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CS1231S: Discrete Structures 
Tutorial #1: Propositional Logic and Proofs 

(Week 3: 25 – 29 August 2025) 
Answers 

 
 
Tutorials are meant to reinforce topics taught in lectures. Please try these questions on your own 
before coming to tutorial. In doing so, you may discover gaps in your understanding. Usually, a 
tutorial has a mix of easy, moderate and slightly challenging questions. It is perfectly fine if you 
cannot do some of the questions, but attempt them nonetheless, to at least get some partial 
solution. 

You will be asked to present your answers. Your tutor’s job is to guide you, not to provide the 
answers for you. Also, please keep in mind that the goal of tutorials is not to answer every question 
here, but to clarify doubts and reinforce concepts. Solutions to all tutorial questions will be given in 
the following week, but please treat them as a guide, for there are usually alternative ways of solving 
a problem. 

You are also encouraged to raise your doubts or questions on Canvas or the QnA 
site  https://setsify.com/space/6889bcd16c91077d344e44ab 

Tutorials are important so attendance is taken and it contributes 5% of your final grade. If you miss 
a tutorial with valid reason (eg: due to illness), please submit your document (eg: medical certificate) 
to your respective tutor (softcopy or hardcopy) in advance or within 48 hours after your absence 
and you will not be penalized for your absence. You are to stick with your officially assigned tutorial 
group, or your attendance will not be taken. If you need to join a different group for just once with 
a valid reason, please email Aaron (tantc@comp.nus.edu.sg) in advance citing your reason, which is 
subject to approval. 

Please take note of the above as it will not be repeated in subsequent tutorials. 

 

II. Additional Notes 

Given an argument: 

 𝑝! 
 𝑝" 
  ∶	 
 𝑝#  
 ∴ 𝑞 
 
where 𝑝!, 𝑝", … , 𝑝# are the 𝑘 premises and 𝑞 the conclusion, we can say that “the argument is valid 
if and only if (𝑝! ∧ 𝑝" ∧ ⋯∧ 𝑝#) ⟶ 𝑞 is a tautology”. 

This serves as an alternative way to check whether an argument is valid, besides the critical row 
method shown in lecture. Go through the examples in the lecture yourself to verify the above. 
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III. Tutorial Questions 

1. One of the most confusing concepts many students find is the difference between “if” and “only 
if”, and the relationship among “if”, “only if”, “necessary condition” and “sufficient condition”. 

a. Given these two statements: “I use the umbrella if it rains” and “I use the umbrella only if it 
rains”. They may sound the same but in logic they are worlds apart! Now, rewrite them into 
propositional statements by using variable 𝑝 for “I use the umbrella”, variable 𝑞 for “it rains” 
and the logical connective →. 

b. “I use the umbrella if it rains”: Is “I use the umbrella” a necessary condition for “it rains”? 
Or is “I use the umbrella” a sufficient condition for “it rains”? Is “it rains” a necessary 
condition for “I use the umbrella”? Or is “it rains” a sufficient condition for “I use the 
umbrella”? 

c. What if we say “I use the umbrella if and only if it rains”? How would you write a logic 
statement using variables 𝑝 and 𝑞, the imply connective →, and either ∧ or ∨? Is there a 
shorter way to write the logic statement using some other logical connective? 

d. “I use the umbrella if and only if it rains”. What kind of condition is “I use the umbrella” for 
“it rains”? 

Answers: 
a. “I use the umbrella if it rains” (is equivalent to “If it rains, then I use the umbrella”): 𝑞 → 𝑝 

“I use the umbrella only if it rains” (is equivalent to “if I use the umbrella, then it rains”): 
𝑝 → 𝑞. 
“I use the umbrella only if it rains” is also equivalent to “if it doesn’t rain, then I don’t use 
the umbrella”, which is ~𝑞 → ~𝑝, and we know it is equivalent to 𝑝 → 𝑞 by contraposition. 

b. “I use the umbrella if it rains”: “I use the umbrella” is a necessary condition for “it rains”. “It 
rains” is a sufficient condition for “I use the umbrella”. 

c. “I use the umbrella if and only if it rains” is a conjunction of “I use the umbrella if it rains” 
and “I use the umbrella only if it rains”, and hence the logic statement is (𝑞 → 𝑝) ∧ (𝑝 → 𝑞) 
which can be shortened to 𝑝 ↔ 𝑞. 
(From past experience, a number of students still did not know that 𝑝 ↔ 𝑞 ≡ (𝑞 → 𝑝) ∧
(𝑝 → 𝑞) after several weeks of logic!) 

d. “I use the umbrella if and only if it rains”: “I use the umbrella” is a necessary and sufficient 
condition for “it rains”. 

 
2. The following are common mistakes made by students. Can you explain the mistakes and 

correct them? 

a. 𝑎 ∧ ~(𝑏 ∧ 𝑐) ≡ 𝑎 ∧ ~𝑏 ∨ ~𝑐  by De Morgan’s law 
b. ~(𝑥 ∨ 𝑦) ∨ 𝑧 ≡ ~𝑥 ∧ ~𝑦 ∨ 𝑧  by De Morgan’s law 

Answers: 
a. 𝑎 ∧ ~𝑏 ∨ ~𝑐 is ambiguous! 

Corrected: 𝑎 ∧ ~(𝑏 ∧ 𝑐) ≡ 𝑎 ∧ (~𝑏 ∨ ~𝑐)  

b. ~𝑥 ∧ ~𝑦 ∨ 𝑧  is ambiguous! 
Corrected: ~(𝑥 ∨ 𝑦) ∨ 𝑧 ≡ (~𝑥 ∧ ~𝑦) ∨ 𝑧   
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3. Simplify the propositions below using the laws given in Theorem 2.1.1 (Epp) and the implication 
law (if necessary) with only negation (~), conjunction (Ù) and disjunction (Ú) in your final 
answers. Supply a justification for every step. 

 (For now, we want students to cite justification for every step. This is to ensure that you do not 
arrive at the answer by coincidence. Only after you have gained sufficient experience then 
would we relax this and allow you to skip obvious steps, or combine multiple steps in a line.) 

a. ~𝑎 ∧ 9~𝑎 → (𝑏 ∧ 𝑎): 

Aiken worked out his answer as shown below. However, he skipped some steps and hence 
his answer will not be awarded full credit. Can you point out the omissions? (Note: To show 
that two logical statements are equivalent, we use ≡, not =.) 

  ~𝑎 ∧ 9~𝑎 → (𝑏 ∧ 𝑎): 
  ≡ ~𝑎	 ∧ 9𝑎	 ∨ (𝑏 ∧ 𝑎): by the implication law  
  ≡ ~𝑎	 ∧ 𝑎 by the absorption law  
  ≡ 𝐟𝐚𝐥𝐬𝐞 by the negation law  

 
b. (𝑝 ∨ ~𝑞) → 𝑞 
c. ~(𝑝 ∨ ~𝑞) ∨ (~𝑝 ∧ ~𝑞) 
d. (𝑝 → 𝑞) → 𝑟 
 
Answers 
a. ~𝑎 ∧ 9~𝑎 → (𝑏 ∧ 𝑎): 

  ≡ ~𝑎	 ∧ 9~(~𝑎) 	∨ (𝑏 ∧ 𝑎): by the implication law 
  ≡ ~𝑎	 ∧ 9𝑎	 ∨ (𝑏 ∧ 𝑎): by the implication law double negative law  
  ≡ ~𝑎	 ∧ 9𝑎	 ∨ (𝑎 ∧ 𝑏): by the commutative law 
  ≡ ~𝑎	 ∧ 𝑎 by the absorption law  
  ≡ 𝑎	 ∧ ~𝑎 by the commutative law  
  ≡ 𝐟𝐚𝐥𝐬𝐞 by the negation law  
 
 

b. (𝑝 ∨ ~𝑞) → 𝑞 
≡ ~(𝑝 ∨	~𝑞) ∨ 𝑞 by the implication law (step 1) 
≡ 9~𝑝	 ∧ ~(~𝑞): ∨ 𝑞 by De Morgan’s law (step 2) 
≡ (~𝑝	 ∧ 	𝑞) ∨ 𝑞 by the double negative law (step 3) 
≡ 𝑞	 ∨ 	(~𝑝	 ∧ 	𝑞) by the commutative law (step 4) 
≡ 𝑞	 ∨ 	(𝑞	 ∧ 	~𝑝) by the commutative law (step 5) 
≡ 𝑞 by the absorption law (step 6) 
 
 
 

Check:  
§ Did you jump from step 1 straight to step 3 by citing only the De Morgan’s law but 

omitting the double negative law? 

You don’t need to write “step x”. 
This is for ease of explanation below. 

Reminder: We will use true and false 
instead of t and c (used in Susanna 

Epp’s book) for tautology and 
contradiction respectively. 
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§ Did you jump from step 3 straight to step 6 by skipping the two steps involving 
commutative law? 

Also, remember to add appropriate parenthesis to avoid ambiguous statements. For example, 
from ~(𝑝 ∨	~𝑞) ∨ 𝑞 (step 1) to 9~𝑝	 ∧ ~(~𝑞): ∨ 𝑞 (step 2), if step 2 were written as ~𝑝	 ∧
~(~𝑞) ∨ 𝑞, it would become an ambiguous statement since  ∧ and ∨ are coequal in 
precedence.  

 
c. ~(𝑝 ∨ ~𝑞) ∨ (~𝑝 ∧ ~𝑞) 

≡ (~𝑝 ∧ ~(~𝑞)) ∨ (~𝑝 ∧ ~𝑞) by De Morgan’s law 
≡ (~𝑝 ∧ 𝑞) ∨ (~𝑝 ∧ ~𝑞) by the double negative law 
≡ ~𝑝 ∧	(𝑞 ∨ ~𝑞) by the distributive law 
≡ ~𝑝 ∧ 	𝐭𝐫𝐮𝐞 by the negation law 
≡ ~𝑝 by the identity law 

 
d. (𝑝 → 𝑞) → 𝑟 

≡ (~𝑝 ∨ 	𝑞) → 𝑟 by the implication law 
≡ (~(~𝑝 ∨ 	𝑞)) ∨ 𝑟 by the implication law 
≡ (~(~𝑝) ∧ ~𝑞) ∨ 𝑟 by De Morgan’s law 
≡ (𝑝 ∧ ~𝑞) ∨ 𝑟 by the double negative law 

 

4. Prove, or disprove, that  (𝑝 → 𝑞) → 𝑟 is logically equivalent to 𝑝 → (𝑞 → 𝑟). 

Answers 
(𝑝 → 𝑞) → 𝑟 is not logically equivalent to 𝑝 → (𝑞 → 𝑟). 

Counterexample: Let 𝑝, 𝑞 and 𝑟 be false.  Then (𝑝 → 𝑞) → 𝑟 is false but 𝑝 → (𝑞 → 𝑟) is true.  

For such questions, sometimes you do not know whether the given statement is true or false. 
In this case, you would probably have to do some trial-and-errors, or to fill in the truth table: 

𝑝 𝑞 𝑟 𝑝 → 𝑞 (𝑝 → 𝑞) → 𝑟 𝑞 → 𝑟 𝑝 → (𝑞 → 𝑟) 
T T T T T T T 
T T F T F F F 
T F T F T T T 
T F F F T T T 
F T T T T T T 
F T F T F F T 
F F T T T T T 
F F F T F T T 

You can see that there are two counterexamples, the sixth and eighth rows. 
Certainly, filling out the whole truth table is tedious and should be avoided.  
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5. Given the conditional statement “If 12𝑥 − 7 = 29, then 𝑥 = 3”, write the negation, 
contrapositive, converse and inverse of the statement.  

 Is the given conditional statement true? If it true, prove it; otherwise, give a counter-example. 

 Is its converse true? If it is true, prove it; otherwise, give a counter-example.  

 In general, is it possible for the converse of a conditional statement to be true while the inverse 
of the same statement is false? Why? 

Answers 

Negation: 12𝑥 − 7 = 29 and 𝑥 ≠ 3. 
Contrapositive: If 𝑥 ≠ 3, then 12𝑥 − 7 ≠ 29. 
Converse: If 𝑥 = 3, then 12𝑥 − 7 = 29. 
Inverse: If 12𝑥 − 7 ≠ 29, then 𝑥 ≠ 3. 
Both the given conditional statement and its converse are true. 

Proof for “If 12𝑥 − 7 = 29, then 𝑥 = 3”: 

1. 12𝑥 − 7 = 29 (given) 
2. Then 12𝑥 = 29 + 7 = 36 (by basic algebra) 
3. Then 𝑥 = 3 (by basic algebra) 

Proof for “If 𝑥 = 3, then 12𝑥 − 7 = 29”: 

1. Substitute	𝑥 = 3 into 12𝑥 − 7 = 29 
2. 12(3) − 7 = 36 − 7 = 29 (by basic algebra) 

It is not possible for the converse of a conditional statement to be true while the inverse of the 
same statement is false, as the converse is logically equivalent to the inverse of a statement. 

 

6. The conditional statement 𝑝 → 𝑞 is an important logical statement. Recall that it is defined by 
the following truth table: 

𝑝 𝑞 𝑝 → 𝑞 

T T T 

T F F 

F T T 

F F T 
 
 Oftentimes, students are perplexed by this definition. The first two rows look reasonable, but 

the last two rows seem strange. However, this way of defining 𝑝 → 𝑞 actually gives us the nice 
intuitive property of the following statement: 

   9(𝑝 → 𝑞) ∧ (𝑞 → 𝑟): → (𝑝 → 𝑟) 

 which is the transitive rule of inference we studied in lecture (Lecture #2, slide 65): 

   𝑝 → 𝑞 
   𝑞 → 𝑟 
   ∴ 𝑝 → 𝑟 
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 For example, given premises “if 𝑥 is a square then 𝑥 is a rectangle” and “if 𝑥 is a rectangle than 
𝑥 is a quadrilateral”, the conclusion is “if 𝑥 is a square then 𝑥 is a quadrilateral”. We use such 
intuitive reasoning very often in our life. 

 Show that if we define the conditional statement alternatively as follows, then the transitive 
rule of inference would no longer hold. 

 Alternative 1: →$ Alternative 2:	→% Alternative 3:	→&  

 

 

 

 

 

 

 
Answers 

 Alternative 1: →$ 

𝑝 𝑞 𝑟 𝑝 →$ 𝑞 𝑞 →$ 𝑟 𝑝 →$ 𝑟 (𝑝 →$ 𝑞) ∧ (𝑞 →$ 𝑟) 
9(𝑝 →$ 𝑞) ∧ (𝑞 →$ 𝑟): 

→$ (𝑝 →$ 𝑟) 

T T F T F F F F 
 
 Therefore, 9(𝑝 →$ 𝑞) ∧ (𝑞 →$ 𝑟): →$ (𝑝 →$ 𝑟) is not a tautology. 
 
 
 Alternative 2:	→% 

𝑝 𝑞 𝑟 𝑝 →% 𝑞 𝑞 →% 𝑟 𝑝 →% 𝑟 (𝑝 →% 𝑞) ∧ (𝑞 →% 𝑟) 
9(𝑝 →% 𝑞) ∧ (𝑞 →% 𝑟): 

→% (𝑝 →% 𝑟) 

T T F T F F F F 

 
 Therefore, 9(𝑝 →% 𝑞) ∧ (𝑞 →% 𝑟): →% (𝑝 →% 𝑟) is not a tautology. 
 
 
 Alternative 3:	→&  

𝑝 𝑞 𝑟 𝑝 →& 𝑞 𝑞 →& 𝑟 𝑝 →& 𝑟 (𝑝 →& 𝑞) ∧ (𝑞 →& 𝑟) 
9(𝑝 →& 𝑞) ∧ (𝑞 →& 𝑟): 

→& (𝑝 →& 𝑟) 

F T F F F T F F 

 
 Therefore, 9(𝑝 →& 𝑞) ∧ (𝑞 →& 𝑟): →& (𝑝 →& 𝑟) is not a tautology. 
  

𝑝 𝑞 𝑝 →$ 𝑞 

T T T 

T F F 

F T F 

F F F 
 

𝑝 𝑞 𝑝 →% 𝑞 

T T T 

T F F 

F T T 

F F F 
 

𝑝 𝑞 𝑝 →& 𝑞 

T T T 

T F F 

F T F 

F F T 
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7. Some of the arguments below are valid, whereas others exhibit the converse or inverse error. 
Use symbols to write the logical form of each argument. If the argument is valid, identify the 
rule of inference that guarantees its validity. Otherwise, state whether the converse or the 
inverse error is made. 

a. Sandra knows Java and Sandra knows C++. 
∴ Sandra knows C++. 

b. If at least one of these two numbers is divisible by 6, then the product of these two numbers 
is divisible by 6. 
Neither of these two numbers is divisible by 6. 
∴ The product of these two numbers is not divisible by 6. 

c. If there are as many rational numbers as there are irrational numbers, then the set of all 
irrational numbers is infinite. 
The set of all irrational numbers is infinite. 
∴ There are as many rational numbers as there are irrational numbers. 

d. If I get a Christmas bonus, I’ll buy a stereo. 
If I sell my motorcycle, I’ll buy a stereo. 
∴ If I get a Christmas bonus or I sell my motorcycle, I’ll buy a stereo. 

 

Answers 

a. Let 𝑝 be “Sandra knows Java”. 
Let 𝑞 be “Sandra knows C++”. 
𝑝 ∧ 𝑞  (premise) 
∴ 𝑞  (valid by specialization) 

b. Let 𝑝 be “the first number is divisible by 6.”. 
Let 𝑞 be “the second number is divisible by 6”. 
Let 𝑟 be “the product of these two numbers is divisible by 6”. 
𝑝 ∨ 𝑞 → 𝑟 (premise) 
~𝑝 ∧ ~𝑞 (premise) 
∴ ~𝑟  (invalid: inverse error; explicit counter-example: 2 and 3) 
Note that such a deduction is invalid even if there are no counter-examples. 

c. Let 𝑝 be “there are as many rational numbers as there are irrational numbers”. 
Let 𝑞 be “the set of all irrational numbers is infinite”. 
𝑝 → 𝑞 (premise) 
𝑞 (premise) 
∴ 𝑝  (invalid: converse error; in fact, 𝑝 is false, but both premises are true) 
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d. Let 𝑝 be “I get a Christmas bonus”. 
Let 𝑞 be “I sell my motorcycle”.  
Let 𝑟 be “I’ll buy a stereo”.  
𝑝 → 𝑟 (premise) 
𝑞 → 𝑟 (premise) 
(𝑝 → 𝑟) 	∧ (𝑞 → 𝑟) (conjunction of premises) 
(~𝑝 ∨ 𝑟) 	∧ (~𝑞 ∨ 𝑟) (implication law) 
(𝑟 ∨ ~𝑝) 	∧ (𝑟 ∨ ~𝑞) (commutative law) 
𝑟 ∨ (~𝑝 ∧ ~𝑞) (distributive law) 
(~𝑝 ∧ ~𝑞)𝑟 ∨ 𝑟 (commutative law) 
~(𝑝 ∨ 𝑞) ∨ 𝑟 (De Morgan’s law) 
∴ (𝑝 ∨ 𝑞) → 𝑟  (implication law) 

 

8a. Given the following argument: 
 𝑝 ∨ (𝑞 ∧ 𝑟) 
 ~𝑝 
 ∴ 𝑞 ∧ 𝑟 

Without actually drawing the truth table, determine the values of 𝑝, 𝑞 and 𝑟	in the critical row(s) 
of the truth table. Is the argument valid? 

 
b. Give a counterexample to show that the following argument is invalid. 

 𝑝 ∨ (𝑞 ∧ 𝑟) 
 ~(𝑝 ∧ 𝑞) 
 ∴ 𝑟 

 
c. Determine whether the following argument is valid or invalid. Use variables to represent the 

statements (for example: let 𝑝 be “I go to the beach”.) 
 If I go to the beach, I will take my shades or my sunscreen.  
 I am taking my shades but not my sunscreen. 
 ∴ I will go to the beach. 

 
d. Determine whether the following argument is valid or invalid. Use variables to represent the 

statements. 
 I will buy a new goat or a used Yugo.  
 If I buy both a new goat and a used Yugo, I will need a loan. 
 I bought a used Yugo but I don’t need a loan. 
 ∴ I didn’t buy a new goat. 
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Answers 

a. Critical rows are those where the premises are true. Therefore, we can use deduction here 
instead of drawing the whole truth table. Here, the two premises are 𝑝 ∨ (𝑞 ∧ 𝑟) and ~𝑝. 
So, 𝑝 must be false and hence both 𝑞 and 𝑟 must be true. There is one critical row and the 
conclusion 𝑞 ∧ 𝑟 in that row is true. Therefore, the argument is valid. 
  

b. Counterexample: 𝑝 ≡ 𝑡𝑟𝑢𝑒, 𝑞 ≡ 𝑟 ≡ 𝑓𝑎𝑙𝑠𝑒. 
Both premises 𝑝 ∨ (𝑞 ∧ 𝑟) and ~(𝑝 ∧ 𝑞) are true, but the conclusion 𝑟 is false. 

 
c. Let 𝑝 be “I go to the beach”; 𝑞 be ”I take my shades”; and 𝑟 be ”I take my sunscreen”. 

 𝑝 → 𝑞 ∨ 𝑟 
 𝑞 ∧ ~𝑟 
 ∴ 𝑝 

Critical row: 𝑝 ≡ 𝑓𝑎𝑙𝑠𝑒; 	𝑞 ≡ 𝑡𝑟𝑢𝑒; 	𝑟 ≡ 𝑓𝑎𝑙𝑠𝑒. Conclusion: false. 
Therefore, the argument is invalid. 
 

d. Let 𝑝 be “I buy a new goat”; 𝑞 be ”I buy a used Yugo”; and 𝑟 be ”I need a loan”. 
 𝑝 ∨ 𝑞 
 (𝑝 ∧ 𝑞) → 𝑟 
 𝑞 ∧ ~𝑟 
 ∴ ~𝑝 

Critical row: 𝑝 ≡ 𝑓𝑎𝑙𝑠𝑒; 	𝑞 ≡ 𝑡𝑟𝑢𝑒; 	𝑟 ≡ 𝑓𝑎𝑙𝑠𝑒. Conclusion: true. 
Therefore, the argument is valid. 
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9. The island of Wantuutrewan is inhabited by exactly two types of 
people: knights who always tell the truth and knaves who always 
lie. Every native is a knight or a knave, but not both. You visit the 
island and have the following encounters with the natives. 

a. Two natives A and B speak to you: 

 A says: Both of us are knights. 
 B says: A is a knave. 

What are A and B? 
 

b. Two natives C and D speak to you: 

 C says: D is a knave. 
 D says: C is a knave. 

How many knights and knaves are there? 
 

 Part (a) has been solved for you (see below). Study the solution, and use the same format in 
answering part (b). 

Answer for part (a): 

Proof (by contradiction). 

1. If A is a knight, then: 
1.1 What A says is true.  (by definition of knight) 
1.2 \ B is a knight too.  (that’s what A says) 
1.3 \ What B says is true.  (by definition of knight) 
1.4 \ A is a knave.  (that’s what B says) 
1.5 \ A is not a knight.  (since A is either a knight or a knave, but not both) 
1.6 \ Contradiction to 1. 

2. \ A is not a knight.   
3. \ A is a knave.  (since A is either a knight or a knave, but not both) 
4. \ What B says is true. 
5. \ B cannot be a knave. (as B has said something true) 
6. \ B is a knight. (one is a knight or a knave) 
7. Conclusion: A is a knave and B is a knight. 

Notes: 
• It is tempting to say “Contradiction” right after line 1.4. However, this is not valid 

because contradiction requires 𝑝 ∧ ~𝑝, but ‘knave’ is not the negation of ‘knight’. 
Hence line 1.5 is required before we arrive at the contradiction in 1.6. 
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Answer 

b. Proof (by division into cases) 

1. If C is a knight: 
1.1 What C says is true.  (by definition of knight) 
1.2 \ D is a knave. (that’s what C says) 

2. If C is not a knight: 
2.1 Then C is a knave.  (one is either a knight or a knave) 
2.2 \ what C says is false. (by definition of knave) 
2.3 \ D is not a knave. (C says D is a knave, but what C says is false) 
2.4 \ D is a knight. (one is either a knight or a knave) 

3. In both cases, there is one knight and one knave. 
 

10. Recall the definitions of even and odd integers in Lecture #1 slide 27: 

   If 𝑛 is an integer, then 
    𝑛 is even if and only if ∃𝑘 ∈ ℤ s.t. 𝑛 = 2𝑘; 
    𝑛 is odd if and only if ∃𝑘 ∈ ℤ s.t. 𝑛 = 2𝑘 + 1. 

 Prove the following: 

    The product of any two odd integers is an odd integer. 

Answer 

Proof (direct proof). 
1. Take any two odd integers 𝑛, 𝑚. (Note: This means ∀ odd integers 𝑛,𝑚) 

2. Then 𝑛 = 2𝑘 + 1 and 𝑚 = 2𝑝 + 1 for 𝑘, 𝑝 ∈ ℤ (by definition of odd integers).  

3. Hence 𝑛𝑚	 = (2𝑘 + 1)(2𝑝 + 1) = 92𝑘(2𝑝 + 1): + (2𝑝 + 1)	 
   = (4𝑘𝑝 + 2𝑘) + (2𝑝 + 1) = 2(2𝑘𝑝 + 𝑘 + 𝑝) + 1 (by basic algebra) 

4. Let 𝑞	 = 	2𝑘𝑝 + 𝑘 + 𝑝 which is an integer (by closure of integers under +	and ×) 

5. Then 𝑛𝑚 = 2𝑞 + 1 which is odd (by definition of odd integers). 

6. Therefore, the product of any two odd integers is an odd integer. 

 (Reminder: Did you write the justification for every important step?) 
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11. Your classmate Smart came across this claim: 

   Let 𝑛 be an integer. Then 𝑛" is odd if and only if 𝑛 is odd. 

a. Smart attempts to prove the above claim as follows: 

Proof (by contradiction). 
1. Suppose 𝑛 is an even integer. 
2. Then ∃𝑘 ∈ ℤ s.t. 𝑛 = 2𝑘. 
3. Squaring both sides, we get 𝑛" = (2𝑘)" = 4𝑘" = 2(2𝑘"). 
4. Since 𝑘 is an integer, so is 2𝑘". 
5. Hence 𝑛" = 2𝑝, with 𝑝 = 2𝑘" ∈ ℤ. 
6. Therefore, 𝑛" is even. 
7. So, if 𝑛 is even, then 𝑛" is even, which is the same as saying, if 𝑛"  is odd, then 𝑛 is 

odd. 
8. Therefore, 𝑛" is odd if and only if 𝑛 is odd. 

Comment on Smart’s proof. 
 

b. Write your own proof.  
 

Answers 

a. There are several things that Smart did not do right: 
§ He is proving the contrapositive of “if 𝑛" is odd, then 𝑛 is odd”, so it is only one 

direction. 
§ He wrote “proof (by contradiction)”, which is wrong. It should be proof by 

contraposition. 
§ No justification at a few places. For example, step 2 (by definition of an even integer), 

step 4 (by closure of integers under multiplication), and step 6 (by definition of an even 
integer). 

b. Proof: 

1. (⇒) Proving the contraposition of “if 𝑛" is odd, then 𝑛 is odd”. 
1.1. Suppose 𝑛 is even. 
1.2. Then ∃𝑘 ∈ ℤ s.t. 𝑛 = 2𝑘. (by definition of even integers) 
1.3. Squaring both sides, we get 𝑛" = (2𝑘)" = 4𝑘" = 2(2𝑘"). (by basic algebra) 
1.4. Hence 𝑛" = 2𝑝, with 𝑝 = 2𝑘" ∈ ℤ. (by closure of integers under ×) 
1.5. Therefore, 𝑛" is even. (by definition of even integers) 
1.6. This proves that if 𝑛" is odd, then 𝑛 is odd. 

2. (⇐) If 𝑛 is odd, then 𝑛 × 𝑛 = 𝑛" is odd. (by question 10) 

3. Therefore, 𝑛" is odd if and only if 𝑛 is odd. (by lines 1.6 and 2) 

 
 


