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11. Counting and Probability 2 This lecture is based on Epp’s book chapter 9.
Hence, the section numbering is according to the book.

9.5 Counting Subsets of a Set: Combinations

e r-combination, r-permutation, permutations of a set with repeat elements,
partitions of a set into r subsets

9.6 r-Combinations with Repetition Allowed

e Multiset
e Formula to use depends on whether (1) order matters, (2) repetition is allowed

9.7 Pascal’s Formula and the Binomial Theorem
9.8 Probability Axioms and Expected Value

e Probability axioms, complement of an event, general union of two events,
expected value

9.9 Conditional Probability, Bayes’ Formula, and Independent Events

Reference: Epp’s Chapter 9 Counting and Probability 2



Combinations r-Combinations with Repetition Pascal’s Formula and the Binomial Theorem
@O O (ON®©) O NON®)

9.5 Counting Subsets of a Set: Combinations




Combinations r-Combinations with Repetition Pascal’s Formula and the Binomial Theorem
[ JoNe (oNe) OO0 O

Counting Subsets of a Set: Combinations

Counting Subsets of a Set: Combinations

" @Given a set S with n elements, how many subsets of size r
can be chosen from S?

= Each subset of size ris called an r-combination of the set.

Definition: r-combination

Let n and r be non-negative integers with r <n.

An r-combination of a set of n elements is a subset of
r of the n elements.

(Z’) , read “n choose r”, denotes the number of

subsets of size r (r-combinations) that can be chosen
from a set of n elements.

Other symbols used are C(n, r), ,.C, C, ., or"C,.
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Counting Subsets of a Set: Combinations
Example 1 — 3-Combinations

Let S = {Ann, Bob, Cyd, Dan}. Each committee consisting
of three of the four people in S is a 3-combination of S.
a. List all such 3-combinations of S.

b. What is (g) ?

a. The 3-combinations are:
{Bob, Cyd, Dan}, {Ann, Cyd, Dan},
{Ann, Bob, Dan}, {Ann, Bob, Cyd}

o, (§)=4
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Counting Subsets of a Set: Combinations

Example 2 — Ordered and Unordered Selection

Two distinct methods that can be used to select r
objects from a set of n elements:

Ordered selection
Also called r-permutation

Unordered selection
Also called r-combination

Example: S={1, 2,3}

2-permutations of S 2-combinations of S

(1,2) (2,1) {1, 2}
(1,3) (3,1) {1, 3}
{2, 3}

(2,3) (3,2)
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Relationship between Permutations and Combinations

Example 3 — Relationship between Permutations and Combinations

Write all 2-permutations of the set {0, 1, 2, 3}. Find an
equation relating the number of 2-permutations, P(4, 2),

and the number of 2-combinations, (;) , and solve this
equation for (;)

(0, 1), (1,0),

According to Theorem 9.2.3, o2 20
P@4,2)=4Y/(a2) =al21=12 (93 B0

The construction of a 2-permutation of {0, 1, g 3; 8 ;;

2, 3} can be thought of comprising two steps:

Step 1: Choose a subset of 2 elements from {0, 1, 2, 3}.
Step 2: Choose an ordering for the 2-element subset.
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Relationship between Permutations and Combinations

Example 3 — Relationship between Permutations and Combinations

This can be illustrated by the following possibility tree:

Step 1: Write the 2-combinations Step 2: Order the 2-combinations
of {0, 1, 2, 3}. to obtain 2-permutations.

(0.1) ol

—e 10
—e ()2
—e 2()
—e (3
—e 30

—e |2

Start

—e 2]

—e |3

—e 3]
—e 23

—e 32

Figure 9.5.1 Relationship between Permutations and Combinations
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Example 3 — Relationship between Permutations and Combinations

The number of ways to perform step 1 is (;)

The number of ways to perform step 2 is 2!

Hence,

(3)=P(4,2)/ 2!

=12/2=6
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Relationship between Permutations and Combinations

Theorem 9.5.1 Formula for (:f)

The number of subsets of size r (or r-combinations)
that can be chosen from a set of n elements, (Z), iS
given by the formula

(n) P(n,r) Recall that

r T! P(Tl, 1") —
or, equivalently,

!
(17}) r!(:—r)!

where n and r are non-negative integers with r <n.

n!

(n —.r)!

10
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Relationship between Permutations and Combinations

Example 4 — Teams with Members of Two Types

Suppose the group of 12 consists of 5 men and 7 women.

a. How many 5-person teams can be chosen that consist of 3 men

and 2 women?

Hint: Think of it as a two-step process:

Step 1: Choose the men.
Step 2: Choose the women.

5 ><(7)_ 51 y 7! _ o
3 2) 31217 2151

11
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Relationship between Permutations and Combinations

Example 4 — Teams with Members of Two Types

Suppose the group of 12 consists of 5 men and 7 women.

b. How many 5-person teams contain at least one man?

Hint: May use difference rule or addition rule.
The former is shorter for this problem.

Let A be the set of all 5-person teams,
and B be the set of 5-person teams without any men.

12 7 5
Then |A| = . = 792 ,and|B|=(5)o 0 =21

Therefore number of 5-person teams that contain
at leastone man= 792-21=771

12
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Relationship between Permutations and Combinations

Example 4 — Teams with Members of Two Types

Suppose the group of 12 consists of 5 men and 7 women.

c. How many 5-person teams contain at most one man?

Number of teams without any man = (g) X (Z) =1x21
=21

: _ (5 7
Nu;n7lc;er of teams with one man = (1) X (4) = 5 x 35

Therefore number of 5-person teams that contain
at most one man= 21+175=196

13
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Permutations of a Set with Repeated Elements

Example 5 — Permutations of a Set with Repeated Elements

Order the letters in the word
MISSISSIPPI
How many distinguishable orderings are there?

Four-step process:
Step 1: Choose a subset of 4 positions for the S’s.

)
|
)

)

¢
7
Step 2: Choose a subset of 4 positions for the Is. (4

3
Step 3: Choose a subset of 2 positions for the P’s. <2

1
Step 4: Choose a subset of 1 position for the M. <1

(141> g CL) . (;) X (1) = 34650

14
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Permutations of a Set with Repeated Elements

Theorem 9.5.2 Permutations with Sets of Indistinguishable Objects

Suppose a collection consists of n objects of which

n, are of type 1 and are indistinguishable from each other
n, are of type 2 and are indistinguishable from each other

n, are of type k and are indistinguishable from each other

and suppose that n, + n, + ... + n, = n. Then the number of
distinguishable permutations of the n objects is

n n—nq n—-—nq{—msy . n—-—nq{—Myp—"—MNk-1
nq nj ns ng

n!

nqlnpylng!l---n,!

15
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9.6 r-Combinations with Repetition Allowed

16
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r-Combinations with Repetition Allowed

r-Combinations with Repetition Allowed

At a hawker centre there are 6 stalls selling local delights. If
you are buying lunch for 20 guests, how many different
selections can you make?

.

Chicken rice Nasi lemak Mee rebus

s -
il b

Ayam penyet Bak chor mee .
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r-Combinations with Repetition Allowed

r-Combinations with Repetition Allowed

How many ways are there to choose r elements without
regard to order from a set of n elements if repetition is
allowed?

Definition: Multiset

An r-combination with repetition allowed, or
multiset of size r, chosen from a set X of n elements is
an unordered selection of elements taken from X with
repetition allowed.

If X ={xq,x,,*, x,}, we write an r-combination with
repetition allowed as [xl-l, Xiy ,xir] where each Xi;
is in X and some of the Xi; may equal each other.
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r-Combinations with Repetition Allowed

Example 6 — r-Combinations with Repetition Allowed

Write a complete list to find the multisets of size 3 that
can be selected from {1, 2, 3, 4}.

All combinations with 1, 1: [1,1,1];[3,1, 2]; (3,1, 3];[1, 1, 4]
All additional combinations with 1, 2: [1, 2, 2]; [1, 2, 3]; [1, 2, 4]

All additional combinations with 1, 3: [1, 3, 3]; [1, 3, 4]

All additional combinations with 1, 4: [1, 4, 4]

All additional combinations with 2, 2: [2, 2, 2]; (2, 2, 3]; [2, 2, 4]

All additional combinations with 2, 3: [2, 3, 3]; [2, 3, 4]

All additional combinations with 2, 4: [2, 4, 4] 20 3-combinations
All additional combinations with 3, 3: [3, 3, 3]; [3, 3, 4] with repetition
All additional combinations with 3, 4: [3, 4, 4] allowed.

All additional combinations with 4, 4: [4, 4, 4]

19
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r-Combinations with Repetition Allowed

Example 6 — r-Combinations with Repetition Allowed

Consider the numbers 1, 2, 3,4 in {1, 2, 3, 4} as categories and
imagine choosing a total of 3 numbers from the categories with
multiple selections from any category allowed.

Categoryl Category2 Category 3 Category 4
[1, 1, 1]: XXX | | |
[1, 3, 4]: X | | X | X
[2, 4, 4] | X | | XX

Hence, we may write [1, 1, 1] as “xxx| | |”, [1,3,4] as “x]| | x| x”
and [2,4,4] as “| x| [ xx”.

This is the same as (g) or 20.

20
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r-Combinations with Repetition Allowed

Theorem 9.6.1 Number of r-combinations with Repetition Allowed

The number of r-combination with repetition allowed
(multisets of size r) that can be selected from a set of n

elements is:
(r+n —1)
r

This equals the number of ways r objects can be selected
from n categories of objects with repetitions allowed.

21
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r-Combinations with Repetition Allowed

Example 7 — Exercise Set 9.6 Questions 10-11

How many solutions are there to the give equations?
(@) xq + x, + x3 = 20, each x; is a nonnegative integer.
(b) x4 +x, + x3 = 20, each x; is a positive integer.

(a) n=3,r=20.

re(-1)) _(20+2) _(22\_22:21 .
() =)= o)

(b) Convertto: y;+y, + y3 = 17, each y; is a nonnegative integer
n=3r=17.

r+m-1)\ (17+2\ (19 _19-18_171
( r >_( 17 >_(17>_ 2

f{} 22
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Which Formula to Use?

Which Formula to Use?

Earlier we have discussed four different ways of choosing k
elements from n. The order in which the choices are made may or
may not matter, and repetition may or may not be allowed. The
following table summarizes which formula to use in which

situation.
Order Matters Order Does Not Matter
.ye k k +n — 1
Repetition Is Allowed n i

Repetition Is Not Allowed P(n, k) (Z )

23



Combinations r-Combinations with Repetition Pascal’s Formula and the Binomial Theorem
o NoNe) (ON®©) @O O

9.7 Pascal’s Formula and the Binomial Theorem

24
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Pascal’s Formula

Pascal’s Formula

Suppose n and r are positive integers with r <n. Then

, . 0 1 2 3 4 5 -1
Pa?scal S | ! 1
triangleisa | 1 | |
. 2 1 2 1
geomEtrlc 3 1 3 3 1
version of : i : e T ; |
Pascal’s : : : |

rseals e 000 ol
w02 O T e e e e

Table 9.7.1 Pascal’s Triangle -
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Pascal’s Formula

Theorem 9.7.1 Pascal’s Formula

Let n and r be positive integers, r < n. Then

n+1\ _ n n
( r )_ (r—l) + (r)
Pascal’s formula can be derived by two
entirely different arguments. One is _ r

|
algebraic; it uses the formula for the (1:) b= (nn'_ 7
number of r-combinations obtained in ' |
Theorem 9.5.1.

where r<n,andr,n € Z,

The other is combinatorial; it uses the definition of the number
of r-combinations as the number of subsets of size r taken from
a set with a certain number of elements.
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Combinatorial Proof

Combinatorial Proof

A combinatorial proof (or combinatorial argument) uses
counting as the basis of the proof. It includes these
types of proof:

= Bijective proof. We have seen how to prove that two sets X
and Y have the same cardinality by deriving a bijective
function that maps each element in X to each elementinY.

= Proof by double counting. Counting the number of elements
in two different ways to obtain the different expressions in the
identity.

27
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Pascal’s Formula

Theorem 9.7.1 Pascal’s Formula

Let n and r be positive integers, r < n. Then

("7 = G2+ )

Algebraic proof:
_(n n\ _ n! n! . nlr nl(n-r+1)  nl(n+1)
RH.S. = (7"—1) + (7') T (n-r+1)!(r-1)! T m-r)r!  (n-r+Dr!  (n-r+Dr!  (n-r+1)lr!

_ (n+1)! g1y
= ooom = (7)) =LHS.

Combinatorial proof:

1. (":1): choosing subsets of r elements from a set 4 of n + 1 elements.

2. Let x be an elementin A. A subset may or may not have x.

3. Case 1: If the subset has x, then there are (r1—11) ways of choosing these subsets.
4. Case 2: If the subset does not have x, then there are (:f) ways of choosing

these subsets.
5. Therefore, there are (r'_'l) + (:f) ways of choosing subset of r elements from

n + 1 elements.

28
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() =G

Example 8 — Deduce () = (")

Deduce the formula

n\ __ n
(r) T (n—r)
for all non-negative integers n and r with r < n, by interpreting it

as saying that a set A with n elements has exactly as many
subsets of size r as it has subsets of size n —r.

Recall the formula for combination

n n!
(r) R (n—r)!

So

n n! n! n
(n—r) - mn—r'n—-((n-r))! - (n—r)!r! B (r)

29
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Combinatorial Proof

Example9-For 0 < k <n, (7,:) = (nﬁk)

= How many ways can we select k pupils from n pupils in
a class to go for an audition?

= Two approaches
" Choose k of the n pupils to go for the audition: (Z)

" Choose n — k of the n pupils not to go for the audition: (nfk)

" The two quantities count the same set of objects in
two different ways, hence the two answers are equal.

30
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Combinatorial Proof

Example 10— For 0 < k < n, k(”) _ n("‘l

* How many ways can we select k committee members
from n club members with a chairperson?

= Two approaches
* Choose k of the n members, then choose the chairperson

among the k committee members: (’;)k

" Choose a chairperson among the n members, then choose
k — 1 from the remaining n — 1 members: n(’;j

= The two quantities count the same set of objects in
two different ways, hence the two answers are equal.

31
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Combinatorial Proof

Example 11 — Using Combinatorial Argument to Derive some Identity

According to Theorem 6.3.1, a set with n elements has
2" subsets.

Theorem 6.3.1 Number of elements in a Power Set

If a set X has n (n > 0) elements, then P(X) has
2" elements.

Apply this fact to give a combinatorial argument to
justify the identity

() + () + () 4+ () = 2"

32
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Example 11 — Using Combinatorial Argument to Derive some Identity

Suppose S is a set with n elements. Then every subset
of S has some number k of elements, where 0 < k <n.

It follows that the total number of subsets of S,
|P(S)|, can be expressed as follows:

() D+ ++()
By Theorem 6.3.1, |P(S)| =2". Hence
L)+ (D +G)+-+()=2"

33
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The Binomial Theorem

The Binomial Theorem

In algebra a sum of two terms, such asa + b, is called binomial.

The binomial theorem gives an expression for the powers of a
binomial (a + b)", for each positive integer n and all real

numbers a and b. (™) is called binomial coefficient

Theorem 9.7.2 Binomial Theorem

Given any real numbers g and/b and any non-negative
integer n,

(a+b)"= Y3 o(}) a™ *b*

= a" + (})a" b + (})a™ 2b* + -+ ( ", )a'b™ 1 + b"

34
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The Binomial Theorem

Example 12 — Substituting into the Binomial Theorem

Expand the following using the binomial theorem:
a. (a + b)° b. (x — 4y)*

d.
5

(a +b)5= 2 (2) a5k pk

k=0

= a®+ (2)a® b + (3)a52b% + (3)a®%b% + (3)a®*b* + b5

= a® + 5a*b + 10a3bh? + 10a?b3 + 5ab* + b°

35
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The Binomial Theorem

Example 12 — Substituting into the Binomial Theorem

Expand the following using the binomial theorem:

a. (a + b)° b. (x — 4y)*
b.
- at= Y () eyt

x* + (Dx* (=4 +(5)x* 2 (—4y) 2+ (5)x* 3 (—4y) 3+ (—4»)*
= x*+4x3(—4y) + 6x%216y? + 4x(—64y3) + 256y*
= x* —16x3y + 96x%y? — 256xy3 + 256y*

{}} 36
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The Binomial Theorem

Example 13 — Using the Binomial Theorem to Simplify a Sum

Express the following sum in closed form (without using

a summation symbol and without using an ellipsis ... ):
n

2, ()

k=0

zn: ()9 = i () 177%9% = (1 +9)"= 107
k=0

k=0

37



Probability Axioms and Expected Value Conditional Probability, Bayes’ Formula, and Independent Events
®@OO o NoNONe)

9.8 Probability Axioms and Expected Value

38
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Probability Axioms

Probability Axioms

Recall: a sample space is a set of all outcomes of a random process
or experiment and that an event is a subset of a sample space.

Probability Axioms

Let S be a sample space. A probability function P from the set of
all events in S to the set of real numbers satisfies the following
axioms: For all events A and Bin S,

1. 0<PA)<1

2. P(D)=0andP(S)=1

3. If Aand B are disjoint events (A N B = ), then
P(A U B) = P(A) + P(B)
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Probability Axioms

Probability of the Complement of an Event

Probability of the Complement of an Event

If Ais any event in a sample space S, then
P(A) =1 — P(4)

Example: You roll a fair die, what is the probability /.

® o

of not rolling a 3? e 2s
. 1
P(rolling a 3) =<

: 1 5
P(notrollinga3)=1 - o=

Note: Epps uses A€ to represent the complement of event A.

We will use 4 to be consistent with the notation used in sets.
40
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Probability Axioms

Probability of a General Union of Two Events

Probability of a General Union of Two Events

If A and B are any events in a sample space S, then
P(A U B) = P(A) + P(B) — P(A n B).

Example: A card is drawn from a standard deck. \%sgcﬁfv{?é
What is the probability of drawing a heart ora 7? \ W

P)
- 4

P(H) = P(drawing a heart) = ;—z — %

i 2 _1
P(7) =P(drawinga 7) = = 1
P(H Nn7) = P(drawing a 7 of heart) = =

1 1 4
+ —_ =
13 52 13

NG [ S

P(H U 7) = P(drawing a heartora 7) =
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Expected Value

Expected Value

People who buy lottery tickets regularly often justify
the practice by saying that, even though they know
that on average they will lose money, they are hoping
for one significant gain, after which they believe they
will quit playing.

Unfortunately, when people who have lost money on
a string of losing lottery tickets win some or all of it

back, they generally decide to keep trying their luck
instead of quitting.
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Expected Value

The technical way to say that on average a person will
lose money on the lottery is to say that the expected
value of playing the lottery is negative.

Definition: Expected Value

Suppose the possible outcomes of an experiment, or
random process, are real numbers a4, a,, as, -+, a,
which occur with probabilities pq, p,, P3, ***, Py,

respectively. The expected value of the process is
n

z ArPr = A1P1 + APy + A3P3 + -+ ApPy
k=1
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Expected Value

Example 14 — Expected Value of a Die

If you roll a fair die, what is the expected value?

Each of the 6 outcomes (1, 2, ... 6) has the same probability
of 1/6, hence the expected value is

1 1 1 1 1 1
5(1)4‘ 5(2)"' 5(3)"' 5(4)4‘ 6(5)_'_ 8(6)
=3.5

44
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Expected Value

Example 15 — Expected Value of a Lottery

Suppose that 500,000 people pay S5 each to play a
lottery game with the following prizes:

= A grand prize of 51,000,000,

= 10 second prizes of 51,000 each,

= 1,000 third prizes of S500 each, and
= 10,000 fourth prizes of 510 each.

What is the expected value of a ticket?

Each of the 500,000 lottery tickets has the same chance as
any other of containing a winning lottery number, and so

p, = —forallk=1,2,3, ..., 500000.
500000

45
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Expected Value

Example 15 — Expected Value of a Lottery

A grand prize of 51,000,000,

10 second prizes of 51,000 each,
1,000 third prizes of 5500 each, and
10,000 fourth prizes of 510 each.

Let a,, a,, 03, ..., Gcqo000 D€ the
net gain for an individual
ticket, where a, = 999995.

a,=0a;=..=d;; =995 (the net gain for each of the 10 second
prize tickets)

Ay, = Uq3 = ... = U914 = 495 (the net gain for each of the 1000 third
prize tickets)

O1015 = G913 = --- = Oq1011 = O (the net gain for each of the 10000
fourth prize tickets)

011015 = 011013 = - = Osgppoo = —2 (the remaining 488989 tickets
lose S5)
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Expected Value

Example 15 — Expected Value of a Lottery

= A grand prize of 51,000,000,

The expected value of a ticket = 10 second prizes of $1,000 each,

is therefore: = 1,000 third prizes of S500 each, and
= 10,000 fourth prizes of S10 each.

500000 500000

1
Z HePre = Z (ak . 500000) In other words, a person who
=1 =1 continues to play this lottery for a

1 very long time will probably win
= £00000 z Ay some money occasionally but on
k=1
1

500000

average will lose $1.78 per ticket.

= Zo0000 (999995 + 10 - 995 + 1000 - 495 + 10000 - 5 + 488989 - (=5))

=—1.78
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Linearity of Expectation

Linearity of Expectation

The expected value of the sum of random variables is
equal to the sum of their individual expected values,
regardless of whether they are independent.

For random variables X and Y (which may be dependent),
E[X+Y]=E[X]+ E[Y]

More generally, for random variables X, X5, ---, X;, and
constants ¢4, ¢, *

n»

- n 7 n
Ezcl X; =Z(ci-EX
i =1

Li=1
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Linearity of Expectation

e *. %, 2t s Calculating the expected value of
the sum of two dice using basic
method is tedious.

.
N
w
s
)
(o}
~

®
.

o‘..' 4 5 6 7 8 9
22 s ¢ 7 « o o Usinglinearity of expectation, the
(RN RENEAE expected value for the sum of two
§§ 7 | 8 |9 | 10 | 11 | 12

dice=3.5+3.5=7

Credit: brilliant.org

Check: Let s be the sum of two dice values
6

1 2 3 4 5
P(S—Z)—g, P(S—3)—g,P(S—‘l-)—g,P(S—F))—g,P(S—6)—£,P(S—7)—£,

5 4 3 2 1
P(s=8)=—;P(s=9)=—:P(s=10)=—;P(s=11)=—; P(s =12) = —;
(s=8) =35 P(s =9) = 32:P(s =10) = 32, P(s = 11) = 355 P(s = 12) = 7

Expectedvalue=2-i+3-i+4-i+5-i+6-i+7-£+8-i+9°i+
; , 36 7 36 36 36 36 36 36 36
10-—+11-—4+12-—=7
36 36 36
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9.9 Conditional Probability, Bayes’ Formula,
and Independent Events
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Conditional Probability

Conditional Probability

Imagine a couple with two children, each of whom is equally
likely to be a boy or a girl. Now suppose you are given the
information that one is a boy. What is the probability that the
other child is a boy?

BG GB GG
New sample space =

gray region.

Figure 9.9.1
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Conditional Probability

Within the new sample space, there is
one combination where the other child
is a boy (blue-gray region).

Hence, the likelihood that the other

child is a boy given that at least one is a
boy = 1/3.

Note also

BG  GB GG

Figure 9.9.1

P(at least one child 1s a boy and the other child is also a boy)

P (at least one child 1s a boy)

-Mw|-|>|~'
|
W | —

52




Probability Axioms and Expected Value Conditional Probability, Bayes’ Formula, and Independent Events
O0O0O @O OO0

Conditional Probability

A generalization of this observation forms the basis for the
following definition.

Definition: Conditional Probability

Let A and B be events in a sample space S. If P(A) #0,
then the conditional probability of B given A,
denoted P(B|A), is

DO = P(ANB)
(Bl4) = P(A) 9.9.1
Multiplying both sides of Dividing both sides of formula
formula 9.9.1 by P(A), we get 9.9.2 by P(B|A), we get
P(ANB) = P(B|A) - P(4) P(A) _PANB)

9.9.2 P(B|A) 993
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls /
are chosen at random, one after the other, without
replacement. ,
a. Find the following probabilities and illustrate them with a tree diagram:
the probability that both balls are blue, the probability that the first ball
is blue and the second is not blue, the probability that the first ball is not

blue and the second ball is blue, and the probability that neither ball is
blue.

b. What is the probability that the second ball is blue?
c. What s the probability that at least one of the balls is blue?

d. If the experiment of choosing two balls from the urn were repeated

many times over, what would be the expected value of the number of
blue balls?
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls /
are chosen at random, one after the other, without
replacement.

Let

= S denote the sample space of all possible choices of
two balls from the urn,

= B, be the event that the first ball is blue (then By is
the event that the first ball is not blue),

= B, be the event that the second ball is blue (then B, is
the event that the second ball is not blue).
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls are
chosen at random, one after the other, without replacement.

a. Find the following probabilities and illustrate them with a
tree diagram: the probability that both balls are blue, the
probability that the first ball is blue and the second is not
blue, the probability that the first ball is not blue and the
second ball is blue, and the probability that neither ball is
blue.
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. a. Find P(B; n B,), P(B; N By), P(By N By), P(B; N By).

P(B;|By) = —

5 __ 7 4
P(By) = E P(By) = E P(B;|By) = H

By formula 9.9.2
P(ANB) = P(B|A) - P(4)

_ 5 _ 6
P(B;|By) = H P(B;|By) = H

P(B1nBz) :P(leBl)'P(Bl) — : ) > = i~
11 12 132
P(By N By) = P 1By) - P(By) =~ =
P(B; 1 By) = P(BIBY) - PBY) = - =
P N = PGB - P(BD) = 1o o = 2o .
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. a. Find P(B; n B,), P(B; N By), P(By N By), P(B; N By).

BN B, —>p(31m32)_i D _20

BN By ——> P(B|NB)) = {1 5= 2

B ﬂB2_>P(BszC) 1i l:ﬁ

c c ‘N B¢ _Q l_ 42
By NB,——> PBNB) =17"15= 135
Note: Textbook uses E€

to denote E. Figure 9.9.2
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. b. What is the probability that the 2"? ball is blue?

First ball is blue and second is also blue, OR
first ball is gray and second is blue.
Note that they are mutually exclusive.

P(B,) = P((B, N By) U (B, N By))

= P(Bz N Bl) + P(Bz N B_l) by probability axiom 3

B 20+35 55 5
132 132 132 12
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. ¢. What is the probability that at least one ball is blue?

Probability of a General Union of Two Events

If A and B are any events in a sample space S, then
P(A U B) = P(A) + P(B) — P(A N B).

P(B, UB;) = P(B;) + P(B;) — P(B; N By)

_5+5 20 90 15
12 12 132 132 22
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. d. The expected value of the number of blue balls?

15 7

P(no blue balls) =1 — P(at least one blue ball) =1 — 55 = 57

The event that one ball is blue = first ball is blue but second ball
is not; or second ball is blue but first ball is not.

o 35 5 35
From part (a), P(B; N B,) = P and P(B; N B,) = —
Hence, P(1 blue ball) = 33 + 35 _ 70
132 132 132
20

From part (a), P(2 blue balls) = T2
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Conditional Probability

Example 17 — Representing Conditional Probabilities in a Tree Diagram

5 blue, 7 gray. d. The expected value of the number of blue balls?

P(no blue balls) = % P(1 blue ball) = %02 P(2 blue balls) = %

Expected value of the number of blue balls

= 0-P(no blue balls) + 1-P(1 blue ball) + 2-P(2 blue balls)

=0 7+1 7O+2 20
22 132 132
_110~08
T 1327
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Bayes’ Theorem

Bayes’ Theorem :

Suppose that one urn contains 3 blue and 4 gray balls and a second
urn contains 5 blue and 3 gray balls. A ball is selected by choosing
one of the urns at random and then picking a ball at random from
that urn. If the chosen ball is blue, what is the probability that it

came from the first urn?

This problem can be solved by carefully interpreting all the
information that is known and putting it together in just the right

way.

Let
= B be the event that the chosen ball is blue,
= U, the event that the ball came from the first urn, and
" U, the event that the ball came from the second urn.
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Bayes’ Theorem

Bayes’ Theorem 1

3 of the 7 balls in the first urn are blue, 5 of the 8 balls in the second
urn are blue:  p(B|U,) = %and P(B|U,) =§

The urns are equally like to be chosen:  P(U;) = P(U,) = %
By formula 9.9.2 P(A n B) _ P(BlA) . P(A)

31 3
P(BNU,) = P(BIUY) -P(U) =55 =7

51 5
P(BNU,) =P(BIU2) - P(Uz) =5 5 =17

B is a disjoint union of (B N U;) and (B N U,), so by probability axiom 3,
P(B)=P((BNnU) U (BNU,))
5 59

3
=PBNU)+PBNU;) = 12716~ 112 o
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Bayes’ Theorem .
Bayes’ Theorem 1

3 of the 7 balls in the first urn are blue, 5 of the 8 balls in the

second urn are blue.
59

From previous slide, P(BNU,) = % and P(B) = 112

By definition of conditional probability,

P(UynB) 71z 336
— o —_— —_—_—_—_——. 0
P(U,|B) P(B) 59— gog 40.7%
11

Thus, if the chosen ball is blue, the probability that it came
from the first urn is approximately 40.7%.
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Bayes’ Theorem

Theorem 9.9.1 Bayes’ Theorem

Suppose that a sample space S is a union of mutually disjoint
events By, B,, B, ..., B

e
Suppose A is an event in S, and suppose A and all the B; have
non-zero probabilities.

If k is an integer with 1 < k <n, then

P(A|By) « P(By)

PO = b AIB) - P(B) + PUAIB,) - P(B,) + -+ P(A|By) - P(Bn)

66



Conditional Probability, Bayes’ Formula, and Independent Events

Probability Axioms and Expected Value
o NoNe

Bayes’ Theorem
Example 18 — Applying Bayes’ Theorem

Most medical tests occasionally produce incorrect results, called
false positives and false negatives.

When a test is designed to determine whether a patient has a
certain disease, a false positive result indicates that a patient has

the disease when the patient does not have it.

A false negative result indicates that a patient does not have the

disease when the patient does have it.
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Bayes’ Theorem

Example 18 — Applying Bayes’ Theorem

Consider a medical test that screens for a disease found in 5 people
in 1,000. Suppose that the false positive rate is 3% and the false
negative rate is 1%.

Then 99% of the time a person who has the condition tests positive
for it, and 97% of the time a person who does not have the
condition tests negative for it.

a. What is the probability that a randomly chosen person who
tests positive for the disease actually has the disease?

b. What is the probability that a randomly chosen person who
tests negative for the disease does not indeed have the disease?
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Bayes’ Theorem
Example 18 — Applying Bayes’ Theorem

Consider a person chosen at random from among those screened.

Let
= A be the event that the person tests positive for the disease,

= B, the event that the person actually has the disease, and
* B, the event that the person does not have the disease.

P(A|B,) = 0.97
P(A|B,) = 0.03

Then  P(A4|B,) = 0.99
P(A|B;) = 0.01
Also, because 5 people in 1000 have the disease,

P(B;) = 0.005 P(B,) = 0.995
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Bayes’ Theorem
Example 18 — Applying Bayes’ Theorem

What is the probability that a randomly chosen person who
tests positive for the disease actually has the disease?

d.

By Bayes’ Theorem,
P(A|B,) - P(B
P (B 1) — (AIBy) - P(BY)
P(A|By) - P(By) + P(A|B3) - P(B,)

B (0.99) - (0.005)
~(0.99) - (0.005) + (0.03) - (0.995)

= 0.1422 = 14.2%

Thus the probability that a person with a positive test result
actually has the disease is approximately 14.2%.
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Bayes’ Theorem
Example 18 — Applying Bayes’ Theorem

b. What is the probability that a randomly chosen person who
tests negative for the disease does not indeed have the disease?

By Bayes’ Theorem, ~
P(A|B;) - P(B;)

PUBY) = 5By - P(B) + P(AIB,) - P(By)
B (0.97) - (0.995)
~ (0.01) - (0.005) + (0.97) - (0.995)

= (0.999948 = 99.995%

Thus the probability that a person with a negative test result
does not have the disease is approximately 99.995%.
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Independent Events

Independent Events

A is the event that a head is obtained on the first toss and B is the event
that a head is obtained on the second toss, then if the coin is tossed
randomly both times, events A and B should be independent in the sense
that P(A|B) = P(A) and P(B|A) = P(B).

Observe that:
If P(B) =0 and P(A|B) = P(A),

then P(A N B) = P(A|B) - P(B) = P(A) - P(B) gy the same argument,

If P(A) =0 and P(B|A) = P(B),

then P(A N B) = P(B|A) - P(A) = P(A) - P(B)
Conversely,

If P(A " B) = P(A) - P(B) and P(A) # 0, then P(B|A) = P(B).

If P(A " B) = P(A) - P(B) and P(B) = 0, then P(A|B) = P(A).
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Independent Events

Thus, for convenience and to eliminate the requirement that the
probabilities be nonzero, we use the following product formula to
define independent events.

Definition: Independent Events

If A and B are events in a sample space S, then A and B
are independent, if and only if,

P(A " B)=P(A) - P(B)
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Independent Events

Example 19 — Computing Probabilities of Intersections of Two Independent Events

A coin is loaded so that the probability of heads is 0.6. Suppose the
coin is tossed twice. Although the probability of heads is greater
than the probability of tails, there is no reason to believe that
whether the coin lands heads or tails on one toss will affect
whether it lands heads or tails on the other toss. Thus it is
reasonable to assume that the results of the tosses are
independent.

a. What is the probability of obtaining two heads?
b. What is the probability of obtaining one head?
c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head?
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Independent Events

Example 19 — Computing Probabilities of Intersections of Two Independent Events

Sample space S consists of the 4 outcomes {HH, HT, TH, TT} which
are not equally likely.

Let

= F be the event that a head is obtained on the first toss

= F be the event that a head is obtained on the second toss
P(E) = P(F) = 0.6.
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Independent Events

Example 19 — Computing Probabilities of Intersections of Two Independent Events

a. What is the probability of obtaining two heads?
P(two heads)=P(ENF)=P(E) - P(F)=(0.6)(0.6) =0.36 =36%

b. What is the probability of obtaining one head?

P(onehead)=P((ENF)U(ENF))=P(E)-P(F)+ P(E) - P(F)
= (0.6)(0.4) + (0.4)(0.6) = 0.48 = 48%

c. What is the probability of obtaining no heads?

P(no heads)=P(ENF)=P(E)-P(F)=(0.4)(0.4)=0.16 = 16%
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Independent Events

Example 19 — Computing Probabilities of Intersections of Two Independent Events

d. What is the probability of obtaining at least one head?

Method 1:

P(at least one head) = P(one head) + P(two heads) = 0.48 + 0.36
=0.84 = 84%

Method 2:

P(at least one head) =1 —P(no heads) =1-0.16 = 0.84 = 84%
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Pairwise Independent/Mutually Independent

Pairwise Independent/Mutually Independent

We say three events A, B, and C are pairwise independent if,
and only if,

P(ANB)=P(A)-P(B) , P(AnC)=P(A)-P(C) and

P(B n C) = P(B) - P(C)

Events can be pairwise independent without satisfying the

condition
P(AN BN C)=P(A) - P(B) - P(C).

Conversely, they can satisfy the condition
P(AN BN C)=P(A) - P(B) - P(C) without being pairwise
independent.
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Pairwise Independent/Mutually Independent

Four conditions must be included in the definition of
independence for three events

Definition: Pairwise Independent and Mutually Independent

Let A, B and C be events in a sample space S. A, Band C are
pairwise independent, if and only if, they satisfy conditions 1 — 3
below. They are mutually independent if, and only if, they
satisfy all four conditions below.

P(A N B)=P(A) - P(B)

2. P(AnC)=P(A)-P(C)
3. P(BMNC)=P(B)-P(C)
4. P(ANBNC)=P(A)-P(B)- P(C)
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Pairwise Independent/Mutually Independent

The definition of mutual independence for any collection of
n events with n = 2 generalizes the two definitions given

previously.

Definition: Mutually Independent

Events A,, A,, ..., A, in a sample space S are mutually
independent if, and only if, the probability of the intersection of
any subset of the events is the product of the probabilities of

the events in the subset.

P(A,NA, N ..NA)=P(A,)-PA,) .. PA)
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Pairwise Independent/Mutually Independent

Example 20 — Tossing a Loaded Coin Ten Times

A coin is loaded so that the probability of heads is 0.6 (and thus
the probability of tails is 0.4). Suppose the coin is tossed ten
times. As in Example 17, it is reasonable to assume that the
results of the tosses are mutually independent.

a. What is the probability of obtaining eight heads?
b. What is the probability of obtaining at least eight head?

Foreachi=1,2,...,10,let H; be the event that a head is
obtained on the ith toss, and let T; be the event that a tail is
obtained on the ith toss.
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Pairwise Independent/Mutually Independent

Example 20 — Tossing a Loaded Coin Ten Times

a. What is the probability of obtaining eight heads?

Suppose that the eight heads occur on the first eight tosses and
that the remaining two tosses are tails. This is the event
HHNH,N"H;NH,NH-:NH NH, NHg N Ty N Ty,
For simplicity, we denote it as HHHHHHHHTT.
By definition of mutually independent events,
P(HHHHHHHHTT) = (0.6)3(0.4)?

By commutative law for multiplication, if the eight heads occur on
any other of the ten tosses, the same number is obtained. Eg:
P(HHTHHHHHTH) = (0.6)%(0.4)(0.6)>(0.4)(0.6) = (0.6)3(0.4)?
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Pairwise Independent/Mutually Independent
Example 20 — Tossing a Loaded Coin Ten Times

a. What is the probability of obtaining eight heads?

Now there are as many different ways to obtain eight heads in ten
tosses as there are subsets of eight elements (the toss numbers
on which heads are obtained) that can be chosen from a set of

ten elements. This number is (180).

Hence
P(eight heads) = (") (0.6)8(0.4)2

83



Conditional Probability, Bayes’ Formula, and Independent Events

Probability Axioms and Expected Value
oNONON J

00O
Pairwise Independent/Mutually Independent
Example 20 — Tossing a Loaded Coin Ten Times

b. What is the probability of obtaining at least eight heads?

By similar reasoning,
P(nine heads) = (190) (0.6)°(0.4)

and
P(ten heads) = (18) (0.6)10°

Therefore,
P(at least 8 heads) = P(8 heads) + P(9 heads) + P(10 heads)

- (180) (0.6)%(0.4)* + (190) (0.6)°(0.4) + Gg) (0.6)10
= 0.167 =16.7%

Probabilities of the form (})p"™ *(1 — p)*, where 0 < p < 1,
are called binomial probabilities.
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Graphs and Trees
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