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10. Graphs and Trees

10.1 Graphs: Definitions and Basic Properties

• Introduction, Basic Terminology

• Special Graphs

• The Concept of Degree

10.2 Trails, Paths, and Circuits

• Definitions

• Connectedness

• Euler Circuits and Hamiltonian Circuits

10.3 Matrix Representations of Graphs 

• Matrices and Directed Graphs; Matrices and Undirected Graphs

• Matrix Multiplication

• Counting Walks of Length N

10.4 Isomorphisms of Graphs/Planar Graphs

• Definition of Graph Isomorphism

• Planar Graphs and Euler’s Formula

Reference: Epp’s Chapter 10 Graphs and Trees
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“The origins of graph theory are humble, even frivolous.” ~Norman L. Biggs

The Father of Graph Theory
Leonhard Euler (1707-1783)

The 7 bridges of Königsberg

Knight’s Tour Problem

Euler’s formula: F + V = E + 2

Travelling Salesman Problem
Applications:
▪ CS: hardware, data structures, 

image processing, data 
mining, network design, etc.

▪ GPS to find shortest path
▪ Ranking hyperlinks in search 

engines
▪ Social network analysis
▪ DNA sequence
▪ … 

Graph as an excellent 
modelling tool…

Network model of 
COVID-19 spreading 
across the United States

Graphs: Introduction
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Types of graphs (informal intro):

Graphs are mathematical structures used to 
model pairwise relations between objects.
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Bet you have seen graphs in CS1231/CS1231S before!

Relation 𝑅 on a set 𝐴 = {1,2,3,4,5,6}, s.t. 
∀𝑥, 𝑦 ∈ 𝐴, 𝑥 𝑅 𝑦 iff 𝑥 | 𝑦.
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Relation 𝑇 on a set 𝐴 = {1,2,3,4,5,6}, s.t. ∀𝑥, 𝑦 ∈ 𝐴, 
𝑥 𝑇 𝑦 iff 𝑥 + 𝑦 = 2𝑘 + 1 for some 𝑘 ∈ ℤ.
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Graphs: Introduction
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10.1 Graphs: Definitions and Basic Properties
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▪ An undirected graph is denoted by 𝐺 = (𝑉, 𝐸) where
▪ 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is the set of vertices (or nodes) in 𝐺; and
▪ 𝐸 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑘} is the set of (undirected) edges in 𝐺.

▪ An (undirected) edge 𝑒 connecting 𝑣𝑖 and 𝑣𝑗  is denoted as 𝑒 = {𝑣𝑖 , 𝑣𝑗}. 

Graphs: Definitions and Basic Properties

𝑉 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7 ;
𝐸 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 .

𝑒1 = 𝑣1, 𝑣4 ;
𝑒2 = 𝑒3 = 𝑣2, 𝑣3 ;

𝑒4 = 𝑣3, 𝑣4 ;
𝑒5 = 𝑣4, 𝑣4 ;
𝑒6 = 𝑣6, 𝑣7 .

Example:

Sometimes we write 𝑒5 = 𝑣4

(but we won’t use this.) 
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Graphs: Definitions and Basic Properties

Definition: Undirected Graph

An undirected graph G consists of 2 finite sets: a nonempty set 
V of vertices and a set E of edges, where each (undirected) edge 
is associated with a set consisting of either one or two vertices 
called its endpoints.

An edge is said to connect its endpoints; two vertices that are 
connected by an edge are called adjacent vertices; and a vertex 
that is an endpoint of a loop is said to be adjacent to itself.

An edge is said to be incident on each of its endpoints, and two 
edges incident on the same endpoint are called adjacent edges.

We write e = {v, w} for an undirected edge e incident on vertices 
v and w.
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Graphs: Definitions and Basic Properties

Definition: Directed Graph

A directed graph, or digraph, G, consists of 2 finite sets: a 
nonempty set V of vertices and a set E of directed edges, 
where each (directed) edge is associated with an ordered pair 
of vertices called its endpoints. 

We write e = (v, w) for a directed edge e from vertex 𝑣 to 
vertex 𝑤. 

Undirected 
graph

Directed 
graph

𝑒2 = {𝑣1, 𝑣3} 𝑒2 = (𝑣2, 𝑣1)
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Shall we add some colours to this map of the United States?

Map Colouring
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Map Colouring

Shall we add some colours to this map of the United States?
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▪ Four-Colour Conjecture

▪ Proposed by Guthrie in 1852, who conjectured that…

▪ Four colours are sufficient to colour any map in a plane, 
such that regions that share a common boundary do not 
share the same colour.

▪ Many false proofs since then.

▪ Finally proved by Appel and Haken in 1977, with the help 
of computer.

▪ Robertson et al. provided another proof in 1996.

Map Colouring
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Map Colouring

Example of a 4-
coloured map. World map with 4 colours.

▪ But this is a map, not a graph!

▪ However, we can model it as a graph.

▪ But what is a graph?
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Modelling Graph Problems

Map Colouring Problem

Solve it as a graph problem.

Draw a graph in which the vertices 
represent the states, with every edge 
joining two vertices represents the 
states sharing a common border.

Such two vertices cannot be coloured 
with the same colour.

A vertex colouring of a graph is an 
assignment of colours to vertices so 
that no two adjacent vertices have 
the same colour.
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Modelling Graph Problems

Ven
Guy

Sur

Col

Ecu

Fre

Bra

Per
Bol Par

Uru

Arg

Chi

Fal
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Modelling Graph Problems

Per

Ven Sur

Par

Fal

Uru

Col

Guy

Fre

Bol

Ecu
Bra

Chi

Arg



4 colours used!
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Wedding Planner

Acknowledgement: http://www.math.uri.edu/~eaton/0131873814_MEb.pdf 

You are your best friend’s wedding planner and you 
need to plan the seating arrangement for his 16 guests 
attending his wedding dinner. However, some of the 
guests cannot get along with some others.

▪ A doesn’t get along with F, G or H.
▪ B doesn’t get along with C, D or H.
▪ C doesn’t get along with B, D, E, G or H.
▪ D doesn’t get along with B, C or E.
▪ E doesn’t get along with C, D, F, or G.
▪ F doesn’t get along with A, E or G.
▪ G doesn’t get along with A, C, E or F.
▪ H doesn’t get along with A, B or C.

You don’t want to put 
guests who cannot 
get along with each 
other at the same 
table!

How many tables do 
you need?

http://www.math.uri.edu/~eaton/0131873814_MEb.pdf
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Wedding Planner

Acknowledgement: http://www.math.uri.edu/~eaton/0131873814_MEb.pdf 

▪ A doesn’t get along with F, G or H.
▪ B doesn’t get along with C, D or H.
▪ C doesn’t get along with B, D, E, G or H.
▪ D doesn’t get along with B, C or E.
▪ E doesn’t get along with C, D, F, or G.
▪ F doesn’t get along with A, E or G.
▪ G doesn’t get along with A, C, E or F.
▪ H doesn’t get along with A, B or C.

Graph with vertices 
representing the 
guests, and an edge 
is drawn between 
two guests who 
don’t get along.

Vertex colouring problem. 
4 colours (4 tables)?



3 colours 
(3 tables)!

http://www.math.uri.edu/~eaton/0131873814_MEb.pdf
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Other Vertex Colouring Problems

If the vertices 
represent…

And two vertices are 
adjacent if ….

Then a vertex colouring 
can be used to…

1. classes, the corresponding 
classes have students 
in common, 

schedule classes.

2. radio stations, the stations are close 
enough to interfere 
with each other,

assign non-interfering 
frequencies to the 
stations.

3. traffic signals 
at an 
intersection,

the corresponding 
signals cannot be green 
at the same time,

designate sets of signals 
that can be green at the 
same time.
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Simple Graphs

Definition: Simple Graph

A simple graph is an undirected graph that does not have any 
loops or parallel edges. (That is, there is at most one edge between 

each pair of distinct vertices.) 

Simple graph Non simple graph Non simple graph
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Complete Graphs

Definition: Complete Graph

A complete graph on n vertices, n > 0, denoted Kn, is a simple 
graph with n vertices and exactly one edge connecting each 
pair of distinct vertices . 



Draw 𝐾5.

Fun: The notation 𝐾𝑛 is rumoured to be used 
to honour the contributions of Kazimierz 
Kuratowski to graph theory.

Important fact: 

How many edges are there in 𝐾𝑛?
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Bipartite Graphs and Complete Bipartite Graphs

Definition: Bipartite Graph

A bipartite graph (or bigraph) is a simple graph 
whose vertices can be divided into two disjoint 
sets 𝑈 and 𝑉 such that every edge connects a 
vertex in 𝑈 to one in 𝑉.  

𝐾3,2

𝐾2,5

Definition: Complete Bipartite Graph

A complete bipartite graph is a bipartite graph 
on two disjoint sets 𝑈 and 𝑉 such that every 
vertex in 𝑈 connects to every vertex in 𝑉. 

If 𝑈 = 𝑚 and 𝑉 = 𝑛, the complete bipartite 
graph is denoted as 𝐾𝑚,𝑛. 

Bipartite graph
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Subgraph of a Graph

Definition: Subgraph of a Graph

A graph H is said to be a subgraph of graph G if and only if 
every vertex in H is also a vertex in G, every edge in H is also an 
edge in G, and every edge in H has the same endpoints as it 
has in G.

A graph G Subgraphs 
of G
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Degree of a Vertex and Total Degree of an Undirected Graph

Definition: Degree of a Vertex and Total Degree of an Undirected Graph

Let G be a undirected graph and v a vertex of G. The degree of 
v, denoted deg(v), equals the number of edges that are incident 
on v, with an edge that is a loop counted twice.

The total degree of G is the sum of the degrees of all the 
vertices of G.

The degree of a vertex can be obtained 
from the drawing of a graph by 
counting how many end segments of 
edges are incident on the vertex. 
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Degree of a Vertex and Total Degree of a Graph

Example: Find the degree of each vertex of the graph G 
shown below. Then find the total degree of G.

deg(v1) = 0
deg(v2) = 2
deg(v3) = 4
Total degree of G = 6
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Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of 
G equals twice the number of edges of G. Specifically, if the 
vertices of G are v1, v2, …, vn, where n  0, then

 The total degree of G = deg(v1) + deg(v2) + … + deg(vn)

  = 2  (the number of edges of G).

Corollary 10.1.2

The total degree of a graph is even.

Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.
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Indegree and Outdegree of a Vertex of a Directed Graph

Definition: Indegree and outdegree of a Vertex of a Directed Graph

Let G=(V,E) be a directed graph and v a vertex of G. The 
indegree of v, denoted deg−(v), is the number of directed 
edges that end at v. The outdegree of v, denoted deg+(v), is 
the number of directed edges that originate from v.

Note that ෍

𝑣∈𝑉

𝑑𝑒𝑔− 𝑣 = ෍

𝑣∈𝑉

𝑑𝑒𝑔+ 𝑣 = |𝐸|

a

b

c d

deg − (a) = 2; deg +(a) = 0; 
deg − (b) = 0; deg +(b) = 2;
deg − (c) = 2; deg +(c) = 2;
deg − (d) = 1; deg +(d) = 1. 
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10.2 Trails, Paths, and Circuits
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Introduction

Let’s Have Some Fun

Can you draw the following figures without lifting up your pencil?

(1) (2) (3) (4)

(5) (6) (7) (8)
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Introduction

Königsberg bridges

The subject of graph theory began in the year 1736 when the 
great mathematician Leonhard Euler published a paper giving the 
solution to the following puzzle:

The town of Königsberg in Prussia (now Kaliningrad in Russia) was 
built at a point where two branches of the Pregel River came together. 
It consisted of an island and some land along the river banks.
These were connected by 7 bridges.

Euler asked: Is it possible to take 
a walk around town, starting 
and ending at the same location 
and crossing each of the 7 
bridges exactly once?
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Introduction

Königsberg bridges

Euler asked: Is it possible to take 
a walk around town, starting 
and ending at the same location 
and crossing each of the 7 
bridges exactly once?

In terms of this graph, the question is:

Is it possible to find a route through 
the graph that starts and ends at some 
vertex (A, B, C, or D) and traverses 
each edge exactly once?
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Definitions

Definitions

Travel in a graph is accomplished by moving from one 
vertex to another along a sequence of adjacent edges.

In the graph below, for instance, you can go from u1 to 
u4 by taking f1 to u2 and then f7 to u4. This is 
represented by writing 𝑢1𝑓1𝑢2𝑓7𝑢4.

Or, you could take a 
longer route:

𝑢1𝑓1𝑢2𝑓3𝑢3𝑓4𝑢2𝑓3𝑢3𝑓5𝑢4
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Definitions

Walk, Trail, Path, Closed Walk, Circuit, Simple Circuit

Definitions

Let G be a graph, and let v and w be vertices of G. 

A walk from v to w is a finite alternating sequence of adjacent 
vertices and edges of G. Thus a walk has the form

 v0 e1 v1 e2 … vn-1 en vn ,

where the v’s represent vertices, the e’s represent edges, v0=v, vn=w, 
and for all i  {1, 2, …, n}, vi-1 and vi are the endpoints of ei. The 
number of edges, n, is the length of the walk.

The trivial walk from v to v consists of the single vertex v.

A trail from v to w is a walk from v to w that does not contain a 
repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.
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Definitions

Walk, Trail, Path, Closed Walk, Circuit, Simple Circuit

Definitions

A closed walk is a walk that starts and ends at the same vertex.

A circuit (or cycle) is a closed walk of length at least 3 that does not 
contain a repeated edge.

A simple circuit (or simple cycle) is a circuit that does not have any 
other repeated vertex except the first and last.

An undirected graph is cyclic if it contains a loop or a cycle; 
otherwise, it is acyclic.

Examples:
𝑢1𝑒1𝑢2𝑒3𝑢5𝑒4𝑢3𝑒5𝑢6𝑒7𝑢5𝑒3𝑢2 is a walk (may repeat edges and/or vertices).

𝑢1 𝑢2 𝑢3

𝑢4 𝑢5 𝑢6

𝑒1

𝑒5𝑒2 𝑒3 𝑒4

𝑒6 𝑒7

𝑢1𝑒1𝑢2𝑒3𝑢5𝑒4𝑢3𝑒5𝑢6𝑒7𝑢5𝑒6𝑢4 is a trail (must not repeat edges).

𝑢1𝑒1𝑢2𝑒3𝑢5𝑒4𝑢3𝑒5𝑢6 is a path (must not repeat vertices and edges).

𝑢5𝑒6𝑢4𝑒2𝑢1𝑒1𝑢2𝑒3𝑢5𝑒7𝑢6𝑒5𝑢3𝑒4𝑢5 is a circuit.

𝑢5𝑒6𝑢4𝑒2𝑢1𝑒1𝑢2𝑒3𝑢5 is a simple circuit.
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Definitions

Notes

Because most of the major developments in graph theory have 
happened relatively recently and in a variety of different contexts, 
the terms used in the subject have not been standardized. 

Susanna Epp’s book Others

Graph Multigraph

Simple graph Graph

Vertex Node

Edge Arc

Trail Path

Path Simple path

Simple circuit Cycle

The terminology in this book 
is among the most common, 
but if you consult other 
sources, be sure to check 
their definitions.

For CS1231S, we will 
follow the terminology 

in Epp’s book.
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Connectedness

Connectedness

A graph is connected if it is possible to travel from any vertex to 
any other vertex along a sequence of adjacent edges of the graph.

Definition: Connectedness

Two vertices v and w of a graph G=(V,E) are connected if and only if 
there is a walk from v to w.

The graph G is connected if and only if given any two vertices v and 
w in G, there is a walk from v to w. Symbolically,

 G is connected iff  vertices v, w V,  a walk from v to w.
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Connectedness

Example: Which of the following graphs are connected?

Yes No

No


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Connectedness

Some useful facts relating circuits and connectedness are 
collected in the following lemma.

Lemma 10.2.1

Let G be a graph.

a. If G is connected, then any two distinct vertices of G can be 
connected by a path.

b. If vertices v and w are part of a circuit in G and one edge is 
removed from the circuit, then there still exists a trail from v 
to w in G.

c. If G is connected and G contains a circuit, then an edge of 
the circuit can be removed without disconnecting G.
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Connected Component

The graphs in (b) and (c) are both made up of three pieces, each of 
which is itself a connected graph.

Connected Component

Definition: Connected Component

A graph H is a connected component of a graph G if and only if

1. The graph H is a subgraph of G;

2. The graph H is connected; and

3. No connected subgraph of G has H as a subgraph and contains 
vertices or edges that are not in H.

A connected component of a 
graph is a connected subgraph of 
largest possible size.
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Connected Component

Find all connected components of the following graph G.

G has 3 connected components H1, H2 and H3 with vertex 
sets V1, V2 and V3 and edge sets E1, E2 and E3 , where

𝑉1 = 𝑣1, 𝑣2, 𝑣3 , 𝐸1 = 𝑒1, 𝑒2

𝑉2 = 𝑣4 , 𝐸2 = ∅

𝑉3 = 𝑣5, 𝑣6, 𝑣7, 𝑣8 , 𝐸3 = 𝑒3, 𝑒4, 𝑒5
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Euler Circuits

Now, let’s go back to the puzzle of the 
Königsberg bridges.

Euler Circuits

Is it possible to find a route through 
the graph that starts and ends at some 
vertex, one of A, B, C, or D, and 
traverses each edge exactly once?
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Euler Circuits

Definition: Euler Circuit

Let G be a graph. An Euler circuit for G is a circuit that contains 
every vertex and traverses every edge of G exactly once. 

Definition: Eulerian Graph

An Eulerian graph is a graph that contains an Euler circuit. 

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has 
positive even degree.

Contrapositive Version of Theorem 10.2.2

If some vertex of a graph has odd degree, then the graph does not 
have an Euler circuit.
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Euler Circuits

Is this true? If every vertex of a graph has positive even degree, 
then the graph has an Euler circuit.

Not true!



Counterexample:

Theorem 10.2.3

If a graph G is connected and the degree of every vertex of G is a 
positive even integer, then G has an Euler circuit.

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and 
every vertex of G has positive even degree.
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Euler Circuits

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. 
There is an Euler trail from v to w if and only if G is connected, v 
and w have odd degree, and all other vertices of G have 
positive even degree.

Definition: Euler Trail

Let G be a graph, and let v and w be two distinct vertices of G. 
An Euler trail/path from v to w is a sequence of adjacent edges 
and vertices that starts at v, ends at w, passes through every 
vertex of G at least once, and traverses every edge of G exactly 
once. 
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Euler Circuits

Does each of the following graphs have an Euler circuit?



(1) (2) (4)

(5) (6) (7) (8)

(3)
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Euler Circuits

The following graphs do not have an Euler circuit. 
Do they have an Euler trail?

Yes



Yes

Adding an edge between 
the two vertices with odd 
degree will give us an 
Euler circuit.

(1)

𝑤𝑣

(5)

𝑤𝑣

𝑤𝑣

𝑤𝑣
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Hamiltonian Circuits

Recall Theorem 10.2.4:

Hamiltonian Circuits

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and 
every vertex of G has positive even degree.

A related question:

Given a graph G, is it possible to find a circuit for G in 
which all the vertices of G (except the first and the last) 
appear exactly once?
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Hamiltonian Circuits

In 1859 the Irish mathematician Sir William 
Rowan Hamilton introduced a puzzle in the 
shape of a dodecahedron (DOH-dek-a-HEE-
dron). (Figure 10.2.6 contains a drawing of a 

dodecahedron, which is a solid figure with 12 identical 
pentagonal faces.) Figure 10.2.6 Dodecahedron

Each vertex was labeled with the name of a city — London, 
Paris, Singapore, New York, and so on.

The problem Hamilton posed was to start at one city and tour 
the world by visiting each other city exactly once and returning 
to the starting city.
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Hamiltonian Circuits

One way to solve the puzzle is to imagine 
the surface of the dodecahedron 
stretched  out and laid flat in the plane, 
as follows:

The circuit denoted with black lines is 
one solution. (Note that although every city is 

visited, many edges are omitted from the circuit.)

If we add values (called weights) to each edge, this becomes 
the travelling salesman problem. 
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Hamiltonian Circuits

Definition: Hamiltonian Circuit

Given a graph G, a Hamiltonian circuit for G is a simple circuit that 
includes every vertex of G. (That is, every vertex appears exactly 
once, except for the first and the last, which are the same.)

Definition: Hamiltonian Graph

A Hamiltonian graph (also called Hamilton graph) is a graph 
that contains a Hamiltonian circuit. 

Note that although an Euler circuit for a graph G must include 
every vertex of G, it may visit some vertices more than once and 
hence may not be a Hamiltonian circuit. 

On the other hand, a Hamiltonian circuit for G does not need to 
include all the edges of G and hence may not be an Euler circuit.
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Hamiltonian Circuits

AY2019/20 Sem1 Exam Question

Which of the following statements is true?
A. Graphs A and B are both Eulerian and Hamiltonian.

B. Graph A is both Eulerian and Hamiltonian; graph B is neither 
Eulerian nor Hamiltonian.

C. Graph A is Eulerian but not Hamiltonian; graph B is neither 
Eulerian nor Hamiltonian.

D. Graph A is Eulerian but not Hamiltonian; graph B is Hamiltonian 
but not Eulerian.

E. Graphs A and B are Hamiltonian but not Eulerian.

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Hamiltonian Circuits

Despite the analogous-sounding definitions of Euler and 
Hamiltonian circuits, the mathematics of the two are very 
different.

Determining whether a graph has an Euler circuit is easy – 
Theorem 10.2.4 gives a simple criterion. 

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected 
and every vertex of G has positive even degree.

Unfortunately, there is no analogous criterion for determining 
whether a given graph has a Hamiltonian circuit, nor is there 
even an efficient algorithm for finding such a circuit.
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Hamiltonian Circuits

There is, however, a simple technique that can be used in many 
cases to show that a graph does not have a Hamiltonian circuit. 

Proposition 10.2.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H 
with the following properties:

1. H contains every vertex of G.
2. H is connected.
3. H has the same number of edges as vertices.
4. Every vertex of H has degree 2.

The contrapositive of Proposition 10.2.6 says that if a graph G 
does not have a subgraph H with properties (1)–(4), then G does 
not have a Hamiltonian circuit. 
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Travelling Salesman Problem

Imagine that the drawing below is a map showing four 
cities and the distances in kilometers between them.

Travelling Salesman Problem

Suppose that a salesman must travel to each city exactly 
once, starting and ending in city A. Which route from 
city to city will minimize the total distance that must be 
travelled?

For reading only.
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Travelling Salesman Problem

This problem can be solved by writing all 
possible Hamiltonian circuits starting and 
ending at A and calculating the total distance 
travelled for each.

Thus either route ABCDA or ADCBA gives a minimum total 
distance of 125 km.
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Travelling Salesman Problem

The general travelling salesman problem involves finding a 
Hamiltonian circuit to minimize the total distance travelled for an 
arbitrary graph with n vertices in which each edge is marked with 
a distance.

One way to solve the general problem is to use the previous 
method: Write down all Hamiltonian circuits starting and ending 
at a particular vertex, compute the total distance for each, and 
pick one for which this total is minimal.

However, this is impractical for even medium-sized values of n. 
For n = 30 vertices, there would be (29!)/2  4.421030 
Hamiltonian circuits starting and ending at a particular vertex to 
check. If each circuit could be found and its total distance 
computed in just one nanosecond, it would take approximately 
1.4 1014 years to compute!
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Travelling Salesman Problem

At present, there is no known algorithm for solving the general 
travelling salesman problem that is more efficient.

However, there are efficient algorithms that find “pretty good” 
solutions — that is, circuits that, while not necessarily having the 
least possible total distances, have smaller total distances than 
most other Hamiltonian circuits.
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10.3 Matrix Representations of Graphs
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Matrix Representations of Graphs

Matrices

Definition: Matrix

An m  n (read “m by n”) matrix A over a set S is a rectangular 
array of elements of S arranged into m rows and n columns.

We write A = (𝑎𝑖𝑗).

ith row of A

jth column of A
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Matrices

If A and B are matrices, then A = B if, and only if, A and B have the 
same size and the corresponding entries of A and B are all equal; 
that is,

𝑎𝑖𝑗 = 𝑏𝑖𝑗 for all 𝑖 = 1, 2, ⋯ , 𝑚 and 𝑗 = 1, 2, ⋯ , 𝑛.

A matrix for which the numbers of rows and columns are equal is 
called a square matrix.

If A is a square matrix of size n  n, then the main diagonal of A 
consists of all the entries 𝑎11, 𝑎22, ⋯ 𝑎𝑛𝑛.

main diagonal of A
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Matrices and Directed Graphs

Matrices and Directed Graphs

Figure 10.3.1 A Directed Graph and Its Adjacency Matrix

This graph G is represented by the matrix A = (𝑎𝑖𝑗) for which 𝑎𝑖𝑗 = 

number of arrows from vi to vj for all i = 1, 2, 3 and j = 1, 2, 3.

A is called the adjacency matrix of G.

Another common representation of a graph is the 
adjacency list, which is covered in algorithms module.
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Matrices and Directed Graphs

Definition: Adjacency Matrix of a Directed Graph

Let G be a directed graph with ordered vertices v1, v2, … vn. The 
adjacency matrix of G is the n  n matrix A = (𝑎𝑖𝑗) over the set of 

non-negative integers such that
 𝑎𝑖𝑗 = the number of arrows from vi to vj for all i, j = 1, 2, …, n.

Example: Find the adjacency matrices of the two directed graphs below.

(a) (b)(a) (b)


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Matrices and Undirected Graphs

Matrices and Undirected Graphs

Example: Find the adjacency matrix for the graph G shown below.

Note that the matrix is 
symmetric.

Definition: Symmetric Matrix

An n  n square matrix A = (𝑎𝑖𝑗) is called symmetric 

if, and only if, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all i, j = 1, 2, …, n.

Definition: Adjacency Matrix of an Undirected Graph

Let G be an undirected graph with ordered vertices v1, v2, … vn. The 
adjacency matrix of G is the n  n matrix A = (𝑎𝑖𝑗) over the set of non-

negative integers such that

 𝑎𝑖𝑗 = the number of edges connecting vi and vj for all i, j = 1, 2, …, n.
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Matrix Multiplication

Matrix Multiplication

Definition: Scalar Product

Suppose that all entries in matrices A and B are real numbers. If 
the number of elements, n, in the ith row of A equals the 
number of elements in the jth column of B, then the scalar 
product or dot product of the ith row of A and the jth column 
of B is the real number obtained as follows:

𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑛

𝑏1𝑗

𝑏2𝑗

⋮
𝑏𝑛𝑗

=  𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗 .
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Matrix Multiplication

Definition: Matrix Multiplication

Let A = (aij) be an m  k matrix and B = (bij) an k  n matrix with real entries. 
The (matrix) product of A times B, denoted AB, is that matrix (cij) defined as 
follows:

where 

 𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑘𝑏𝑘𝑗 = σ𝑟=1
𝑘 𝑎𝑖𝑟𝑏𝑟𝑗 .

for all i = 1, 2, …, m and j = 1, 2, …, n.
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Matrix Multiplication

Example – Computing a Matrix Product

Solution:

where

2 3
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Matrix Multiplication

Example – Computing a Matrix Product

Solution:

where

2 3

-2 -1

–2
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Matrix Multiplication

Multiplication of real numbers is commutative, but matrix 
multiplication is not.

On the other hand, both real number and matrix multiplications 
are associative ((ab)c = a(bc), for all elements a, b, and c for which 
the products are defined).
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Matrix Multiplication

Identity Matrix

These computations show that            acts as an identity on 
the left side for multiplication with 2  3 matrices and that

              acts as an identity on the right side for multiplication

with 3  3 matrices.
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Matrix Multiplication

Definition: Identity Matrix

For each positive integer n, the n  n identity matrix, denoted 
In = (ij) or just I (if the size of the matrix is obvious from 
context), is the n  n matrix in which all the entries in the main 
diagonal are 1’s and all other entries are 0’s. In other words,

 𝛿𝑖𝑗 = ቊ
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

 for all 𝑖, 𝑗 = 1, 2, … , 𝑛. 

The German mathematician Leopold Kronecker introduced the 
symbol i j to make matrix computations more convenient. In his 
honour, this symbol is called the Kronecker delta.
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Matrix Multiplication

nth Power of a Matrix

Definition: nth Power of a Matrix

For any n  n matrix A, the powers of A are defined as follows:

  A0 = I where I is the n  n identity matrix 

  An = A An – 1   for all integers n  1

Solution:
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Counting Walks of Length N

Counting Walks of Length N

A walk in a graph consists of an alternating sequence of 
vertices and edges.

If repeated edges are counted each time they occur, 
then the number of edges in the sequence is called the 
length of the walk. 

For instance, the walk v2e3v3e4v2e2v2e3v3 has length 4 
(counting e3 twice). 
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Counting Walks of Length N

Example: Consider the following graph G. 
How many distinct walks of length 2 connect v2 and v2?

One walk of length 2 from v2 to v2 via v1: 
v2e1v1e1v2. 

One walk of length 2 from v2 to v2 via v2: 
v2e2v2e2v2. 

Four walks of length 2 from v2 to v2 via v3: 
v2e3v3e4v2 ,
v2e4v3e3v2,
v2e3v3e3v2,
v2e4v3e4v2.

Total = 6
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Counting Walks of Length N

The general question of finding the number of walks that have a given length 
and connect two particular vertices of a graph can easily be answered using 
matrix multiplication.

Consider the adjacency 
matrix A of the graph G.

Compute A2:

Note that the entry in row 2 and column 2 is 6, which equals 
the number of walks of length 2 from v2 to v2. 

Reason: To compute a22, you multiply row 2 of A with column 2 of A 
to obtain a sum of three terms:



 Graphs: Definitions  Trails, Paths, and Circuits Matrix Representations  Graph Isomorphism/Planar Graphs

74

Counting Walks of Length N

More generally, if A is the adjacency matrix of a graph G, the i j-th 
entry of A2 equals the number of walks of length 2 connecting the 
i-th vertex to the j-th vertex of G.

Even more generally, if n is any positive integer, the i j-th entry of 
An equals the number of walks of length n connecting the i-th and 
the j-th vertices of G.

Theorem 10.3.2

If G is a graph with vertices v1, v2, …, vm and A is the adjacency 
matrix of G, then for each positive integer n and for all integers i, j 
= 1, 2, …, m, 
the ij-th entry of An = the number of walks of length n from vi to vj.
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10.4 Planar Graphs
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Planar Graphs

Isomorphisms of Graphs

The two drawings shown in Figure 10.4.1 both represent 
the same graph: Their vertex and edge sets are identical, 
and their edge-endpoint functions are the same. Call 
this graph G.

Figure 10.4.1
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Isomorphisms of Graphs

Now consider the graph G' represented in Figure 10.4.2.

Figure 10.4.2

Observe that G' is a “different graph” from G in terms of 
the labelling of the vertices and edges (for instance, in G 
the endpoints of e1 are v1 and v2, whereas in G' the 
endpoints of e1 are v1 and v3). 

Figure 10.4.1

𝐺 𝐺′
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Isomorphisms of Graphs

Yet G' is certainly very similar to G. In fact, if the vertices and edges 
of G' are relabeled by the functions shown in Figure 10.4.3, then G' 
becomes the same as G.

Note that these relabeling functions are bijective.

Figure 10.4.3

G G'
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Isomorphisms of Graphs

Two graphs 𝐺 and 𝐺′ that are the same except for the labeling of their vertices 
and edges are called isomorphic. In other words, there exists matching 
between the vertices such that two vertices are connected by an edge in 𝐺 if 

and only if corresponding vertices are connected by an edge in 𝐺′. 

Definition: Isomorphic Graph

Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) and 𝐺′ = (𝑉𝐺′ , 𝐸𝐺′) be two graphs. 

𝑮 is isomorphic to 𝑮′, denoted 𝐺 ≅ 𝐺′, if and only if there exist bijections
𝑔: 𝑉𝐺 → 𝑉𝐺′  and ℎ: 𝐸𝐺 → 𝐸𝐺′  that preserve the edge-endpoint functions of 𝐺 
and 𝐺′ in the sense that for all 𝑣 ∈ 𝑉𝐺and 𝑒 ∈ 𝐸𝐺, 

  𝑣 is an endpoint of 𝑒  𝑔(𝑣) is an endpoint of ℎ(𝑒).

Alternative definition (for simple graphs)

Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) and 𝐺′ = (𝑉𝐺′ , 𝐸𝐺′) be two simple graphs. 

𝑮 is isomorphic to 𝑮′ if and only if there exists a permutation 𝜋: 𝑉𝐺 → 𝑉𝐺′  
such that {𝑢, 𝑣} ∈ 𝐸𝐺  {𝜋(𝑢), 𝜋(𝑣)} ∈ 𝐸𝐺′.
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Isomorphisms of Graphs

Example: Show that the following two graphs are isomorphic.


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Isomorphisms of Graphs

It is not hard to show that graph isomorphism is an 
equivalence relation on a set of graphs; in other words, 
it is reflexive, symmetric, and transitive.

Theorem 10.4.1 Graph Isomorphism is an Equivalence Relation

Let S be a set of graphs and let ≅ be the relation of graph 
isomorphism on S. Then ≅ is an equivalence relation on S.

Exercise: Prove that graph isomorphism ≅ 
is an equivalence relation.
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Planar Graphs

Is Figure 10.4.4 a planar graph?

Definition: Planar Graph

A planar graph is a graph that can be drawn on a (two-
dimensional) plane without edges crossing.



ba

c d e

b

a

c d e

Yes, it is a planar graph.

Figure 10.4.4

Non-planar representation 
of the graph

Planar representation 
of the graph
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Planar Graphs

Examples of non-planar graphs

𝐾5 𝐾3,3

Kuratowski’s Theorem:

A finite graph is planar if and only if it does not contain 
a subgraph that is a subdivision of the complete graph 
𝐾5 or the complete bipartite graph 𝐾3,3.
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Planar Graphs

Subdivision of a graph

Given a graph G, a subdivision of G, is a new graph obtained by 
inserting new vertices into the edges of G.

Typically done by removing an edge, adding a new vertex, and 
connecting the new vertex to the original edge’s two endpoints.

G2 G2’ – subdivision of G2G1 G1’ – subdivision of G1
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Planar Graphs

When we draw a planar representation of a planar 
graph, it divides the plane up into regions or faces.

Euler’s Formula

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

F1
F2

F3

F4

(F4 = ‘outside’ the 
planar graph)
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Euler’s Formula

e = 8
v = 6
f = 8 – 6 + 2 = 4

Euler’s Formula

For a connected planar simple graph G = (V, E) with e = |E| and 
v = |V|,  if we let f be the number of faces, then

f = e – v + 2

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

F1
F2

F3

F4
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Next week’s lectures

Trees
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