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10. Graphs and Trees

10.1 Graphs: Definitions and Basic Properties

e Introduction, Basic Terminology
e Special Graphs
e The Concept of Degree

10.2 Trails, Paths, and Circuits

¢ Definitions
e Connectedness
e Euler Circuits and Hamiltonian Circuits

10.3 Matrix Representations of Graphs

e Matrices and Directed Graphs; Matrices and Undirected Graphs
e Matrix Multiplication
e Counting Walks of Length N

10.4 Isomorphisms of Graphs/Planar Graphs

e Definition of Graph Isomorphism
e Planar Graphs and Euler’s Formula

Reference: Epp’s Chapter 10 Graphs and Trees
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Graphs: Introduction

“The origins of graph theory are humble, even frivolous.” “Norman L. Biggs

Credit: Wikipedia

The 7 bridges of Konigsberg

The Father of Graph Theory Euler’s formula: F+V=E+2

Leonhard Euler (1707-1783) Knight’s Tour Problem

Travelling Salesman Problem
Graph as an excellent

Applications: modelling tool...

= (CS: hardware, data structures,
image processing, data
mining, network design, etc.

=  GPS to find shortest path

= Ranking hyperlinks in search \ f.Network model of
engines I/ X 7)) covID-19 spreading

= Social network analysis " across the United States

= DNA sequence | dogree D/ airtrave [milion]
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Graphs: Introduction

Graphs are mathematical structures used to

Types of graphs (informal intro): model pairwise relations between objects.

1 7 @/? 37@
v © % %

Undirected graph Directed graph Directed acycllc Welghted graph
(Digraph) graph (DAG)
Bet you have seen graphs in CS1231/CS1231S before!
Relation R on aset A = {1,2,3,4,5,6}, s.t. Relation T on aset A = {1,2,3,4,5,6}, s.t. Vx,y € A,
Vx,y €A, xRyiffx|y. xTyiff(x+y) =2k + 1forsome k € Z.




Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Graph Isomorphism/Planar Graphs
| JoRoNoNe) ol oNOoNONO) OO0 O 00 O ONO)

10.1 Graphs: Definitions and Basic Properties
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Graphs: Definitions and Basic Properties

Graphs: Definitions and Basic Properties

= An undirected graph is denoted by G = (V, E') where
= V ={vq,v,y,,v,}is the set of vertices (or nodes) in G; and
» E ={eq, ey, e}is the set of (undirected) edgesin G.

= An (undirected) edge e connecting v; and v; is denoted as e = {v;, v;}.

Parallel edges Isolated vertex
U7
€6
[ ] US
Vo €1 = {vll U4_};
V2 Example: e; = e3 = {V, U3}
ey = {vs, 14};

€ V = {Ul, Vy, U3, Vg, Us, Vg, 177}; es = {v4 U4_}'

E ={eq e, ez, e ec, e} P

{ 1, ©2,€3,€4,C5, 6} /66 = {776; 127}.

T Sometimes we write es = {v,}
Loop (but we won’t use this.)
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Graphs: Definitions and Basic Properties

Graphs: Definitions and Basic Properties

Definition: Undirected Graph

An undirected graph G consists of 2 finite sets: a nonempty set
V of vertices and a set E of edges, where each (undirected) edge
is associated with a set consisting of either one or two vertices
called its endpoints.

An edge is said to connect its endpoints; two vertices that are
connected by an edge are called adjacent vertices; and a vertex
that is an endpoint of a loop is said to be adjacent to itself.

An edge is said to be incident on each of its endpoints, and two
edges incident on the same endpoint are called adjacent edges.

We write e = {v, w} for an undirected edge e incident on vertices
vand w.
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Graphs: Definitions and Basic Properties

Graphs: Definitions and Basic Properties

Definition: Directed Graph

A directed graph, or digraph, G, consists of 2 finite sets: a
nonempty set V of vertices and a set E of directed edges,
where each (directed) edge is associated with an ordered pair
of vertices called its endpoints.

We write e = (v, w) for a directed edge e from vertex v to

vertex w.
Ul € €3
Undirected (} .f) Directed
graph €] €3 N q/'\vz graph
e, /
e, = {v,, v e\ [ )5 e, = (1,,v
2 = {v1,v3} . : i/ 2 = (V2,11)
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Graphs: Introduction
Map Colouring

Shall we add some colours to this map of the United States?
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Graphs: Introduction
Map Colouring

Shall we add some colours to this map of the United States?

10
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Graphs: Introduction

Map Colouring

= Four-Colour Conjecture
" Proposed by Guthrie in 1852, who conjectured that...

= Four colours are sufficient to colour any map in a plane,
such that regions that share a common boundary do not
share the same colour.

= Many false proofs since then.

" Finally proved by Appel and Haken in 1977, with the help
of computer.

= Robertson et al. provided another proof in 1996.

11
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Graphs: Introduction
Map Colouring

Example of a 4-
coloured map. World map with 4 colours.

= But this is a map, not a graph!
= However, we can model it as a graph.

= But whatis agraph?
12
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Modelling Graph Problems

Modelling Graph Problems

Map Colouring Problem

Guyana
Yenezuela /' Suriname

Solve it as a graph problem.

Colombia | French Gulana
Ecuador Draw a graph in which the vertices
represent the states, with every edge
Peru e joining two vertices represents the
Bolivia states sharing a common border.
E Such two vertices cannot be coloured
with the same colour.
- A vertex colouring of a graph is an
assignment of colours to vertices so
L that no two adjacent vertices have

the same colour.

13
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Modelling Graph Problems

Modelling Graph Problems

Yenezuela r,-' ‘ Surinanss
Colombia ) Framch Gulana

Ecuador

Bolivia
Paraguay

Chile Uruguay
Argentina

14
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Modelling Graph Problems

Modelling Graph Problems

4 colours used!

Yenezuela r,-' ‘ Surinanss
Colombia ) Framch Gulana

Ecuador

Bolivia
Paraguay

Chile Uruguay
Argentina
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Modelling Graph Problems

Wedding Planner

You are your best friend’s wedding planner and you A 3
need to plan the seating arrangement for his 16 guests f‘
attending his wedding dinner. However, some of the N

guests cannot get along with some others. . T
= A doesn’t get along with F, G or H. You don’t want to put
= B doesn’t get along with C, D or H. guests who cannot
= Cdoesn’t get along with B, D, E, Gor H. get along with each
= D doesn’t get along with B, Cor E. other at the same
= Fdoesn’t get along with C, D, F, or G. table!
* fdoesn’t get along with A, E or G. How many tables do
" Gdoesn’t getalongwith A, C, EorF. you need?

= H doesn’t get along with A, B or C.

Acknowledgement: http://www.math.uri.edu/~eaton/0131873814 MEb.pdf 16
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Modelling Graph Problems A doesn’t get along with F, G or H.

Wedding Planner B doesn’t get along with C, D or H.
C doesn’t get along with B, D, E, G or H.

h with : = D doesn’t get along with B, Cor E. | B J
Grap Wlt_ vertices = Edoesn’t get along with C, D, F, or G. v&
representing the = Fdoesn’t get along with A, E or G. \\\
guests, and an edge = Gdoesn’t get along with A, C, E or F. S =
is drawn between " Hdoesn’t get along with A, B or C.
two guests who .

) Vertex colouring problem. 3 colours
don’t get along. ,
4 colours (4 tables): (3 tables)!

&) o) B

et
Il

[':':1_._ C/Dﬂ {’X—’ /’” {JK; /]"}
|:'_::| e S e, -'"-___. I
: ! L F [

'ﬂ]‘ “J‘]' “:"

& Acknowledgement: http://www.math.uri.edu/~eaton/0131873814 MEb.pdf 17
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Modelling Graph Problems

Other Vertex Colouring Problems

vertex colouring

1. classes, the corresponding schedule classes.
classes have students
In common,

2. radio stations, the stations are close assign non-interfering
enough to interfere frequencies to the
with each other, stations.

3. trafficsignals the corresponding designate sets of signals

at an signals cannot be green that can be green at the

Intersection, at the same time, same time.
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Special Graphs

Simple Graphs
Definition: Simple Graph

A simple graph is an undirected graph that does not have any

loops or parallel edges. (That is, there is at most one edge between
each pair of distinct vertices.)

Simple graph Non simple graph Non simple graph
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Special Graphs

Complete Graphs

Definition: Complete Graph

A complete graph on n vertices, n > 0, denoted K,

Graph Isomorphism/Planar Graphs
(oNoNe]

is a simple

graph with n vertices and exactly one edge connecting each

pair of distinct vertices .
Vs

° Vje——eo Uy
K, K;
v U2 U] U4
K5 Ky
Fun: The notation K,, is rumoured to be used

to honour the contributions of Kazimierz

Kuratowski to graph theory. e B

How many edges are there in K,

&

Draw K.
U3
U2 U4
U] Vs
Ks

?
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Special Graphs

Bipartite Graphs and Complete Bipartite Graphs

Definition: Bipartite Graph

A bipartite graph (or bigraph) is a simple graph
whose vertices can be divided into two disjoint
sets U and V such that every edge connects a
vertexin U tooneinV.

Bipartite graph

Definition: Complete Bipartite Graph K
3,2

A complete bipartite graph is a bipartite graph
on two disjoint sets U and V such that every
vertex in U connects to every vertex in V. K; s

If |U| = m and |V| = n, the complete bipartite
graph is denoted as K, ,,.
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Special Graphs

Subgraph of a Graph
Definition: Subgraph of a Graph

A graph H is said to be a subgraph of graph G if and only if
every vertex in H is also a vertex in G, every edge in H is also an
edge in G, and every edge in H has the same endpoints as it
has in G.

[
A graph G [ ® o * e Subgraphs

of G
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The Concept of Degree

Degree of a Vertex and Total Degree of an Undirected Graph

Definition: Degree of a Vertex and Total Degree of an Undirected Graph

Let G be a undirected graph and v a vertex of G. The degree of
v, denoted deg(v), equals the number of edges that are incident
on v, with an edge that is a loop counted twice.

The total degree of G is the sum of the degrees of all the
vertices of G.

The degree of a vertex can be obtained
from the drawing of a graph by -
counting how many end segments of
edges are incident on the vertex.

The degree of this
vertex equals 5.
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The Concept of Degree
Degree of a Vertex and Total Degree of a Graph

Example: Find the degree of each vertex of the graph G
shown below. Then find the total degree of G.

deg(v,) =0 v,
deg(v,) = 2

deg(v;) = 4 ; g ¢
Total degree of G=6 U

24
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The Concept of Degree

Theorem 10.1.1 The Handshake Theorem /24 ! -

If G is any graph, then the sum of the degrees of all the vertices of
G equals twice the number of edges of G. Specifically, if the
vertices of G arev,, v,, ..., v,, where n = 0, then
The total degree of G = deg(v,) + deg(v,) + ... + deg(v,)
= 2 x (the number of edges of G).

Corollary 10.1.2

The total degree of a graph is even.

Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.

25
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The Concept of Degree

Indegree and Outdegree of a Vertex of a Directed Graph

Definition: Indegree and outdegree of a Vertex of a Directed Graph

Let G=(V,E) be a directed graph and v a vertex of G. The
indegree of v, denoted deg(v), is the number of directed
edges that end at v. The outdegree of v, denoted deg*(v), is
the number of directed edges that originate from v.

Note that Z deg_(v) = z d@g"'(v) = |E|

vev vev

deg~(a)=2; deg*(a)=0;
deg~(b) =0; deg*(b)=2;
deg~(c) =2; deg™(c)=2;
deg~(d) =1; deg*(d)=1.
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10.2 Trails, Paths, and Circuits

Pregel River

27
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Introduction

Let’s Have Some Fun

Can you draw the following figures without lifting up your pencil?

(1) (2) (3) (4)

(5) (6) (7) (8)

28
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Introduction

Kénigsberg bridges

The subject of graph theory began in the year 1736 when the
great mathematician Leonhard Euler published a paper giving the
solution to the following puzzle:

The town of Kdnigsberg in Prussia (now Kaliningrad in Russia) was
built at a point where two branches of the Pregel River came together.
It consisted of an island and some land along the river banks.

These were connected by 7 bridges.

Euler asked: Is it possible to take
a walk around town, starting
and ending at the same location
and crossing each of the 7
bridges exactly once?

29
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Introduction

Kénigsberg bridges

A
In terms of this graph, the question is:

Is it possible to find a route through

b “ lthe graph that starts and ends at some
vertex (A, B, C, or D) and traverses
each edge exactly once?

Euler asked: Is it possible to take
a walk around town, starting
and ending at the same location
and crossing each of the 7
bridges exactly once?

30
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Definitions

Travel in a graph is accomplished by moving from one
vertex to another along a sequence of adjacent edges.

In the graph below, for instance, you can go from u, to
u, by taking f, to u, and then f, to u,. This is
represented by writing u, f1u, f-u,.

Or, you could take a
longer route:

Uy frug fausfauy f3Uusfsuy

31
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Definitions

Walk, Trail, Path, Closed Walk, Circuit, Simple Circuit

Let G be a graph, and let v and w be vertices of G.

A walk from v to w is a finite alternating sequence of adjacent
vertices and edges of G. Thus a walk has the form

VO el Vl ez ces Vn_l en Vn )
where the v's represent vertices, the e’s represent edges, v,=v, v, =w,
and foralli e {1, 2, ..., n}, v.; and v, are the endpoints of e.. The

number of edges, n, is the length of the walk.
The trivial walk from v to v consists of the single vertex v.

A trail from v to wis a walk from v to w that does not contain a
repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.
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Definitions

Walk, Trail, Path, Closed Walk, Circuit, Simple Circuit

Definitions

A closed walk is a walk that starts and ends at the same vertex.

A circuit (or cycle) is a closed walk of length at least 3 that does not
contain a repeated edge.

A simple circuit (or simple cycle) is a circuit that does not have any
other repeated vertex except the first and last.

An undirected graph is cyclic if it contains a loop or a cycle;
otherwise, it is acyclic.

Examples:
U o, Uy Us : ,
UjeqUyezUselizeslgesUseszU, is a walk (may repeat edges and/or vertices).
e, es . ec Uqeq1Uye3Use U35 Use7Us U, IS A trail (must not repeat edges).
4

UjeqUzezUseylizeslg is a path (must not repeat vertices and edges).

UcCrUsCrU, €1 U-C2UC-UCU~€4Ue IS A CirCcuit.
Uy €6u5€7u6 56eU4€U1€1UE3US€E7UaE5U3E4US

UsegUsylly €Uy e3Us IS a sSimple circuit.
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Definitions
Notes

Because most of the major developments in graph theory have
happened relatively recently and in a variety of different contexts,
the terms used in the subject have not been standardized.

Susanna Epp’s book m The terminology in this book

is among the most common,

Graph Multigraph
. but if you consult other
Simple graph EEE sources, be sure to check
Vertex Node their definitions.
Edge Arc :
. For CS1231S, we will
Trail Path :
o - ) follow the terminology
at Imple pat in Epp’s book.

Simple circuit Cycle

34
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Connectedness

Connectedness

A graph is connected if it is possible to travel from any vertex to
any other vertex along a sequence of adjacent edges of the graph.

Definition: Connectedness

Two vertices v and w of a graph G=(V,E) are connected if and only if
there is a walk from v to w.

The graph G is connected if and only if given any two vertices v and
w in G, there is a walk from v to w. Symbolically,

G is connected iff V vertices v, w €V, 4 a walk from v to w.
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Connectedness

Example: Which of the following graphs are connected?

Vs Vs Vg
v 5 Ug
Yes 4 0, No
U3 °
U2 US
v
U Vs 1 U?)
Vg Uy
(a) (b)
U3
) Uy
No
Us
v »
(¢)

q} 36
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Connectedness

Some useful facts relating circuits and connectedness are
collected in the following lemma.

Lemma 10.2.1

Let G be a graph.
a. If Gis connected, then any two distinct vertices of G can be
connected by a path.

b. If vertices vand w are part of a circuit in G and one edge is
removed from the circuit, then there still exists a trail from v

towinG.

c. If Gis connected and G contains a circuit, then an edge of
the circuit can be removed without disconnecting G.

37
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Connected Component

The graphs in (b) and (c) are both made up of three pieces, each of
which is itself a connected graph. Vs v

A connected component of a /\ X %
graph is a connected subgraph of

_ i Vg Uy
largest possible size. (c)

Definition: Connected Component

A graph H is a connected component of a graph G if and only if
1. The graph H is a subgraph of G;

2. The graph H is connected; and

3. No connected subgraph of G has H as a subgraph and contains
vertices or edges that are not in H.
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Connected Component

Find all connected components of the following graph G.

Uy Vs Vg
€3
€2 ° €4
U4 €5
U] €] U3 Ug U7

G has 3 connected components H,, H, and H; with vertex
sets V,, V, and V; and edge sets E,, E, and E; , where

Vi = {v1, v, v3}, E; ={es, ez}
Vo = {vs}, E, =0

Vi = {Vs»vé» 777»778}, E; = {93, €4, 35}

39
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Euler Circuits

Euler Circuits

Now, let’s go back to the puzzle of the
Kénigsberg bridges.

Is it possible to find a route through
the graph that starts and ends at some
vertex, one of A, B, C, or D, and
traverses each edge exactly once?

40
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Euler Circuits

Definition: Euler Circuit

Let G be a graph. An Euler circuit for G is a circuit that contains
every vertex and traverses every edge of G exactly once.

Definition: Eulerian Graph

An Eulerian graph is a graph that contains an Euler circuit.

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has
positive even degree.

Contrapositive Version of Theorem 10.2.2

If some vertex of a graph has odd degree, then the graph does not
have an Euler circuit.
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Euler Circuits

Is thistrue? | |f every vertex of a graph has positive even degree,
then the graph has an Euler circuit.

U3

Not true! Counterexample:

ey

Theorem 10.2.3

If a graph G is connected and the degree of every vertex of G is a
positive even integer, then G has an Euler circuit.

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and
every vertex of G has positive even degree.

_q} 42
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Euler Circuits

Definition: Euler Trail

Let G be a graph, and let v and w be two distinct vertices of G.
An Euler trail/path from v to w is a sequence of adjacent edges
and vertices that starts at v, ends at w, passes through every
vertex of G at least once, and traverses every edge of G exactly

once.

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G.
There is an Euler trail from v to w if and only if G is connected, v
and w have odd degree, and all other vertices of G have

positive even degree.
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Euler Circuits

Does each of the following graphs have an Euler circuit?

A S

(2)

= o\

(5) & 6V VvV g R

_q} 44
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Euler Circuits

The following graphs do not have an Euler circuit.
Do they have an Euler trail?

(e

(1) (5)

Adding an edge between
the two vertices with odd
degree will give us an
Euler circuit.
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Hamiltonian Circuits
Hamiltonian Circuits

Recall Theorem 10.2.4:

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and
every vertex of G has positive even degree.

A related question:

Given a graph G, is it possible to find a circuit for G in
which all the vertices of G (except the first and the last)

appear exactly once?
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Hamiltonian Circuits

In 1859 the Irish mathematician Sir William

Rowan Hamilton introduced a puzzle in the

shape of a dodecahedron (DOH-dek-a-HEE-

dron). (Figure 10.2.6 contains a drawing of a
dodecahedron, which is a solid figure with 12 identical

pentagonal faces.) Figure 10.2.6 Dodecahedron
Each vertex was labeled with the name of a city — London,
Paris, Singapore, New York, and so on.

The problem Hamilton posed was to start at one city and tour
the world by visiting each other city exactly once and returning
to the starting city.
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Hamiltonian Circuits

One way to solve the puzzle is to imagine
the surface of the dodecahedron
stretched out and laid flat in the plane,
as follows:

The circuit denoted with black lines is

one solution. (Note that although every city is
visited, many edges are omitted from the circuit.)

If we add values (called weights) to each edge, this becomes
the travelling salesman problem.

30
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Hamiltonian Circuits

Definition: Hamiltonian Circuit

Given a graph G, a Hamiltonian circuit for G is a simple circuit that
includes every vertex of G. (That is, every vertex appears exactly
once, except for the first and the last, which are the same.)

Definition: Hamiltonian Graph

A Hamiltonian graph (also called Hamilton graph) is a graph
that contains a Hamiltonian circuit.

Note that although an Euler circuit for a graph G must include
every vertex of G, it may visit some vertices more than once and

hence may not be a Hamiltonian circuit.

On the other hand, a Hamiltonian circuit for G does not need to
include all the edges of G and hence may not be an Euler circuit.
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Hamiltonian Circuits

AY2019/20 Sem1 Exam Question

GraphA Graph B
Which of the following statements is true?
A. Graphs A and B are both Eulerian and Hamiltonian.

B. Graph A is both Eulerian and Hamiltonian; graph B is neither
Eulerian nor Hamiltonian.

C. Graph A is Eulerian but not Hamiltonian; graph B is neither
Eulerian nor Hamiltonian.

D. Graph A is Eulerian but not Hamiltonian; graph B is Hamiltonian
but not Eulerian.

E. Graphs A and B are Hamiltonian but not Eulerian. -
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Hamiltonian Circuits

Despite the analogous-sounding definitions of Euler and
Hamiltonian circuits, the mathematics of the two are very

different.

Determining whether a graph has an Euler circuit is easy —
Theorem 10.2.4 gives a simple criterion.

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected
and every vertex of G has positive even degree.

Unfortunately, there is no analogous criterion for determining
whether a given graph has a Hamiltonian circuit, nor is there
even an efficient algorithm for finding such a circuit.
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Hamiltonian Circuits

There is, however, a simple technique that can be used in many
cases to show that a graph does not have a Hamiltonian circuit.

Proposition 10.2.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H
with the following properties:

1. H contains every vertex of G.

2. His connected.

3. H has the same number of edges as vertices.
4. Every vertex of H has degree 2.

The contrapositive of Proposition 10.2.6 says that if a graph G
does not have a subgraph H with properties (1)—(4), then G does
not have a Hamiltonian circuit.
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Travelling Salesman Problem

For reading only.

Travelling Salesman Problem

Imagine that the drawing below is a map showing four
cities and the distances in kilometers between them.

Suppose that a salesman must travel to each city exactly
once, starting and ending in city A. Which route from
city to city will minimize the total distance that must be
travelled?
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Travelling Salesman Problem

This problem can be solved by writing all
possible Hamiltonian circuits starting and
ending at A and calculating the total distance
travelled for each. A

40 b

Route Total Distance (In Kilometers)

i ABCDA I 304+ 30+ 25 +40 = 125

ABDCA 30+ 35+ 25+ 50 = 140
ACBDA 50+ 30435+ 40 = 155

ACDBA 140 [AB DC A backwards]
ADBCA 155 [AC BD A backwards]
ADCBA 125 [ABC DA backwards]

Thus either route ABCDA or ADCBA gives a minimum total
distance of 125 km.
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Travelling Salesman Problem

The general travelling salesman problem involves finding a
Hamiltonian circuit to minimize the total distance travelled for an

arbitrary graph with n vertices in which each edge is marked with
a distance.

One way to solve the general problem is to use the previous
method: Write down all Hamiltonian circuits starting and ending
at a particular vertex, compute the total distance for each, and
pick one for which this total is minimal.

However, this is impractical for even medium-sized values of n.
For n = 30 vertices, there would be (29!)/2 ~ 4.42x103°
Hamiltonian circuits starting and ending at a particular vertex to
check. If each circuit could be found and its total distance
computed in just one nanosecond, it would take approximately
1.4 x10'* years to compute!
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Travelling Salesman Problem

At present, there is no known algorithm for solving the general
travelling salesman problem that is more efficient.

However, there are efficient algorithms that find “pretty good”
solutions — that is, circuits that, while not necessarily having the

least possible total distances, have smaller total distances than
most other Hamiltonian circuits.
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10.3 Matrix Representations of Graphs
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Matrix Representations
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Definition: Matrix

An m x n (read “m by n”) matrix A over a set S is a rectangular
array of elements of S arranged into m rows and n columns.

ajg an

az; dx
r - s s e o - - - -
1 djq a2

ami adm?

T TN\

A Cl]j:

oo [ Clzjl

————————

jth column of A

We write A = (a;;).

<+«— jth row of A
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Matrices

If A and B are matrices, then A = B if, and only if, A and B have the
same size and the corresponding entries of A and B are all equal;

that is,
a;; = bij foralli=1,2,---,mandj=1,2,---,n.

A matrix for which the numbers of rows and columns are equal is
called a square matrix.

If A is a square matrix of size n x n, then the main diagonal of A
consists of all the entries a1, a»,, - a,p,.

ayy dip ... di; ... Ay
ary dyp ... A2 .. Aoy
ail a;» N £ ... Adjp

anl anz o e ani . s ann <+«r— Maln dlagonal OfA
) - 59
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Matrices and Directed Graphs
Matrices and Directed Graphs
€ €3
()«
U N Uy vl v2 3
¢ o [ 1T 0 0
€6 €5 A = 1 1 2
U3 U3 1 O O

Directed Graph G Adjacency Matrix
(a) (b)

Figure 10.3.1 A Directed Graph and Its Adjacency Matrix

-~
o

This graph G is represented by the matrix A = (a;) for which a;; =
number of arrows from v; to V; foralli=1,2,3andj=1, 2, 3.

A is called the adjacency matrix of G.

Another common representation of a graph is the
adjacency list, which is covered in algorithms module.
60
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Matrices and Directed Graphs

Definition: Adjacency Matrix of a Directed Graph

Let G be a directed graph with ordered vertices v,, v,, ... v,. The
adjacency matrix of G is the n x n matrix A = (a;;) over the set of

non-negative integers such that
a;j = the number of arrows from v; to Z foralli,j=1,2, .., n.

Example: Find the adjacency matrices of the two directed graphs below.

-~

-~
~

-~

0 () 0 V] 1 1 0

0 1 1 1T 0 2

2 1 0 vy |00 0
(a) (b)
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Matrices and Undirected Graphs

Matrices and Undirected Graphs

Definition: Adjacency Matrix of an Undirected Graph

Let G be an undirected graph with ordered vertices v, v,, ... v,. The
adjacency matrix of G is the n x n matrix A = (a;;) over the set of non-

negative integers such that
a;; = the number of edges connecting v;and v; for all i,j=1, 2, ..., n.

Example: Find the adjacency matrix for the graph G shown below.

U U2 U3 U4

0 10 1 o
: [ 11 2 1 —l Note that the matrix is
‘ LO 2 0 OJ symmetric.
01 1T 0 1

€4
Definition: Symmetric Matrix

An n x n square matrix A = (a;;) is called symmetric
if, and only if, a;; = a;; forall i, j=1,2, .., n.

€3

Uy A=

)
v
1
)




Graph Isomorphism/Planar Graphs
(oNoNe]

Matrix Representations
(oXoNeoN Xo

Graphs: Definitions Trails, Paths, and Circuits

[oXoNoNoNe (Ol el oNeoNe

Matrix Multiplication
Matrix Multiplication
Definition: Scalar Product

Suppose that all entries in matrices A and B are real numbers. If
the number of elements, n, in the ith row of A equals the
number of elements in the jth column of B, then the scalar
product or dot product of the ith row of A and the jth column

of B is the real number obtained as follows:

b .
[ail aiz ain] 2J — ailblj ~+ aizsz + -4+ ainbnj.
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Matrix Multiplication

Definition: Matrix Multiplication

Let A = (a;) be an m x k matrix and B = (b;) an k x n matrix with real entries.
The (matrix) product of A times B, denoted AB, is that matrix (c;) defined as
follows:

ay  dip - dik bin by | by |-+ by Cii €12 -+ C1j -+ Clp
a1 dy - Ay by by - [)2]. oo by, Cr1 e €2 e Cop
il dip - dig - . : Cil Ci2 | Cij| -+ Cin
| Am1  Am2 - Amk | _bkl b --- bk_j Tt bkn_ | Cm1 Cm2 =+ Cmj -+ Cmn |
where

— — \'k
Cij = Qizb1j + Qipbyj + -+ + Qyeby; = Xr=1 Airbyj.

foralli=1,2,..,mandj=1,2, ..., n.
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Matrix Multiplication

Example — Computing a Matrix Product

2 0 3 N
LetA:[_1 1 b} and B=| 2 2|. Compute AB.
2
Solution: 0 3 4 3 o e
110 2 2| = ,
2 -1 C21 €2
where
It
Cl=2440.2+3 (—2) =2 [] | 2
—1 1 0
4 (3]
cn=2-3+0-2+3-(=1)=3 {_1 | o] 2 | 2
—2 =1
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Matrix Multiplication
Example — Computing a Matrix Product
2 0 3 o
Let A = [_1 1 b} and B=| 2 2|. Compute AB.
2 -1
Solution: 0 3 4 3 o e
2 2 = ,
_1 1 O __2 _1_ _2 _1
where
o 3
2
co1=(-—1)4+1-24+0-(=2)=-2 |:(_1 (1) (3))] 2 2
4 3
2 0 3
cn=(-1)34+0-243-(—-1)=—1 {(_1 : O)] 2 | 2
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Matrix Multiplication

Multiplication of real numbers is commutative, but matrix
multiplication is not.

Lo1jfo 1] _fo 21 o o 1]t 1]_Jo 1
o t{fo 1|~ fo 1|° % Jo 1|lo 1|T|o 1|
On the other hand, both real number and matrix multiplications

are associative ((ab)c = a(bc), for all elements a, b, and ¢ for which
the products are defined).
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ldentity Matrix
a b c 1 0 O a b c
d e f|[0 1 O|=|d e f
g h i 0 0 1 g h i

1 0
These computations show that [0 1] acts as an identity on

the left side for multiplication with 2 x 3 matrices and that
1 0 0
[8 ; ?] acts as an identity on the right side for multiplication

with 3 x 3 matrices.
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Matrix Multiplication

Definition: Identity Matrix

For each positive integer n, the n x n identity matrix, denoted
|, = (0;) or just I (if the size of the matrix is obvious from
context), is the n x n matrix in which all the entries in the main
diagonal are 1’s and all other entries are 0’s. In other words,

1, ifi =] .
6ij—{0, P2 foralli,j =1,2,...,n.

The German mathematician Leopold Kronecker introduced the
symbol o;; to make matrix computations more convenient. In his
honour, this symbol is called the Kronecker delta.
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Matrix Multiplication

nt" Power of a Matrix

Definition: nth Power of a Matrix

For any n x n matrix A, the powers of A are defined as follows:
A% = | where | is the n x n identity matrix
A"=AA""! forallintegersn>1

Let A = [é (2)] . Compute AV Al AZ and A,

: : : 1
Solution: A = the 2 x 2 identity matrix = [O (1)}

Al =AA=AT=A

s oo 27 2] 5 2
O R | ] e

s oo 12175 21 9 10
AT=AA _[2 0”2 4]_[10 4]
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Counting Walks of Length N

Counting Walks of Length N

A walk in a graph consists of an alternating sequence of
vertices and edges.

If repeated edges are counted each time they occuir,
then the number of edges in the sequence is called the
length of the walk.

For instance, the walk v,e,v,e,v,e,v,e;v; has length 4
(counting e, twice).
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Counting Walks of Length N

Example: Consider the following graph G.
How many distinct walks of length 2 connect v, and v,?

One walk of length 2 from v, to v, via v;:
V,e,V,e,V,.

One walk of length 2 from v, to v, via v,:

Four walks of length 2 from v, to v, via v:
V2€3V3€4V;
V,€,V3€,V,.
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Counting Walks of Length N

The general question of finding the number of walks that have a given length

and connect two particular vertices of a graph can easily be answered using
matrix multiplication.

Consider the adjacency R vy (1) } (2)
— 2
matrix A of the graph G. o 2 0
Compute AZ: o 1 o]0 1 O {1 2 v,
1 1 2f|1 1 2= 1C>2
02 0[|0 2 0 3 4

Note that the entry in row 2 and column 2 is 6, which equals
the number of walks of length 2 from v, to v,

Reason: To compute a,,, you multiply row 2 of A with column 2 of A

to obtain a sum of three terms: N

1 1 2]|1|=1-1+1-14+22.
2
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Counting Walks of Length N

More generally, if A is the adjacency matrix of a graph G, the i j-th
entry of A% equals the number of walks of length 2 connecting the

i-th vertex to the j-th vertex of G.

Even more generally, if n is any positive integer, the i j-th entry of
A" equals the number of walks of length n connecting the i-th and

the j-th vertices of G.

Theorem 10.3.2

If G is a graph with vertices vy, v,, ..., v, and A is the adjacency
matrix of G, then for each positive integer n and for all integers i, j

=1, 2, .. m,
the jj-th entry of A" = the number of walks of length n from v; to v,.
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10.4 Planar Graphs

n=5, m=5, f=2 n=6, m=10, f=6 n=9, m=8, f=1

75



Matrix Representations Graph Isomorphism/Planar Graphs

Graphs: Definitions Trails, Paths, and Circuits

OLONONONG, OO0 00O (OJ O RO ONO) ® OO

Planar Graphs

Isomorphisms of Graphs

The two drawings shown in Figure 10.4.1 both represent
the same graph: Their vertex and edge sets are identical,
and their edge-endpoint functions are the same. Call

this graph G.

Figure 10.4.1
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Isomorphisms of Graphs

Now consider the graph G’ represented in Figure 10.4.2.

(34 (3]

Figure 10.4.1 Figure 10.4.2

Observe that G'is a “different graph” from G in terms of
the labelling of the vertices and edges (for instance, in G
the endpoints of e, are v, and v,, whereas in G' the
endpoints of e, are v, and v;).
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Isomorphisms of Graphs

Yet G'is certainly very similar to G. In fact, if the vertices and edges
of G' are relabeled by the functions shown in Figure 10.4.3, then G’

Vg U
becomes the same as G.
€5 Q €4 €
Vs Us Uy U3
€4 € € es3

vy €3 s v, €5 Vs

Vertices Vertices Edges Edges

of G of G' of G of G'

Figure 10.4.3
Note that these relabeling functions are bijective.
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Isomorphisms of Graphs

Two graphs G and G’ that are the same except for the labeling of their vertices
and edges are called isomorphic. In other words, there exists matching
between the vertices such that two vertices are connected by an edge in G if

and only if corresponding vertices are connected by an edge in G'.

Definition: Isomorphic Graph

Let G = (V;,Eg) and G’ = (V1, Eg,) be two graphs.

G is isomorphic to G', denoted G = G’, if and only if there exist bijections
g:Ve = Verand h: E; — E ./ that preserve the edge-endpoint functions of G
and G' in the sense that for all v € V;and e € Eg,

v is an endpoint of e < g(v) is an endpoint of h(e).

Alternative definition (for simple graphs)

Let G = (V;,Eg) and G’ = (V1, Eg,) be two simple graphs.

G is isomorphic to G’ if and only if there exists a permutation : V; — V.
such that {u,v} € E; < {n(u),t(v)} € Eg,.
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Isomorphisms of Graphs

Example: Show that the following two graphs are isomorphic.
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Isomorphisms of Graphs

It is not hard to show that graph isomorphism is an
equivalence relation on a set of graphs; in other words,
it is reflexive, symmetric, and transitive.

Theorem 10.4.1 Graph Isomorphism is an Equivalence Relation

Let S be a set of graphs and let = be the relation of graph
isomorphism on S. Then = is an equivalence relation on S.

Exercise: Prove that graph isomorphism =
is an equivalence relation.
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Planar Graphs

Definition: Planar Graph

A planar graph is a graph that can be drawn on a (two-
dimensional) plane without edges crossing.

igure 10.4. ?
Is Figure 10.4.4 a planar graph Yes, it is a planar graph.

=)

Figure 10.4.4
Planar representation

Non-planar representation
of the graph

of the graph



Graphs: Definitions Trails, Paths, and Circuits Matrix Representations Graph Isomorphism/Planar Graphs
(oo NoNoNO] (oNoNoNeoNe] [oXoNeoNoNo) (o NeJ

Planar Graphs

Examples of non-planar graphs

Ks Ks 3

)

Kuratowski’s Theorem:

A finite graph is planar if and only if it does not contain
a subgraph that is a subdivision of the complete graph
K5 or the complete bipartite graph K3 ;.
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Planar Graphs

Subdivision of a graph

Given a graph G, a subdivision of G, is a new graph obtained by
inserting new vertices into the edges of G.

Typically done by removing an edge, adding a new vertex, and
connecting the new vertex to the original edge’s two endpoints.

A Qs v PG

— subdivision of G, — subdivision of G,

84



Matrix Representations Graph Isomorphism/Planar Graphs

Trails, Paths, and Circuits
oNoNoONONS) ONON )

Graphs: Definitions
OO0 O 00

OLONONONG,

Planar Graphs

Euler’s Formula

When we draw a planar representation of a planar
graph, it divides the plane up into regions or faces.

F4

(F4 = ‘outside’ the
planar graph)
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Euler’s Formula

Euler’s Formula

For a connected planar simple graph G = (V, E) with e = |E| and
v=|V], if welet f be the number of faces, then
—-Vv+2
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