.
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Rolling a Pair of Dice
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A more compact notation identifies, say,               with 
the notation 24,              with 53, and so forth.

a. Use the compact notation to write the sample 
space S of possible outcomes.

b. Use set notation to write the event E that the 
numbers showing face up have a sum of 6 and find 
the probability of this event.



S = { 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 
         41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66 } 

E = { 15, 24, 33, 42, 51 } P(E) = 5/36
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Counting the Elements of a List

Some counting problems are as simple as counting the 
elements of a list.

Eg: How many integers are there from 5 through 12? 
list: 5 6 7 8 9 10 11 12

count: 1 2 3 4 5  6  7  8

Theorem 9.1.1 The Number of Elements in a List

If m and n are integers and m  n, then there are 

  n – m + 1

integers from m to n inclusive.
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a. How many 3-digit integers (from 100 to 999 
inclusive) are divisible by 5?

100 101  102  103  104  105  106  107  108  109  110 … 994  995  996  997  998  999

520 521 522 5199

From Theorem 9.1.1, there are 199 – 20 + 1 = 180 such integers.

Hence, there are 180 3-digit integers that are divisible by 5. 



b. What is the probability that a randomly chosen 3-digit 
integer is divisible by 5?

By Theorem 9.1.1, total number of integers 
from 100 through 999 = 999 – 100 + 1 = 900.

By part (a), 180 of these are divisible by 5.

Hence, answer = 180/900 = 1/5.
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9.2 Possibility Trees and the Multiplication Rule
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Possibility Trees

A tree structure is a useful tool for 
keeping systematic track of all 
possibilities in situations in which 
events happen in order.

Example 1: Possibilities for Tournament Play

Teams A and B are to play each other repeatedly until 
one wins two games in a row, or a total of three games.

One way in which this tournament can be played is for 
A to win the first game, B to win the second, and A to 
win the third and fourth games. Denote this by writing 
A–B–A–A.

H T

H T H T

H T H T H T H T

Coin 1

Coin 2

Coin 3
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Example 1: Possibilities for Tournament Play

a. How many ways can the tournament be played?

Possible ways are represented by the distinct paths from 
“root” (the start) to “leaf” (a terminal point) in the tree below.

Figure 9.2.1 The Outcomes of a Tournament
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Example 1: Possibilities for Tournament Play

a. How many ways can the tournament be played?

Ten paths from the root of the tree to its leaves ➔ 
ten possible ways for the tournament to be played.

1. A-A
2. A-B-A-A
3. A-B-A-B-A
4. A-B-A-B-B
5. A-B-B

6. B-A-A
7. B-A-B-A-A
8. B-A-B-A-B
9. B-A-B-B
10. B-B
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Example 1: Possibilities for Tournament Play

b. Assuming that all the ways of playing the tournament 
are equally likely, what is the probability that five 
games are needed to determine the tournament 
winner?

Probability that 5 games are needed = 4/10 = 2/5

1. A-A
2. A-B-A-A
3. A-B-A-B-A
4. A-B-A-B-B
5. A-B-B

6. B-A-A
7. B-A-B-A-A
8. B-A-B-A-B
9. B-A-B-B
10. B-B
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The Multiplication/Product Rule

Consider the following example. 

Suppose a computer installation has four input/output 
units (A, B, C, and D) and three central processing units 
(X, Y, and Z).

Any input/output unit can be paired with any central 
processing unit. How many ways are there to pair an 
input/output unit with a central processing unit?
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Possibility tree:

Figure 9.2.2 Pairing Objects 
Using a Possibility Tree

The total number of 
ways to pair the two 
types of units…

is the same as the 
number of branches 
of the tree:
3 + 3 + 3 + 3 = 43 = 
12



 Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets  The Pigeonhole Principle 

The Multiplication/Product Rule

21

Theorem 9.2.1 The Multiplication/Product Rule

If an operation consists of k steps and

 the first step can be performed in n1 ways,

 the second step can be performed in n2 ways 
(regardless of how the first step was performed),

                                     :

 the kth step can be performed in nk ways
 (regardless of how the preceding steps were performed),
Then the entire operation can be performed in

  n1  n2  n3  …  nk ways.
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A typical PIN is a sequence of any four symbols chosen from 
the 26 letters in the alphabet and the ten digits, with 
repetition allowed. Examples: CARE, 3387, B32B, and so forth.

How many different PINs are possible?

Example 2: No. of Personal Identification Numbers (PINs)

You can think of forming 
a PIN as a four-step 
operation to fill in each
of the four symbols in
sequence.

Hence, by the multiplication rule, there are:
36363636 = 364 = 1,679,616 PINs in all.
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Example 3: No. of PINs without Repetition

Now, suppose that repetition is not allowed.

a. How many different PINs are there?

Step 1: Choose the 1st symbol.
Step 2: Choose the 2nd symbol.
Step 3: Choose the 3rd symbol.
Step 4: Choose the 4th symbol.

36 ways
35 ways



34 ways

33 ways

Hence, by the multiplication rule, 
there are:
36353433 = 1,413,720 PINs in 
all with no repeated symbol.

b. If all PINs are equally likely, what is the probability that 
a PIN chosen at random contains no repeated symbols?

1,679,616 PINS in all.
1,413,720 PINs with no repeated symbol.

Hence, probability that a PIN chosen at 
random contains no repeated symbols: 

1,413,720
1,679,616

 0.8417
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Power set

Let 𝐴 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 . Then 𝐴 = 𝑛.

A subset of 𝐴 is formed by picking or dropping 𝑎𝑖  from 𝐴, 
for 𝑖 = 1,2, … , 𝑛. 

Theorem 5.2.4 (Sets)

Suppose 𝐴 is a finite set. Then 𝒫 𝐴 = 2|𝐴|.

{ 𝑎1  𝑎2  𝑎3  𝑎4 ⋯ 𝑎𝑛 }
   

{𝑎1, 𝑎3, 𝑎𝑛}Examples:

{ 𝑎1  𝑎2  𝑎3  𝑎4 ⋯ 𝑎𝑛 }
   

∅

Since there are 2 choices (pick or drop) for every element 𝑎𝑖  
and there are 𝑛 elements, by the multiplication rule there 
are 2𝑛 ways of forming a subset.
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When the Multiplication Rule is Difficult/Impossible to Apply

Example 4: Consider the following problem:

Three officers – a president, a treasurer, and a secretary – are to 
be chosen from among four people: Ann, Bob, Cyd, and Dan. 
Suppose that, for various reasons, Ann cannot be president and 
either Cyd or Dan must be secretary. How many ways can the 
officers be chosen?

It is natural to try to solve this problem using the multiplication 
rule. A person might answer as follows:

There are three choices for president (all except Ann), three 
choices for treasurer (all except the one chosen as president), 
and two choices for secretary (Cyd or Dan).

Therefore, by the multiplication rule, 332 = 18

Is this correct?
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It is incorrect. The number of ways to choose the 
secretary varies depending on who is chosen for 
president and treasurer.

For instance, if Bob is chosen for president and Ann 
for treasurer, then there are two choices for 
secretary: Cyd and Dan.

But if Bob is chosen for president and Cyd for 
treasurer, then there is just one choice for secretary: 
Dan.
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The clearest way to see all the possible choices is to 
construct the possibility tree, as shown below.

Figure 9.2.3

How many ways?

8 ways.
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Example 5: A More Subtle Use of the Multiplication Rule

Reorder the steps for choosing the officers in the 
previous example so that the total number of ways to 
choose officers can be computed using the 
multiplication rule.

Step 1: Choose the secretary.
Step 2: Choose the president.
Step 3: Choose the treasurer.

2 ways: Either Cyd or Dan.

2 ways: Neither Ann nor 
the person chosen in step 
1 may be chosen, but 
either of the other two 
may.

2 ways: Either of the 2 persons 
not chosen in steps 1 and 2 may 
be chosen.

Hence, total number of ways = 2 2 2 = 8
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A possibility tree illustrating this sequence of choices:

Figure 9.2.4
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Given 26 scrabble tiles with letters ‘A’ to ‘Z’,

what is the probability of drawing 
“ICANDOIT” if…

a. you must not return the tile after it is 
drawn.

b. you must return the tile after it is drawn.

0

(1/26)8


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Summary

Principle of Product (or the Multiplication Principle)

If there are m ways of doing something and n ways of doing 
another thing, then there are mn ways of performing both 
actions.

Principle of Sum (or the Addition Principle)

If we have m ways of doing something and n ways of doing 
another thing and we cannot do both at the same time, then 
there are m+n ways to choose one of these actions.
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Permutations

A permutation of a set of objects is an ordering of the 
objects in a row. For example, the set of elements a, b, 
and c has six permutations.

abc acb cba bac bca cab

In general, given a set of n objects, how many 
permutations does the set have? 
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Permutations

Imagine forming a permutation as an n-step operation:

Step 1: Choose an element to write first.

Step 2: Choose an element to write second.

Step 3: Choose an element to write third.

 :

Step n: Choose an element to write nth.

 n ways

 n – 1 ways

 n – 2 ways

 1 way

By the multiplication rule, there are

 n  (n – 1)  (n – 2)  …  2  1 = n!

ways to perform the entire operation.
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Theorem 9.2.2 Permutations

The number of permutations of a set with n 
(n  1) elements is n! 

Permutations

0! is defined to be 1.
(See https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-
comb/x9e81a4f98389efdf:combinatorics-precalc/v/zero-factorial-or-0) 
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https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-comb/x9e81a4f98389efdf:combinatorics-precalc/v/zero-factorial-or-0
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https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-comb/x9e81a4f98389efdf:combinatorics-precalc/v/zero-factorial-or-0
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:prob-comb/x9e81a4f98389efdf:combinatorics-precalc/v/zero-factorial-or-0
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a. How many ways can the letters in the word COMPUTER be 
arranged in a row? 

Example 6 – Permutations of the Letters in a Word

All the eight letters in the word COMPUTER are distinct. 
Hence, 8! = 40320.

b. How many ways can the letters in the word COMPUTER be 
arranged if the letters CO must remain next to each other (in 
order) as a unit? 

7! = 5040.



c. If letters of the word COMPUTER are randomly arranged in a 
row, what is the probability that the letters CO remain next 
to each other (in order) as a unit? 𝟕!

𝟖!
=

𝟏

𝟖
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Permutations of Selected Elements

Given the set {a, b, c}, there are six ways to select two 
letters from the set and write them in order.

ab ac ba bc ca cb

Each such ordering of two elements of {a, b, c} is called 
a 2-permutation of {a, b, c}?.

Definition

An r-permutation of a set of n elements is an ordered 
selection of r elements taken from the set.
The number of r-permutations of a set of n elements 
is denoted P(n, r).

Other notations: nPr , 𝑃 𝑟
𝑛
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Theorem 9.2.3 r-permutations from a set of n elements

If n and r are integers and 1  r  n, then the 
number of r-permutations of a set of n elements 
is given by the formula

 P(n, r) = n(n – 1)(n – 2) … (n – r + 1) first version

or, equivalently,

  P(n, r) = second version
n!

(n – r)!
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a. Evaluate P(5, 2).

b. How many 4-permutations are there of a set of 
seven objects? 

P(5, 2) = 5! / (5 – 2)! = 5  4 = 20

P(7, 4) = 7! / (7 – 4)! = 7  6  5  4 = 840

c. How many 5-permutations are there of a set of five 
objects? 

P(5, 5) = 5! / (5 – 5)! = 5! = 120


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9.3 Counting Elements of Disjoint Sets
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Counting Elements of Disjoint Sets: The Addition/Sum Rule

The addition rule (or sum rule) states that the number of 
elements in a union of mutually disjoint finite sets equals the 
sum of the number of elements in each of the component sets.

Theorem 9.3.1 The Addition/Sum Rule

Suppose a finite set A equals the union of k 
distinct mutually disjoint subsets A1, A2, …, Ak. 
Then
 |A| = |A1| + |A2| + … + |Ak|.
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Example 7 – Counting Passwords with 3 or fewer Letters

A computer access password consists of from one to 
three letters chosen from the 26 letters in the 
alphabet with repetitions allowed. How many 
different passwords are possible?

The set of all passwords can be partitioned into 
subsets consisting of those of length 1, length 2, and 
length 3:

Figure 9.3.1 
Set of all passwords 
of length  3
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Counting Elements of Disjoint Sets: The Addition/Sum Rule

Example 7 – Counting Passwords with 3 or fewer Letters

By the addition rule, the total number of passwords 
equals the sum of the number of passwords of length 
1, length 2, and length 3. 

Number of passwords of length 1 = 26

Number of passwords of length 2 = 262

Number of passwords of length 3 = 263

Hence, total number of passwords = 26 + 262 + 263

 = 18,278.
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The Difference Rule

The Difference Rule

An important consequence of the addition rule is the 
fact that if the number of elements in a set A and the 
number in a subset B of A are both known, then the 
number of elements that are in A and not in B can be 
computed.

Theorem 9.3.2 The Difference Rule

If A is a finite set and B  A, then
 |A \ B| = |A| – |B|.
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The Difference Rule

The difference rule holds for the following reason: 
If B  A, then the two sets B and A \ B have no 
elements in common and B  (A \ B) = A. 

Hence, by the addition rule,

 |B| + |A \ B| = |A|.

Subtracting |B| from both sides gives the equation

 |A \ B| = |A| – |B|.

A

B
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The Difference Rule

A typical PIN (personal identification number) is a 
sequence of any four symbols chosen from the 26 
letters in the alphabet and the ten digits, with 
repetition allowed.

Example 8 – Counting PINs with Repeated Symbols

a. How many PINs contain repeated symbols?

There are 364 = 1,679,616 PINs when repetition is 
allowed, and there are 36  35  34  33 = 1,413,720 
PINs when repetition is not allowed.

By the difference rule, there are
  1,679,616 – 1,413,720 = 265,896
PINS that contain at least one repeated symbol.
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The Difference Rule

Example 8 – Counting PINs with Repeated Symbols

b. If all PINs are equally likely, what is the probability 
that a randomly chosen PIN contains a repeated 
symbol?

There are 1,679,616 PINs in all, and by part (a) 265,896 
of these contain at least one repeated symbol.

Thus, the probability that a randomly chosen PIN 
contains a repeated symbol is

265,896
1,679,616

 0.158
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The Difference Rule

Example 8 – Counting PINs with Repeated Symbols

An alternative solution to part (b) is based on the 
observation that if S is the set of all PINs and A is the 
set of all PINs with no repeated symbol, then S \ A is 
the set of all PINs with at least one repeated symbol.

It follows that:

|S \ A|
|S|

P(S \ A) =
|S| – |A|

|S|=

|S|
|S|= –

|A|
|S|

= 1 – P(A) 
P(S \ A)  1 – 0.842
                0.158

P(A) =  
1,413,720
1,679,616

 0.842 
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The Difference Rule

This solution illustrates a more general property of 
probabilities: that the probability of the complement of 
an event is obtained by subtracting the probability of 
the event from the number 1.

Formula for the Probability of the Complement of 
an Event

If S is a finite sample space and A is an event in S, then

 𝑃 ҧ𝐴 = 1 − 𝑃(𝐴)

Probability of the Complement of an Event
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The Inclusion/Exclusion Rule

The Inclusion/Exclusion Rule

The addition rule says how many elements are in a 
union of sets if the sets are mutually disjoint. Now 
consider the question of how to determine the number 
of elements in a union of sets when some of the sets 
overlap. 

For simplicity, begin by 
looking at a union of 
two sets A and B, as 
shown in Figure 9.3.5.

Figure 9.3.5
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The Inclusion/Exclusion Rule

To get an accurate count of the elements in 𝐴 ∪ 𝐵, it 
is necessary to subtract the number of elements that 
are in both A and B, i.e. 𝐴 ∩ 𝐵,

 |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

Theorem 9.3.3 The Inclusion/Exclusion Rule for 2 or 3 Sets

If A, B, and C are any finite sets, then
 |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
and
  |𝐴 ∪ 𝐵 ∪ 𝐶| = |𝐴| + |𝐵| + |𝐶| − |𝐴 ∩ 𝐵|

                              −|𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶|
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The Inclusion/Exclusion Rule

a. How many integers from 1 through 1,000 are multiples of 3 or 
multiples of 5?

Example 9 – Counting Elements of a General Union

Let A = the set of all integers in [1, 1000] that are multiples of 3.
Let B = the set of all integers in [1, 1000] that are multiples of 5.

Then A  B = the set of all integers in [1, 1000] that are multiples of 3 or 5.

Then A  B = the set of all integers in [1, 1000] that are multiples of both 3 and 5
                     = the set of all integers in [1, 1000] that are multiples of 15.

Every multiple of 3 in [1, 1000] has the form 3k, 
for some integer k in [1, 333]. Hence,|A| = 333

Every multiple of 5 in [1, 1000] has the form 5k, 
for some integer k in [1, 200].

Hence,|B| = 200

Every multiple of 15 in [1, 1000] has the form 15k, 
for some integer k in [1, 66].

Hence,|A  B| = 66

|A  B| = |A| + |B| – |A  B|

 = 333 + 200 – 66 = 467

Thus, 467 integers from 1 through 1000 
are multiples of 3 or multiples of 5.
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The Inclusion/Exclusion Rule

b. How many integers from 1 through 1,000 are neither 
multiples of 3 nor multiples of 5?

There are 1000 integers in [1, 1000].
By part (a), 467 of these are multiples of 3 or multiples of 5.

Thus, by the difference rule, there are 1000 – 467 = 533 that 
are neither multiples of 3 nor multiples of 5. 

Note that the solution to part (b) hid a use of De Morgan’s law.

The number of elements that are neither in A nor in B is | ҧ𝐴 ∩ ത𝐵|.
By De Morgan’s law, ҧ𝐴 ∩ ത𝐵 = (𝐴 ∪ 𝐵).

So |𝐴 ∪ 𝐵| was then calculated using the set difference rule: 
|𝐴 ∪ 𝐵| = |𝑈| − |𝐴 ∪ 𝐵|

where the universe 𝑈 was the set of all integers in [1, 1000].
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9.4 The Pigeonhole Principle (PHP)
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The Pigeonhole Principle: Introduction

The Pigeonhole Principle: Introduction

If n pigeons fly into m pigeonholes and n > m, 
then at least one hole must contain two or 
more pigeons.

Figure 9.4.1 n = 5 and m = 4
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The Pigeonhole Principle: Introduction

The pigeonhole principle is sometimes called the 
Dirichlet box principle because it was first stated 
formally by J. P. G. L. Dirichlet (1805–1859).

Mathematical formulation:

Pigeonhole Principle (PHP)

A function from one finite set to a 
smaller finite set cannot be one-to-
one: There must be at least 2 
elements in the domain that have 
the same image in the co-domain.

Epp uses the terms one-to-one for 
injective, and onto for surjective.
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The Pigeonhole Principle: Introduction

a. In a group of six people, must there be at least 
two who were born in the same month?

 In a group of 13 people, must there be at least 
two who were born in the same month? Why?

Example 10 – Applying the Pigeonhole Principle

No.

Yes. At least 2 
people must 
have been 
born in the 
same month.
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The Pigeonhole Principle: Introduction

b. Among the population of Singapore, are there 
at least two people with the same number of 
hairs on their heads? Why?

Example 10 – Applying the Pigeonhole Principle

Population of Singapore: 5.47m (June 2014).

Hairs on head: average up to 150,000; no more 
than 300,000.

Define a function H from the set of people in 
Singapore {x1, x2, … xp} to the set {0, 1, 2, … 
300000} as shown in the next slide.
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The Pigeonhole Principle: Introduction

b. Among the population of Singapore, are there 
at least two people with the same number of 
hairs on their heads? Why?

Example 10 – Applying the Pigeonhole Principle

People in Singapore

Yes. At least 2 
people must 
have the same 
number of hairs 
on their heads.
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Application to Decimal Expansions of Fractions

One important consequence of the pigeonhole principle 
is the fact that the decimal expansion of any rational 
number either terminates or repeats.

Application to Decimal Expansions of Fractions

A terminating decimal: 3.625 

A repeating decimal: 2.38246 (2.38246246246246…)

A rational number can be written as a fraction a/b, b≠0.

When one integer is divided by another, it is the 
pigeonhole principle (together with the quotient-
remainder theorem) that guarantees that such a 
repetition of remainders (and hence decimal digits) must 
always occur. 



 Introduction Possibility Trees and Multiplication Rule Counting Elements of Disjoint Sets  The Pigeonhole Principle 

 

60

Application to Decimal Expansions of Fractions

Consider a/b, where for simplicity assume that a and b are 
positive. The decimal expansion of a/b is obtained by dividing a 
by b as illustrated here for a = 3 and b = 14.

Let r0 = a and let r1, r2, r3, . . . be the successive 
remainders obtained in the long division of a 
by b.

By the quotient-remainder theorem (Theorem 

8.1.16: Division Theorem), each remainder must 
be between 0 and b – 1. (Here, b is 14, and so 
the remainders are from 0 to 13.)

If some remainder ri = 0, then the division 
terminates and a/b has a terminating decimal 
expansion. If no ri = 0, then the division process and 
hence the sequence of remainders continues 
forever.
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Application to Decimal Expansions of Fractions

By the PHP, since there are more remainders than values that the 
remainders can take, some remainder value must repeat: rj = rk, 
for some indices j and k with j < k.

It follows that the 
decimal digits obtained 
from the divisions 
between rj and rk – 1 
repeat forever.

In the case of 3/14, the repetition begins with r7 = 2 = r1 and the 
decimal expansion repeats the quotients obtained from the 
divisions from r1 through r6 forever:

 3/14 = 0.2142857
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Generalized Pigeonhole Principle

If n pigeons fly into m pigeonholes and, for some positive 
integer k, k < n/m, then at least one pigeonhole contains 
k + 1 or more pigeons.

Generalized Pigeonhole Principle

Generalized Pigeonhole Principle

For any function f from a finite set X with n elements 
to a finite set Y with m elements and for any positive 
integer k, if k < n/m, then there is some y  Y such 
that y is the image of at least k + 1 distinct elements 
of X.
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Generalized Pigeonhole Principle

Show how the generalized pigeonhole principle 
implies that in a group of 85 people, at least 4 must 
have the same last initial (‘A’, ‘B’, …, ‘Z’).

Example 11 – Applying the General Pigeonhole Principle

In this example the pigeons are the 85 people and the 
pigeonholes are the 26 possible last initials of their 
names. Note that

3 < 85/26  3.27
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Generalized Pigeonhole Principle

Consider the function 
L from people to 
initials defined by the 
following arrow 
diagram.

Example 11 – Applying the General Pigeonhole Principle

Since 3 < 85/26, the generalized pigeonhole principle 
states that some initial must be the image of at least 
four (3 + 1) people.

Thus, at least 4 people have the same last initial.
◼
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Generalized Pigeonhole Principle

Consider the following contrapositive form of the 
generalized pigeonhole principle. You may find it 
natural to use the contrapositive form of the 
generalized pigeonhole principle in certain situations.

Generalized Pigeonhole Principle (Contrapositive Form)

For any function f from a finite set X with n elements 
to a finite set Y with m elements and for any positive 
integer k, if for each y  Y, f –1({y}) has at most k 
elements, then X has at most km elements; in other 
words, n  km.
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Generalized Pigeonhole Principle

For instance, the result of Example 11 can be explained 
as follows:

Suppose no 4 people out of the 85 had the same last 
initial. Then at most 3 would share any particular one.

By the generalized pigeonhole principle (contrapositive 
form), this would imply that the total number of 
people is at most 3  26 = 78. But this contradicts the 
fact that there are 85 people in all.

Hence at least 4 people share a last initial.
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Generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. 
Each student uses exactly 1 computer, and no 
computer is used by more than 6 students. Show that 
at least 5 computers are used by 3 or more students. 

Example 12 – Using the General Pigeonhole Principle (Contrapositive)

Using an Argument by Contradiction: Suppose not. 
Suppose that 4 or fewer computers are used by 3 or 
more students. [A contradiction will be derived.] Then 8 
or more computers are used by 2 or fewer students.

Divide the set of computers into two subsets: C1 and 
C2.
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Generalized Pigeonhole Principle

Into C1 place 8 of the computers used by 2 or fewer 
students; into C2 place the computers used by 3 or 
more students plus any remaining computers (to make 
a total of 4 computers in C2).

Figure 9.4.3 The set of 12 computers
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Generalized Pigeonhole Principle

Since at most 2 students are served by 
any one computer in C1, by the 
generalized pigeonhole principle 
(contrapositive form), the computers in 
set C1 serve at most 2  8 = 16 students.

Since at most 6 students are served by 
any one computer in C2, by the 
generalized pigeonhole principle 
(contrapositive form), the computers in 
set C2 serve at most 6  4 = 24 students.

Figure 9.4.3 The set of 12 computers

Total number of students served by the computers is at most 24 + 16 = 40.

This contradicts that there are 42 students, each served by a computer.

Therefore, the supposition is false.
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Generalized Pigeonhole Principle

Using a Direct Argument: Let k be the number of 
computers used by 3 or more students. [We must show that k  5.] 

Because each computer is used by at most 6 students, these computers are 
used by at most 6k students (by the generalized PHP (contrapositive form)).

Each of the remaining 12 – k computers is used by at most 2 students.

Taken together, they are used by at most 2(12 – k) = 24 – 2k students (again, by 
the generalized PHP).

Thus the maximum number of students served by the computers 
is 6k + (24 – 2k) = 4k + 24.

Because 42 students are served by the computers, 4k + 24  42.

Solving for k gives k  4.5, and since k is an integer, this implies 
that k  5.
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Next week’s lectures

More on Counting!

▪ Combinations
▪ r-Combinations
▪ Pascal’s Formula and the Binomial Theorem
▪ Probability Axioms and Expected Value
▪ Conditional Probability, Bayes’ Formula, and 

Independent Events
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END OF FILE
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