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11. Counting and Probability 2

9.5 Counting Subsets of a Set: Combinations

• r-combination, r-permutation, permutations of a set with repeat elements, 
partitions of a set into r subsets

9.6 r-Combinations with Repetition Allowed

• Multiset

• Formula to use depends on whether (1) order matters, (2) repetition is allowed

9.7 Pascal’s Formula and the Binomial Theorem

9.8 Probability Axioms and Expected Value

• Probability axioms, complement of an event, general union of two events, 
expected value 

9.9 Conditional Probability, Bayes’ Formula, and Independent Events

 Combinations  r-Combinations with Repetition Pascal’s Formula and the Binomial Theorem

Reference: Epp’s Chapter 9 Counting and Probability

This lecture is based on Epp’s book chapter 9. 
Hence, the section numbering is according to the book.
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9.5 Counting Subsets of a Set: Combinations



 Combinations  r-Combinations with Repetition Pascal’s Formula and the Binomial Theorem 

Counting Subsets of a Set: Combinations

4

▪ Given a set S with n elements, how many subsets of size r 
can be chosen from S?

▪ Each subset of size r is called an r-combination of the set.

Counting Subsets of a Set: Combinations

Definition: r-combination

Let n and r be non-negative integers with r  n. 

An r-combination of a set of n elements is a subset of 
r of the n elements. 

𝑛
𝑟

 , read “n choose r”, denotes the number of 

subsets of size r (r-combinations) that can be chosen 
from a set of n elements. 

Other symbols used are C(n, r), nCr, Cn,r , or nCr .
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Counting Subsets of a Set: Combinations

Let S = {Ann, Bob, Cyd, Dan}. Each committee consisting 
of three of the four people in S is a 3-combination of S.
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a. The 3-combinations are:
 {Bob, Cyd, Dan}, {Ann, Cyd, Dan}, 
           {Ann, Bob, Dan}, {Ann, Bob, Cyd}

Example 1 – 3-Combinations

a. List all such 3-combinations of S.

b. What is 4
3

 ?

b. 4
3

 = 4
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Counting Subsets of a Set: Combinations

Two distinct methods that can be used to select r 
objects from a set of n elements:
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Ordered selection
Also called r-permutation

Unordered selection
Also called r-combination

Example: S = { 1, 2, 3 }

2-permutations of S 2-combinations of S

(1, 2) (2, 1)

(1, 3) (3, 1)

(2, 3) (3, 2)

{1, 2}

{1, 3}

{2, 3}

Example 2 – Ordered and Unordered Selection
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Example 3 – Relationship between Permutations and Combinations

Write all 2-permutations of the set {0, 1, 2, 3}. Find an 
equation relating the number of 2-permutations, P(4, 2), 

and the number of 2-combinations, 4
2

 , and solve this 

equation for 4
2

.

According to Theorem 9.2.3, 
 P(4, 2) = 4!/(4-2)! = 4!/2! = 12

(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3).
(2, 3),

(1, 0),
(2, 0),
(3, 0),
(2, 1),
(3, 1).
(3, 2)The construction of a 2-permutation of {0, 1, 

2, 3} can be thought of comprising two steps:

Step 1: Choose a subset of 2 elements from {0, 1, 2, 3}.
Step 2: Choose an ordering for the 2-element subset.
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Example 3 – Relationship between Permutations and Combinations

This can be illustrated by the following possibility tree:

Figure 9.5.1 Relationship between Permutations and Combinations
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The number of ways to perform step 1 is 4
2

.

The number of ways to perform step 2 is 2!

Example 3 – Relationship between Permutations and Combinations

Hence,

P(4, 2) = 4
2
 2! 

4
2

 = P(4, 2) / 2! 

= 12 / 2 = 6 
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Theorem 9.5.1 Formula for 𝑛
𝑟

The number of subsets of size r (or r-combinations) 

that can be chosen from a set of n elements, 𝑛
𝑟

, is 

given by the formula

 
𝒏
𝒓

=
𝑷(𝒏,𝒓)

𝒓!

or, equivalently,

 
𝒏
𝒓

=
𝒏!

𝒓! 𝒏−𝒓 !

where n and r are non-negative integers with r  n.

Recall that

𝑃(𝑛, 𝑟) =
𝑛!

𝑛 − 𝑟 !
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Suppose the group of 12 consists of 5 men and 7 women.

a. How many 5-person teams can be chosen that consist of 3 men 
and 2 women?

Example 4 – Teams with Members of Two Types

Hint: Think of it as a two-step process:
 Step 1: Choose the men.
 Step 2: Choose the women.

5

3
×

7

2
=

5!

3! 2!
×

7!

2! 5!
= 210


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Suppose the group of 12 consists of 5 men and 7 women.

b. How many 5-person teams contain at least one man?

Example 4 – Teams with Members of Two Types

Hint: May use difference rule or addition rule. 
The former is shorter for this problem.

Therefore number of 5-person teams that contain 
at least one man =



Let A be the set of all 5-person teams,
and B be the set of 5-person teams without any men.

Then |A| =                              , and |B| =
12

5
= 792

7

5
∙

5

0
= 21

792 – 21 = 771
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Suppose the group of 12 consists of 5 men and 7 women.

c. How many 5-person teams contain at most one man?

Example 4 – Teams with Members of Two Types

Number of teams without any man =

Therefore number of 5-person teams that contain 
at most one man =



Number of teams with one man =

5
0

× 7
5

 = 1  21 
= 21

5
1

× 7
4

 = 5  35 
= 175

21 + 175 = 196
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Order the letters in the word

 M I S S I S S I P P I
How many distinguishable orderings are there?

Example 5 – Permutations of a Set with Repeated Elements

Four-step process:
 Step 1: Choose a subset of 4 positions for the S’s.

 Step 2: Choose a subset of 4 positions for the I’s.

 Step 3: Choose a subset of 2 positions for the P’s.

 Step 4: Choose a subset of 1 position for the M.

11

4

7

4

3

2

1

1

11

4
×

7

4
×

3

2
×

1

1
= 𝟑𝟒𝟔𝟓𝟎
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Theorem 9.5.2 Permutations with Sets of Indistinguishable Objects

Suppose a collection consists of n objects of which

 n1 are of type 1 and are indistinguishable from each other
 n2 are of type 2 and are indistinguishable from each other
  :
 nk are of type k and are indistinguishable from each other

and suppose that n1 + n2 + … + nk = n. Then the number of 
distinguishable permutations of the n objects is 

𝑛
𝑛1

𝑛−𝑛1
𝑛2

𝑛−𝑛1−𝑛2
𝑛3

⋯ 𝑛−𝑛1−𝑛2−⋯−𝑛𝑘−1
𝑛𝑘

 =
𝒏!

𝒏𝟏!𝒏𝟐!𝒏𝟑!⋯𝒏𝒌!
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9.6 r-Combinations with Repetition Allowed
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r-Combinations with Repetition Allowed 

At a hawker centre there are 6 stalls selling local delights. If 
you are buying lunch for 20 guests, how many different 
selections can you make?

Chicken rice Nasi lemak Mee rebus

Ayam penyet Laksa Bak chor mee
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r-Combinations with Repetition Allowed 

How many ways are there to choose r elements without 
regard to order from a set of n elements if repetition is 
allowed ?

Definition: Multiset

An r-combination with repetition allowed, or 
multiset of size r, chosen from a set X of n elements is 
an unordered selection of elements taken from X with 
repetition allowed.

If X = 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , we write an r-combination with 
repetition allowed as 𝑥𝑖1

, 𝑥𝑖2
, ⋯ , 𝑥𝑖𝑟

 where each 𝑥𝑖𝑗
 

is in X and some of the 𝑥𝑖𝑗
 may equal each other.
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Example 6 – r-Combinations with Repetition Allowed

Write a complete list to find the multisets of size 3 that 
can be selected from {1, 2, 3, 4}.

[1, 1, 1]; [1, 1, 2]; [1, 1, 3]; [1, 1, 4]All combinations with 1, 1:

[1, 2, 2]; [1, 2, 3]; [1, 2, 4]All additional combinations with 1, 2:

[1, 3, 3]; [1, 3, 4]All additional combinations with 1, 3:

[1, 4, 4]All additional combinations with 1, 4:

[2, 2, 2]; [2, 2, 3]; [2, 2, 4]All additional combinations with 2, 2:

[2, 3, 3]; [2, 3, 4]All additional combinations with 2, 3:

[2, 4, 4]All additional combinations with 2, 4:

[3, 3, 3]; [3, 3, 4]All additional combinations with 3, 3:

[3, 4, 4]All additional combinations with 3, 4:

[4, 4, 4]All additional combinations with 4, 4:

20 3-combinations 

with repetition 
allowed.
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Example 6 – r-Combinations with Repetition Allowed

Consider the numbers 1, 2, 3, 4 in {1, 2, 3, 4} as categories and 
imagine choosing a total of 3 numbers from the categories with 
multiple selections from any category allowed.

[1, 1, 1]: | | |xxx

[2, 4, 4]: | | |x xx

Category 1 Category 2 Category 3 Category 4

[1, 3, 4]: | | |x x x

Hence, we may write [1, 1, 1] as “xxx|||”, [1,3,4] as “x||x|x” 
and [2,4,4] as “|x||xx”.

This is the same as 6
3

 or 20.
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Theorem 9.6.1 Number of r-combinations with Repetition Allowed

The number of r-combination with repetition allowed 
(multisets of size r) that can be selected from a set of n 
elements is:

𝒓+𝒏 −𝟏
𝒓

This equals the number of ways r objects can be selected 
from n categories of objects with repetitions allowed.
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Example 7 – Exercise Set 9.6 Questions 10-11



How many solutions are there to the give equations?

(a) 𝑥1 + 𝑥2 + 𝑥3 = 20, each 𝑥𝑖  is a nonnegative integer.

(b) 𝑥1 + 𝑥2 + 𝑥3 = 20, each 𝑥𝑖  is a positive integer.

(a) 𝑛 = 3, 𝑟 = 20.

𝑟 + (𝑛 − 1)

𝑟
=

20 + 2

20
=

22

20
=

22 ∙ 21

2
= 231

(b) Convert to: 𝑦1+𝑦2 + 𝑦3 = 17, each 𝑦𝑖  is a nonnegative integer

 𝑛 = 3, 𝑟 = 17.

𝑟 + (𝑛 − 1)

𝑟
=

17 + 2

17
=

19

17
=

19 ∙ 18

2
= 171
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Which Formula to Use?

Earlier we have discussed four different ways of choosing k 
elements from n. The order in which the choices are made may or 
may not matter, and repetition may or may not be allowed. The 
following table summarizes which formula to use in which 
situation.
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9.7 Pascal’s Formula and the Binomial Theorem
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Pascal’s Formula

Pascal’s Formula

Suppose n and r are positive integers with r  n. Then

𝑛 + 1

𝑟
=

𝑛

𝑟 − 1
+

𝑛

𝑟

Pascal’s 
triangle is a 
geometric 
version of 
Pascal’s 
formula.

Table 9.7.1 Pascal’s Triangle
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Pascal’s Formula

Theorem 9.7.1  Pascal’s Formula

Let n and r be positive integers, r  n. Then
𝒏+𝟏

𝒓
= 𝒏

𝒓−𝟏
+ 𝒏

𝒓

Pascal’s formula can be derived by two 
entirely different arguments. One is 
algebraic; it uses the formula for the 
number of r-combinations obtained in 
Theorem 9.5.1.

The other is combinatorial; it uses the definition of the number 
of r-combinations as the number of subsets of size r taken from 
a set with a certain number of elements.

Theorem 9.5.1 Formula for 𝑛
𝑟

𝒏

𝒓
=

𝒏!

𝒓! 𝒏 − 𝒓 !

where r  n, and 𝑟, 𝑛 ∈ ℤ≥0
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Combinatorial Proof

A combinatorial proof (or combinatorial argument) uses 
counting as the basis of the proof. It includes these 
types of proof:

▪ Bijective proof. We have seen how to prove that two sets 𝑋 
and 𝑌 have the same cardinality by deriving a bijective 
function that maps each element in 𝑋 to each element in 𝑌.

▪ Proof by double counting.  Counting the number of elements 
in two different ways to obtain the different expressions in the 
identity.

Combinatorial Proof
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Pascal’s Formula

Algebraic proof:

Theorem 9.7.1  Pascal’s Formula

Let n and r be positive integers, r  n. Then

𝒏+𝟏
𝒓

= 𝒏
𝒓−𝟏

+ 𝒏
𝒓



R.H.S. = 𝒏
𝒓−𝟏

+ 𝒏
𝒓

=
𝒏!

𝒏−𝒓+𝟏 ! 𝒓−𝟏 !
+

𝒏!

𝒏−𝒓 !𝒓!
=

𝒏!𝒓

𝒏−𝒓+𝟏 !𝒓!
+

𝒏!(𝒏−𝒓+𝟏)

𝒏−𝒓+𝟏 !𝒓!
=

𝒏!(𝒏+𝟏)

𝒏−𝒓+𝟏 !𝒓!

 =
𝑛+1 !

𝑛+1−𝑟 !𝑟!
= 𝑛+1

𝑟
= L.H.S. 

Combinatorial proof:

1. 𝒏+𝟏
𝒓

: choosing subsets of 𝑟 elements from a set 𝐴 of 𝑛 + 1 elements.

2. Let 𝑥 be an element in 𝐴. A subset may or may not have 𝑥.

3. Case 1: If the subset has 𝑥, then there are 𝒏
𝒓−𝟏

 ways of choosing these subsets.

4. Case 2: If the subset does not have 𝑥, then there are  𝒏
𝒓

 ways of choosing 

these subsets.

5. Therefore, there are 𝒏
𝒓−𝟏

+ 𝒏
𝒓

 ways of choosing subset of 𝑟 elements from 

𝑛 + 1 elements.
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𝑛
𝑟

= 𝑛
𝑛−𝑟

Example 8 – Deduce 𝑛
𝑟

= 𝑛
𝑛−𝑟

 

Deduce the formula
𝑛
𝑟

= 𝑛
𝑛−𝑟

for all non-negative integers n and r with r  n, by interpreting it 
as saying that a set A with n elements has exactly as many 
subsets of size r as it has subsets of size n – r.

Recall the formula for combination
𝒏

𝒓
=

𝒏!

𝒓! 𝒏 − 𝒓 !
So

𝑛

𝑛 − 𝑟
=

𝑛!

(𝑛 − 𝑟)! 𝑛 − (𝑛 − 𝑟) !
=

𝑛!

𝑛 − 𝑟 ! 𝑟!
=

𝑛

𝑟
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Combinatorial Proof

▪ How many ways can we select 𝑘 pupils from 𝑛 pupils in 
a class to go for an audition?

▪ Two approaches

▪ Choose 𝑘 of the 𝑛 pupils to go for the audition: 𝑛
𝑘

▪ Choose 𝑛 − 𝑘 of the 𝑛 pupils not to go for the audition: 𝑛
𝑛−𝑘

▪ The two quantities count the same set of objects in 
two different ways, hence the two answers are equal.

Example 9 – For 0 ≤ 𝑘 ≤ 𝑛, 𝑛
𝑘

= 𝑛
𝑛−𝑘
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Combinatorial Proof

▪ How many ways can we select 𝑘 committee members 
from 𝑛 club members with a chairperson?

▪ Two approaches

▪ Choose 𝑘 of the 𝑛 members, then choose the chairperson 

among the 𝑘 committee members: 𝑛
𝑘

𝑘

▪ Choose a chairperson among the 𝑛 members, then choose 

𝑘 − 1 from the remaining 𝑛 − 1 members: 𝑛 𝑛−1
𝑘−1

▪ The two quantities count the same set of objects in 
two different ways, hence the two answers are equal.

Example 10 – For 0 ≤ 𝑘 ≤ 𝑛, 𝑘 𝑛
𝑘

= 𝑛 𝑛−1
𝑘−1
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 Combinatorial Proof

According to Theorem 6.3.1, a set with n elements has 
2n subsets.

Example 11 – Using Combinatorial Argument to Derive some Identity

Theorem 6.3.1  Number of elements in a Power Set

If a set X has n (n  0) elements, then 𝒫(X) has 
2n elements.

Apply this fact to give a combinatorial argument to 
justify the identity

𝑛
0

+ 𝑛
1

+ 𝑛
2

+ ⋯ + 𝑛
𝑛

= 2𝑛
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 Combinatorial Proof

Suppose S is a set with n elements. Then every subset 
of S has some number k of elements, where 0  k  n.

It follows that the total number of subsets of S, 
|𝒫(S)|, can be expressed as follows:

𝑛

0
+

𝑛

1
+

𝑛

2
+ ⋯ +

𝑛

𝑛

Example 11 – Using Combinatorial Argument to Derive some Identity

By Theorem 6.3.1, |𝒫(S)| = 2n. Hence
𝑛
0

+ 𝑛
1

+ 𝑛
2

+ ⋯ + 𝑛
𝑛

= 2𝑛
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The Binomial Theorem

In algebra a sum of two terms, such as a + b, is called binomial.

The binomial theorem gives an expression for the powers of a 
binomial (a + b)n, for each positive integer n and all real 
numbers a and b.

The Binomial Theorem

Theorem 9.7.2  Binomial Theorem

Given any real numbers a and b and any non-negative 
integer n,

 (𝒂 + 𝒃)𝒏 =  σ𝒌=𝟎
𝒏 𝒏

𝒌
𝒂𝒏−𝒌𝒃𝒌

 =  𝒂𝒏 + 𝒏
𝟏

𝒂𝒏−𝟏𝒃𝟏 + 𝒏
𝟐

𝒂𝒏−𝟐𝒃𝟐 + ⋯ + 𝒏
𝒏−𝟏

𝒂𝟏𝒃𝒏−𝟏 + 𝒃𝒏

𝑛
𝑟

 is called binomial coefficient
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The Binomial Theorem

Expand the following using the binomial theorem:
a. (𝑎 + 𝑏)5 b. (𝑥 − 4𝑦)4

a.

(𝑎 + 𝑏)5= ෍

𝑘=0

5
5

𝑘
𝑎5−𝑘𝑏𝑘

 =  𝑎5 + 5
1

𝑎5−1𝑏1 + 5
2

𝑎5−2𝑏2 + 5
3

𝑎5−3𝑏3 + 5
4

𝑎5−4𝑏4 + 𝑏5

 = 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏5

Example 12 – Substituting into the Binomial Theorem
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The Binomial Theorem

Expand the following using the binomial theorem:
a. (𝑎 + 𝑏)5 b. (𝑥 − 4𝑦)4

b.

(𝑥 − 4𝑦)4= ෍

𝑘=0

4
4

𝑘
𝑥4−𝑘(−4𝑦)𝑘

 =  𝑥4 + 4
1

𝑥4−1(−4𝑦)1+ 4
2

𝑥4−2(−4𝑦)2+ 4
3

𝑥4−3(−4𝑦)3+(−4𝑦)4

 =



Example 12 – Substituting into the Binomial Theorem

𝑥4 + 4𝑥3 −4𝑦 + 6𝑥216𝑦2 + 4𝑥(−64𝑦3) + 256𝑦4

= 𝑥4 −16𝑥3𝑦 + 96𝑥2𝑦2 − 256𝑥𝑦3 + 256𝑦4
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The Binomial Theorem

Express the following sum in closed form (without using 
a summation symbol and without using an ellipsis  ):

෍

𝑘=0

𝑛
𝑛

𝑘
9𝑘

Example 13 – Using the Binomial Theorem to Simplify a Sum

෍

𝑘=0

𝑛
𝑛

𝑘
9𝑘 = ෍

𝑘=0

𝑛
𝑛

𝑘
1𝑛−𝑘9𝑘 = (1 + 9)𝑛= 10𝑛



 Probability Axioms and Expected Value  Conditional Probability, Bayes’ Formula,  and Independent Events
 

38

9.8 Probability Axioms and Expected Value
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Probability Axioms

Recall: a sample space is a set of all outcomes of a random process 
or experiment and that an event is a subset of a sample space.

Probability Axioms

Let S be a sample space. A probability function P from the set of 
all events in S to the set of real numbers satisfies the following 
axioms: For all events A and B in S,

1. 0  P(A)  1

2. P() = 0 and P(S) = 1

3. If A and B are disjoint events (A  B = ), then 
 P(A  B) = P(A) + P(B)
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Probability of the Complement of an Event

Probability of the Complement of an Event 

If A is any event in a sample space S, then

 𝑃 ҧ𝐴 = 1 − 𝑃(𝐴)

Example: You roll a fair die, what is the probability 
of not rolling a 3?

P(rolling a 3) = 
1

6

P(not rolling a 3) = 1 –
1

6
 = 

5

6

Note: Epps uses 𝐴𝑐 to represent the complement of event 𝐴. 
We will use ҧ𝐴 to be consistent with the notation used in sets.
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Probability of a General Union of Two Events

Probability of a General Union of Two Events 

If A and B are any events in a sample space S, then

  P(A  B) = P(A) + P(B) – P(A  B). 

𝑃(𝐻) = P(drawing a heart) =
13

52
=

1

4

𝑃(7) = P(drawing a 7) =
4

52
=

1

13

𝑃(𝐻 ∩ 7) = P(drawing a 7 of heart) =
1

52

𝑃(𝐻 ∪ 7) = P(drawing a heart or a 7) = 
1

4
+

1

13
−

1

52
=

4

13

Example: A card is drawn from a standard deck. 
What is the probability of drawing a heart or a 7?
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Expected Value

People who buy lottery tickets regularly often justify 
the practice by saying that, even though they know 
that on average they will lose money, they are hoping 
for one significant gain, after which they believe they 
will quit playing. 

Unfortunately, when people who have lost money on 
a string of losing lottery tickets win some or all of it 
back, they generally decide to keep trying their luck 
instead of quitting. 
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The technical way to say that on average a person will 
lose money on the lottery is to say that the expected 
value of playing the lottery is negative. 

Definition: Expected Value

Suppose the possible outcomes of an experiment, or 
random process, are real numbers 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 
which occur with probabilities 𝑝1, 𝑝2, 𝑝3, ⋯ , 𝑝𝑛 
respectively. The expected value of the process is

෍

𝑘=1

𝑛

𝑎𝑘𝑝𝑘 = 𝑎1𝑝1 + 𝑎2𝑝2 + 𝑎3𝑝3 + ⋯ + 𝑎𝑛𝑝𝑛
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Example 14 – Expected Value of a Die

If you roll a fair die, what is the expected value?

Each of the 6 outcomes (1, 2, … 6) has the same probability 
of 1/6, hence the expected value is

1

6
1 +

1

6
2 +

1

6
3 +

1

6
4 +

1

6
5 +

1

6
6

= 3.5
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Example 15 – Expected Value of a Lottery 

Suppose that 500,000 people pay $5 each to play a 
lottery game with the following prizes: 

▪ A grand prize of $1,000,000,
▪ 10 second prizes of $1,000 each,
▪ 1,000 third prizes of $500 each, and 
▪ 10,000 fourth prizes of $10 each. 

What is the expected value of a ticket? 

Each of the 500,000 lottery tickets has the same chance as 
any other of containing a winning lottery number, and so 

𝑝𝑘 =
1

500000
 for all k = 1, 2, 3, …, 500000.
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Example 15 – Expected Value of a Lottery 

▪ A grand prize of $1,000,000,
▪ 10 second prizes of $1,000 each,
▪ 1,000 third prizes of $500 each, and 
▪ 10,000 fourth prizes of $10 each. 

Let a1, a2, a3, …, a500000 be the  
net gain for an individual 
ticket, where a1 = 999995.

a2 = a3 = … = a11 = 995 (the net gain for each of the 10 second 
prize tickets)

a12 = a13 = … = a1011 = 495 (the net gain for each of the 1000 third 
prize tickets)

a1012 = a1013 = … = a11011 = 5 (the net gain for each of the 10000 
fourth prize tickets)

a11012 = a11013 = … = a500000 = –5 (the remaining 488989 tickets 
lose $5)
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Example 15 – Expected Value of a Lottery 

▪ A grand prize of $1,000,000,
▪ 10 second prizes of $1,000 each,
▪ 1,000 third prizes of $500 each, and 
▪ 10,000 fourth prizes of $10 each. 

The expected value of a ticket 
is therefore:



෍

𝑘=1

500000

𝑎𝑘𝑝𝑘 = ෍

𝑘=1

500000

𝑎𝑘 ∙
1

500000

=
1

500000
෍

𝑘=1

500000

𝑎𝑘

=
1

500000
(999995 + 10 ∙ 995 + 1000 ∙ 495 + 10000 ∙ 5 + 488989 ∙ (−5))

= −𝟏. 𝟕𝟖

In other words, a person who 
continues to play this lottery for a 
very long time will probably win 
some money occasionally but on 
average will lose $1.78 per ticket.
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Linearity of Expectation

The expected value of the sum of random variables is 
equal to the sum of their individual expected values, 
regardless of whether they are independent.

For random variables 𝑋 and 𝑌 (which may be dependent),

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]

More generally, for random variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 and 
constants 𝑐1, 𝑐2, ⋯ , 𝑐𝑛,

𝐸 ෍

𝑖=1

𝑛

𝑐𝑖 ∙ 𝑋𝑖 = ෍

𝑖=1

𝑛

𝑐𝑖 ∙ 𝐸[𝑋𝑖]
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Example 16 – Expected Value of Sum of Two Dice

Credit: brilliant.org

Calculating the expected value of 
the sum of two dice using basic 
method is tedious.

Using linearity of expectation, the 
expected value for the sum of two 
dice = 3.5 + 3.5 = 7

Check: Let 𝑠 be the sum of two dice values

𝑃 𝑠 = 2 =
1

36
;  𝑃 𝑠 = 3 =

2

36
; 𝑃 𝑠 = 4 =

3

36
; 𝑃 𝑠 = 5 =

4

36
; 𝑃 𝑠 = 6 =

5

36
; 𝑃 𝑠 = 7 =

6

36
;

𝑃 𝑠 = 8 =
5

36
; 𝑃 𝑠 = 9 =

4

36
; 𝑃 𝑠 = 10 =

3

36
; 𝑃 𝑠 = 11 =

2

36
;  𝑃 𝑠 = 12 =

1

36
; 

Expected value = 2 ∙
1

36
+ 3 ∙

2

36
+ 4 ∙

3

36
+ 5 ∙

4

36
+ 6 ∙

5

36
+ 7 ∙

6

36
+ 8 ∙

5

36
+ 9 ∙

4

36
+

10 ∙
3

36
+ 11 ∙

2

36
+ 12 ∙

1

36
= 7
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9.9 Conditional Probability, Bayes’ Formula, 
and Independent Events
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Conditional Probability

Conditional Probability

Imagine a couple with two children, each of whom is equally 
likely to be a boy or a girl. Now suppose you are given the 
information that one is a boy. What is the probability that the 
other child is a boy?

Figure 9.9.1

New sample space = 
gray region. 



 Probability Axioms and Expected Value  Conditional Probability, Bayes’ Formula,  and Independent Events 

52

Conditional Probability

Figure 9.9.1

Note also

Within the new sample space, there is 
one combination where the other child 
is a boy (blue-gray region).

Hence, the likelihood that the other 
child is a boy given that at least one is a 
boy = 1/3. 
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Conditional Probability

A generalization of this observation forms the basis for the 
following definition. 

Definition: Conditional Probability

Let A and B be events in a sample space S. If P(A)  0, 
then the conditional probability of B given A, 
denoted  P(B|A), is

𝑃(𝐵|𝐴) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)

Multiplying both sides of 
formula 9.9.1 by P(A), we get

Dividing both sides of formula 
9.9.2 by P(B|A), we get

9.9.1

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

9.9.2 9.9.3
𝑃(𝐴) =

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵|𝐴)
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Conditional Probability

Example 17 – Representing Conditional Probabilities in a Tree Diagram

a. Find the following probabilities and illustrate them with a tree diagram: 
the probability that both balls are blue, the probability that the first ball 
is blue and the second is not blue, the probability that the first ball is not 
blue and the second ball is blue, and the probability that neither ball is 
blue. 

b. What is the probability that the second ball is blue? 

c. What is the probability that at least one of the balls is blue? 

d. If the experiment of choosing two balls from the urn were repeated 
many times over, what would be the expected value of the number of 
blue balls? 

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls 
are chosen at random, one after the other, without 
replacement. 
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Conditional Probability

Example 17 – Representing Conditional Probabilities in a Tree Diagram

Let

▪ S denote the sample space of all possible choices of 
two balls from the urn,

▪ B1 be the event that the first ball is blue (then 𝐵1 is 
the event that the first ball is not blue),

▪ B2 be the event that the second ball is blue (then 𝐵2 is 
the event that the second ball is not blue).

 

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls 
are chosen at random, one after the other, without 
replacement. 
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Conditional Probability

Example 17 – Representing Conditional Probabilities in a Tree Diagram

a. Find the following probabilities and illustrate them with a 
tree diagram: the probability that both balls are blue, the 
probability that the first ball is blue and the second is not 
blue, the probability that the first ball is not blue and the 
second ball is blue, and the probability that neither ball is 
blue. 

An urn contains 5 blue and 7 gray balls. Let us say that 2 balls are 
chosen at random, one after the other, without replacement. 



 Probability Axioms and Expected Value  Conditional Probability, Bayes’ Formula,  and Independent Events 

57

Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

a. Find 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2). 

𝑃(𝐵1) =
5

12
𝑃(𝐵1) =

7

12
𝑃(𝐵2|𝐵1) =

4

11
𝑃(𝐵2|𝐵1) =

7

11

By formula 9.9.2

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 ∙ 𝑃 𝐵1 =
4

11
∙

5

12
=

20

132

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 ∙ 𝑃 𝐵1 =
7

11
∙

5

12
=

35

132

𝑃(𝐵2|𝐵1) =
5

11
𝑃(𝐵2|𝐵1) =

6

11

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 ∙ 𝑃 𝐵1 =
5

11
∙

7

12
=

35

132

𝑃 𝐵1 ∩ 𝐵2 = 𝑃 𝐵2 𝐵1 ∙ 𝑃 𝐵1 =
6

11
∙

7

12
=

42

132
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Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

a. Find 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2), 𝑃(𝐵1 ∩ 𝐵2). 

Figure 9.9.2

2

Note: Textbook uses 𝐸𝑐 
to denote ത𝐸.
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Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

b. What is the probability that the 2nd ball is blue?

First ball is blue and second is also blue, OR
first ball is gray and second is blue.
Note that they are mutually exclusive.

𝑃 𝐵2 = 𝑃( 𝐵2 ∩ 𝐵1 ∪ 𝐵2 ∩ 𝐵1 )

=
20

132
+

35

132
=

55

132
=

𝟓

𝟏𝟐

= 𝑃 𝐵2 ∩ 𝐵1 + 𝑃 𝐵2 ∩ 𝐵1 by probability axiom 3
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Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

c. What is the probability that at least one ball is blue?



𝑃 𝐵1 ∪ 𝐵2 = 𝑃 𝐵1 + 𝑃 𝐵2 −  𝑃 𝐵1 ∩ 𝐵2

=
5

12
+

5

12
−

20

132
=

90

132
=

𝟏𝟓

𝟐𝟐

Probability of a General Union of Two Events 

If A and B are any events in a sample space S, then

  P(A  B) = P(A) + P(B) – P(A  B). 
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Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

d. The expected value of the number of blue balls?

= 1 −
15

22
=

7

22
P(no blue balls) = 1 – P(at least one blue ball)

The event that one ball is blue → first ball is blue but second ball 
is not; or second ball is blue but first ball is not.

From part (a), 𝑃 𝐵1 ∩ 𝐵2 =
35

132
 and 𝑃 𝐵1 ∩ 𝐵2 =

35

132
 

Hence, P(1 blue ball) =
35

132
+

35

132
=

70

132

From part (a), P(2 blue balls) =
20

132
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Conditional Probability

5 blue, 7 gray. 

Example 17 – Representing Conditional Probabilities in a Tree Diagram

d. The expected value of the number of blue balls?



P(no blue balls) = 
7

22
P(1 blue ball) =

70

132
P(2 blue balls) =

20

132

Expected value of the number of blue balls

= 0P(no blue balls) + 1P(1 blue ball) + 2P(2 blue balls)

= 0 ∙
7

22
+ 1 ∙

70

132
+ 2 ∙

20

132

=
110

132
≅ 𝟎. 𝟖
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Bayes’ Theorem

Bayes’ Theorem

Suppose that one urn contains 3 blue and 4 gray balls and a second 
urn contains 5 blue and 3 gray balls. A ball is selected by choosing 
one of the urns at random and then picking a ball at random from 
that urn. If the chosen ball is blue, what is the probability that it 
came from the first urn?

This problem can be solved by carefully interpreting all the 
information that is known and putting it together in just the right 
way.

Let
▪ B be the event that the chosen ball is blue,
▪ U1 the event that the ball came from the first urn, and
▪ U2 the event that the ball came from the second urn.
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Bayes’ Theorem

Bayes’ Theorem

3 of the 7 balls in the first urn are blue, 5 of the 8 balls in the second 
urn are blue: 𝑃 𝐵 𝑈1 =

3

7
 and 𝑃 𝐵 𝑈2 =

5

8

The urns are equally like to be chosen: 𝑃(𝑈1) = 𝑃(𝑈2) =
1

2
By formula 9.9.2

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃 𝐵 ∩ 𝑈1 = 𝑃 𝐵 𝑈1 ∙ 𝑃 𝑈1 =
3

7
∙

1

2
=

3

14

𝑃 𝐵 ∩ 𝑈2 = 𝑃 𝐵 𝑈2 ∙ 𝑃 𝑈2 =
5

8
∙

1

2
=

5

16

𝐵 is a disjoint union of (𝐵 ∩ 𝑈1) and (𝐵 ∩ 𝑈2),  so by probability axiom 3,

𝑃 𝐵 = 𝑃 𝐵 ∩ 𝑈1 ∪ 𝐵 ∩ 𝑈2

= 𝑃 𝐵 ∩ 𝑈1 + 𝑃 𝐵 ∩ 𝑈2 =
3

14
+

5

16
=

59

112
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Bayes’ Theorem

Bayes’ Theorem

3 of the 7 balls in the first urn are blue, 5 of the 8 balls in the 
second urn are blue.

𝑃 𝐵 ∩ 𝑈1 =
3

14
 and 𝑃 𝐵 =

59

112
From previous slide,

𝑃 𝑈1|𝐵 =
𝑃(𝑈1 ∩ 𝐵)

𝑃(𝐵)
=

3
14
59

112

=
336

826
≅ 40.7%

By definition of conditional probability,

Thus, if the chosen ball is blue, the probability that it came 
from the first urn is approximately 40.7%.
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Bayes’ Theorem

Theorem 9.9.1  Bayes’ Theorem

Suppose that a sample space S is a union of mutually disjoint 
events B1, B2, B3, …, Bn. 

Suppose A is an event in S, and suppose A and all the Bi have 
non-zero probabilities. 

If k is an integer with 1  k  n, then

𝑃 𝐵𝑘 𝐴 =
𝑃(𝐴|𝐵𝑘) ∙ 𝑃(𝐵𝑘)

𝑃 𝐴 𝐵1 ∙ 𝑃 𝐵1 + 𝑃 𝐴 𝐵2 ∙ 𝑃 𝐵2 + ⋯ + 𝑃(𝐴|𝐵𝑛) ∙ 𝑃(𝐵𝑛)



 Probability Axioms and Expected Value  Conditional Probability, Bayes’ Formula,  and Independent Events 

67

Bayes’ Theorem

Example 18 – Applying Bayes’ Theorem 

Most medical tests occasionally produce incorrect results, called 
false positives and false negatives.

When a test is designed to determine whether a patient has a 
certain disease, a false positive result indicates that a patient has 
the disease when the patient does not have it.

A false negative result indicates that a patient does not have the 
disease when the patient does have it.
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Bayes’ Theorem

Example 18 – Applying Bayes’ Theorem 

Consider a medical test that screens for a disease found in 5 people 
in 1,000. Suppose that the false positive rate is 3% and the false 
negative rate is 1%. 

Then 99% of the time a person who has the condition tests positive 
for it, and 97% of the time a person who does not have the 
condition tests negative for it.

a. What is the probability that a randomly chosen person who 
tests positive for the disease actually has the disease?

b. What is the probability that a randomly chosen person who 
tests negative for the disease does not indeed have the disease?
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Bayes’ Theorem

Example 18 – Applying Bayes’ Theorem 

Consider a person chosen at random from among those screened. 
Let

▪ A be the event that the person tests positive for the disease,

▪ B1 the event that the person actually has the disease, and

▪ B2 the event that the person does not have the disease.

Then

Also, because 5 people in 1000 have the disease,

𝑃 𝐴 𝐵1 = 0.99

𝑃 ҧ𝐴 𝐵1 = 0.01 𝑃 𝐴 𝐵2 = 0.03

𝑃 ҧ𝐴 𝐵2 = 0.97

𝑃(𝐵1) = 0.005 𝑃(𝐵2) = 0.995
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Bayes’ Theorem

Example 18 – Applying Bayes’ Theorem 

a. What is the probability that a randomly chosen person who 
tests positive for the disease actually has the disease?

By Bayes’ Theorem,

𝑃 𝐵1 𝐴 =
𝑃(𝐴|𝐵1) ∙ 𝑃(𝐵1)

𝑃 𝐴 𝐵1 ∙ 𝑃 𝐵1 + 𝑃(𝐴|𝐵2) ∙ 𝑃(𝐵2)

=
(0.99) ∙ (0.005)

(0.99) ∙ (0.005) + (0.03) ∙ (0.995)

≅ 0.1422 ≅ 𝟏𝟒. 𝟐%

Thus the probability that a person with a positive test result 
actually has the disease is approximately 14.2%.
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Bayes’ Theorem

Example 18 – Applying Bayes’ Theorem 

b. What is the probability that a randomly chosen person who 
tests negative for the disease does not indeed have the disease?

By Bayes’ Theorem,

𝑃 𝐵2
ҧ𝐴 =

𝑃( ҧ𝐴|𝐵2) ∙ 𝑃(𝐵2)

𝑃 ҧ𝐴 𝐵1 ∙ 𝑃 𝐵1 + 𝑃( ҧ𝐴|𝐵2) ∙ 𝑃(𝐵2)

=
(0.97) ∙ (0.995)

(0.01) ∙ (0.005) + (0.97) ∙ (0.995)

≅ 0.999948 ≅ 𝟗𝟗. 𝟗𝟗𝟓%

Thus the probability that a person with a negative test result  
does not have the disease is approximately 99.995%.
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Independent Events

Independent Events

A is the event that a head is obtained on the first toss and B is the event 
that a head is obtained on the second toss, then if the coin is tossed 
randomly both times, events A and B should be independent in the sense 
that P(A|B) = P(A) and P(B|A) = P(B).

Observe that:

If P(B)  0 and P(A|B) = P(A),

then P(A  B) = P(A|B)  P(B) = P(A)  P(B) By the same argument,

If P(A)  0 and P(B|A) = P(B),

then P(A  B) = P(B|A)  P(A) = P(A)  P(B) 
Conversely,

If P(A  B) = P(A)  P(B) and P(A)  0, then P(B|A) = P(B).

If P(A  B) = P(A)  P(B) and P(B)  0, then P(A|B) = P(A).
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Independent Events

Thus, for convenience and to eliminate the requirement that the 
probabilities be nonzero, we use the following product formula to 
define independent events.

Definition: Independent Events

If A and B are events in a sample space S, then A and B 
are independent, if and only if,

 P(A  B) = P(A)  P(B)
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Independent Events

A coin is loaded so that the probability of heads is 0.6. Suppose the 
coin is tossed twice. Although the probability of heads is greater 
than the probability of tails, there is no reason to believe that 
whether the coin lands heads or tails on one toss will affect 
whether it lands heads or tails on the other toss. Thus it is 
reasonable to assume that the results of the tosses are 
independent.

Example 19 – Computing Probabilities of Intersections of Two Independent Events

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head?
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Independent Events

Sample space S consists of the 4 outcomes {HH, HT, TH, TT} which 
are not equally likely.

Let

▪ E be the event that a head is obtained on the first toss

▪ F be the event that a head is obtained on the second toss

P(E) = P(F) = 0.6.

Example 19 – Computing Probabilities of Intersections of Two Independent Events
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Independent Events

P(two heads) = 𝑃(𝐸 ∩ 𝐹) = 𝑃(𝐸) ⋅ 𝑃(𝐹) = (0.6)(0.6) = 0.36 = 36%

Example 19 – Computing Probabilities of Intersections of Two Independent Events

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

P(one head) = 𝑃((𝐸 ∩ ത𝐹) ∪ ( ത𝐸 ∩ 𝐹)) = 𝑃 𝐸 ⋅ 𝑃 ത𝐹 + 𝑃( ത𝐸) ⋅ 𝑃(𝐹)  

= (0.6)(0.4) + (0.4)(0.6) = 0.48 = 48%

c. What is the probability of obtaining no heads?

P(no heads) =



𝑃( ത𝐸 ∩ ത𝐹) = 𝑃( ത𝐸) ⋅ 𝑃( ത𝐹) = (0.4)(0.4) = 0.16 = 16% 
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Independent Events

Method 1:

Example 19 – Computing Probabilities of Intersections of Two Independent Events

d. What is the probability of obtaining at least one head?

P(at least one head) = P(one head) + P(two heads) = 0.48 + 0.36 

= 0.84 = 84%

Method 2:

P(at least one head) = 1 – P(no heads) = 1 – 0.16 = 0.84 = 84%
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Pairwise Independent/Mutually Independent

Pairwise Independent/Mutually Independent

We say three events A, B, and C are pairwise independent if, 
and only if,

Events can be pairwise independent without satisfying the 
condition 
P(A  B  C) = P(A)  P(B)  P(C).

Conversely, they can satisfy the condition 
P(A  B  C) = P(A)  P(B)  P(C) without being pairwise 
independent.

P(A  B) = P(A)  P(B) P(A  C) = P(A)  P(C)

P(B  C) = P(B)  P(C)

, and
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Pairwise Independent/Mutually Independent

Four conditions must be included in the definition of 
independence for three events

Definition: Pairwise Independent and Mutually Independent

Let A, B and C be events in a sample space S. A , B and C are 
pairwise independent, if and only if, they satisfy conditions 1 – 3 
below. They are mutually independent if, and only if, they 
satisfy all four conditions below.

1.  P(A  B) = P(A)  P(B)

2.  P(A  C) = P(A)  P(C)

3.  P(B  C) = P(B)  P(C)

4.  P(A  B  C) = P(A)  P(B)  P(C)
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Pairwise Independent/Mutually Independent

The definition of mutual independence for any collection of 
n events with n  2 generalizes the two definitions given 
previously.

Definition: Mutually Independent

Events A1, A2, …, An in a sample space S are mutually 
independent if, and only if, the probability of the intersection of 
any subset of the events is the product of the probabilities of 
the events in the subset.

P(A1  A2  …  An) = P(A1)  P(A2)  …  P(An)
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Pairwise Independent/Mutually Independent

A coin is loaded so that the probability of heads is 0.6 (and thus 
the probability of tails is 0.4). Suppose the coin is tossed ten 
times. As in Example 17, it is reasonable to assume that the 
results of the tosses are mutually independent.

Example 20 – Tossing a Loaded Coin Ten Times

a. What is the probability of obtaining eight heads?

b. What is the probability of obtaining at least eight head?

For each i = 1, 2, . . . , 10, let Hi be the event that a head is 
obtained on the i th toss, and let Ti be the event that a tail is 
obtained on the i th toss.
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Pairwise Independent/Mutually Independent

Example 20 – Tossing a Loaded Coin Ten Times

Suppose that the eight heads occur on the first eight tosses and 
that the remaining two tosses are tails. This is the event

H1  H2  H3  H4  H5  H6  H7  H8  T9  T10.

For simplicity, we denote it as HHHHHHHHTT.

By definition of mutually independent events,

 P(HHHHHHHHTT) = (0.6)8(0.4)2

a. What is the probability of obtaining eight heads?

By commutative law for multiplication, if the eight heads occur on 
any other of the ten tosses, the same number is obtained. Eg:

 P(HHTHHHHHTH) = (0.6)2(0.4)(0.6)5(0.4)(0.6) = (0.6)8(0.4)2
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Pairwise Independent/Mutually Independent

Example 20 – Tossing a Loaded Coin Ten Times

Now there are as many different ways to obtain eight heads in ten 
tosses as there are subsets of eight elements (the toss numbers 
on which heads are obtained) that can be chosen from a set of 

ten elements. This number is 10
8

.

Hence

 P(eight heads) = 10
8

 (0.6)8(0.4)2

a. What is the probability of obtaining eight heads?
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Pairwise Independent/Mutually Independent

Example 20 – Tossing a Loaded Coin Ten Times

By similar reasoning,

 P(nine heads) = 10
9

 (0.6)9(0.4)

and

 P(ten heads) = 10
10

 (0.6)10

b. What is the probability of obtaining at least eight heads?

Therefore,
 P(at least 8 heads) = P(8 heads) + P(9 heads) + P(10 heads) 

 = 10
8

 (0.6)8(0.4)2 + 10
9

 (0.6)9(0.4) + 10
10

 (0.6)10

 ≅ 0.167 = 16.7%

Probabilities of the form 𝑛
𝑘

𝑝𝑛−𝑘(1 − 𝑝)𝑘 , where 0 ≤ 𝑝 ≤ 1, 

are called binomial probabilities.
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Next week’s lectures

Graphs and Trees
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END OF FILE
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