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CS1231S: Discrete Structures 

Tutorial #6: Functions 
(Week 8: 6 – 10 October 2025) 

Answers 
 

 

1. Define the following relations on ℕ: 

∀𝑥, 𝑦 ∈ ℕ (𝑥 𝑅1 𝑦 ⇔ 𝑥2 = 𝑦2); 

∀𝑥, 𝑦 ∈ ℕ (𝑥 𝑅2 𝑦 ⇔ 𝑦 | 𝑥); 

∀𝑥, 𝑦 ∈ ℕ (𝑥 𝑅3 𝑦 ⇔ 𝑦 = 𝑥 + 1). 

Are the relations 𝑅1, 𝑅2 and 𝑅3 functions? Prove or disprove. 

Answers: 

𝑅1 is a function.  

Proof: 
(F1) ∀𝑥 ∈ ℕ, ∃𝑦 = 𝑥 ∈ ℕ such that (𝑥, 𝑦) ∈ 𝑅1. 

(F2) 1. ∀𝑥 ∈ ℕ, let 𝑦1, 𝑦2 ∈ ℕ. 
 2. Suppose (𝑥, 𝑦1) ∈ 𝑅1 ∧ (𝑥, 𝑦2) ∈ 𝑅1. 
 3. Then 𝑦1

2 =  𝑥2 and 𝑦2
2 =  𝑥2 (by the definition of 𝑅1). 

 4. Then 𝑦1
2 =  𝑦2

2. 
 5. Hence 𝑦1 = 𝑦2 (as 𝑦1, 𝑦2 ∈ ℕ ≥ 0). 

𝑅2 is not a function. Counterexample: (6 𝑅2 2) ∧ (6 𝑅2 3). 

𝑅3 is a function.  

Proof: 
(F1) ∀𝑥 ∈ ℕ, ∃𝑦 = 𝑥 + 1 ∈ ℕ such that (𝑥, 𝑦) ∈ 𝑅3. 

(F2) 1. ∀𝑥 ∈ ℕ, let 𝑦1, 𝑦2 ∈ ℕ. 
 2. Suppose (𝑥, 𝑦1) ∈ 𝑅3 ∧ (𝑥, 𝑦2) ∈ 𝑅3. 
 3. Then 𝑦1 = 𝑥 + 1 and 𝑦2 = 𝑥 + 1 (by the definition of 𝑅3). 
 4. Hence 𝑦1 = 𝑦2. 

 

 

 

 

 

 

  

A function 𝑓: 𝑋 → 𝑌, is a relation satisfying the following properties: 
 (F1) ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑓. 

 (F2) ∀𝑥 ∈ 𝑋, ∀𝑦1, 𝑦2 ∈ 𝑌,  ((𝑥, 𝑦1) ∈ 𝑓 ∧ (𝑥, 𝑦2) ∈ 𝑓) → 𝑦1 = 𝑦2. 
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2. Let 𝐴 = {𝑠, 𝑢}. Define a function 𝑙𝑒𝑛: 𝐴∗ → ℤ≥0 by setting 𝑙𝑒𝑛(𝜎) to be the length of 𝜎 for each 𝜎 ∈ 𝐴∗. 

(a) What is 𝑙𝑒𝑛(𝑠𝑢𝑢)? 

(b) What is 𝑙𝑒𝑛({𝜀, 𝑠𝑠, 𝑢𝑢, 𝑠𝑠𝑠𝑠})? 

(c) What is 𝑙𝑒𝑛−1({3})? 

(d) Does 𝑙𝑒𝑛−1 exist? Explain your answer. 

Answers: 

(a) 𝑙𝑒𝑛(𝑠𝑢𝑢) = 3. 

(b) 𝑙𝑒𝑛({𝜀, 𝑠𝑠, 𝑢𝑢, 𝑠𝑠𝑠𝑠}) = {0,2,4}. 

(c) 𝑙𝑒𝑛−1({3}) = {𝑠𝑠𝑠, 𝑠𝑠𝑢, 𝑠𝑢𝑠, 𝑠𝑢𝑢, 𝑢𝑠𝑠, 𝑢𝑠𝑢, 𝑢𝑢𝑠, 𝑢𝑢𝑢}. 

(d) 𝑙𝑒𝑛(𝑠) = 1 = 𝑙𝑒𝑛(𝑢) but 𝑠 ≠ 𝑢. So 𝑙𝑒𝑛 is not injective and so it is not bijective. Thus 𝑙𝑒𝑛−1 does not 
exist by Theorem 7.2.3. (Recall that 𝑙𝑒𝑛−1 refers to the inverse function of 𝑙𝑒𝑛.) 

 

3. Given any two bijections 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶, prove that (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1. 

Answer: 

1. Since 𝑓 and 𝑔 are bijections, 𝑓−1 and 𝑔−1 are bijections by theorem 7.2.3, and 
𝑔 ∘ 𝑓 and  𝑓−1 ∘ 𝑔−1 are also bijection by theorems 7.3.3 and 7.3.4. 

2. Since 𝑔 ∘ 𝑓 is a bijection, (𝑔 ∘ 𝑓)−1 exists and is a bijection by theorem 7.2.3. 

3. (To check the domains and codomains of (𝑔 ∘ 𝑓)−1 and 𝑓−1 ∘ 𝑔−1.) 
3.1. Domain and codomain of 𝑔 ∘ 𝑓 are 𝐴 and 𝐶 respectively, hence domain and codomain of 

(𝑔 ∘ 𝑓)−1 are 𝐶 and 𝐴 respectively. 
3.2. Domain and codomain of 𝑓−1 are 𝐵 and 𝐴 respectively, domain and codomain of 𝑔−1 are 𝐶 

and 𝐵 respectively, hence domain and codomain of 𝑓−1 ∘ 𝑔−1 are 𝐶 and 𝐴 respectively. 
3.3. Therefore, (𝑔 ∘ 𝑓)−1 and 𝑓−1 ∘ 𝑔−1 have the same domain and codomain. 

4. (To check that (𝑔 ∘ 𝑓)−1(𝑧) and 𝑓−1 ∘ 𝑔−1(𝑧) have the same image for all 𝑧 ∈ 𝐶.) 
4.1.  Let 𝑧 ∈ 𝐶.  
4.2 Then ∃𝑦 ∈ 𝐵 such that 𝑧 = 𝑔(𝑦), or 𝑦 = 𝑔−1(𝑧)  by definition of inverse function. 
4.3 Similarly, ∃𝑥 ∈ 𝐴 such that 𝑦 = 𝑓(𝑥), or 𝑥 = 𝑓−1(𝑦) by definition of inverse function. 

4.4. Hence (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑦) = 𝑧, or (𝑔 ∘ 𝑓)−1(𝑧) = 𝑥 by definition of inverse 

function. 

4.5 Also, (𝑓−1 ∘ 𝑔−1)(𝑧) = 𝑓−1(𝑔−1(𝑧)) = 𝑓−1(𝑦) = 𝑥. 

4.6. Therefore, (𝑔 ∘ 𝑓)−1(𝑧) = 𝑓−1 ∘ 𝑔−1(𝑧) for all 𝑧 ∈ 𝐶 from lines 4.4 and 4.5. 

5. Therefore, (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1 from 3 and 4. 

 

 

 

 

  

Theorem 7.3.3 
If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are both 

injective, then 𝑔 ∘ 𝑓 is injective. 

Theorem 7.3.4 
If 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are both 

surjective, then 𝑔 ∘ 𝑓 is surjective. 

Theorem 7.2.3 
If 𝑓: 𝑋 → 𝑌 is a bijection, then 
𝑓−1: 𝑌 → 𝑋 is also a bijection. 

Theorem 7.2.3 
If 𝑓: 𝑋 → 𝑌 is a bijection, then 𝑓−1: 𝑌 → 𝑋 is also a bijection. 
In other words, 𝑓: 𝑋 → 𝑌 is bijective iff 𝑓 has an inverse. 
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4. Which of the functions defined in the following are injective? Which are surjective? Prove that your 
answers are correct. If a function defined below is both injective and surjective, then find a formula for 
the inverse of the function. Here we denote by 𝐵𝑜𝑜𝑙 the set {true, false}. 

(a) 𝑓: ℚ → ℚ; 
 𝑥 ↦ 12𝑥 + 31. 

(b) 𝑔: 𝐵𝑜𝑜𝑙2 → 𝐵𝑜𝑜𝑙; 
 (𝑝, 𝑞) ↦ 𝑝 ∧ ~𝑞. 

(c) ℎ: 𝐵𝑜𝑜𝑙2 → 𝐵𝑜𝑜𝑙2; 
 (𝑝, 𝑞) ↦ (𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞). 

(d) 𝑘: ℤ → ℤ; 

 𝑥 ↦ {
𝑥, if 𝑥 is even;

2𝑥 − 1, if 𝑥 is odd.
. 

 

Answers: 

(a) We could prove that 𝑓 is injective and surjective, and hence bijective. Here, we try another approach: 
if we manage to find an inverse function for 𝑓, then by Theorem 7.2.3, 𝑓 is bijective. 

1. Note that for all 𝑥, 𝑦 ∈ ℚ, 𝑦 = 12𝑥 + 31 ⇔ 𝑥 = (𝑦 − 31)/12. 

2. Define 𝑓∗: ℚ → ℚ by setting, for all 𝑦 ∈ ℚ, 𝑓∗(𝑦) = (𝑦 − 31)/12. 

3. Then whenever 𝑥, 𝑦 ∈ ℚ, 𝑦 = 𝑓(𝑥) ⇔ 𝑥 = 𝑓∗(𝑦). 

4. Thus 𝑓∗ in the inverse of 𝑓. 

5. Hence 𝑓 is bijective (i.e. both injective and surjective) by Theorem 7.2.3. 

 
(b) 

1. 𝑔(𝐟𝐚𝐥𝐬𝐞, 𝐭𝐫𝐮𝐞) = 𝐟𝐚𝐥𝐬𝐞 = 𝑔(𝐟𝐚𝐥𝐬𝐞, 𝐟𝐚𝐥𝐬𝐞), where (𝐟𝐚𝐥𝐬𝐞, 𝐭𝐫𝐮𝐞) ≠ (𝐟𝐚𝐥𝐬𝐞, 𝐟𝐚𝐥𝐬𝐞). 

2. So 𝑔 is not injective. 

3. 𝑔(𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞) = 𝐭𝐫𝐮𝐞. 

4. Lines 1 and 3 show that every element of the codomain 𝐵𝑜𝑜𝑙 is in the range of 𝑔. 

5. Hence 𝑔 is surjective. 

 
(c) 

1. ℎ(𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞) = (𝐟𝐚𝐥𝐬𝐞, 𝐭𝐫𝐮𝐞) = 𝑔(𝐟𝐚𝐥𝐬𝐞, 𝐭𝐫𝐮𝐞), where (𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞) ≠ (𝐟𝐚𝐥𝐬𝐞, 𝐭𝐫𝐮𝐞). 

2. So ℎ is not injective. 

3. If 𝑝, 𝑞, 𝑟 ∈ 𝐵𝑜𝑜𝑙 such that ℎ(𝑝, 𝑞) = (𝐭𝐫𝐮𝐞, 𝑟), then 
3.1. 𝑝 ∧ 𝑞 = 𝐭𝐫𝐮𝐞 by the definition of ℎ; 
3.2. ∴ 𝑝 = 𝐭𝐫𝐮𝐞 
3.3. ∴ 𝑟 = 𝑝 ∨ 𝑞 = 𝐭𝐫𝐮𝐞 by the definition of ℎ. 

4. So (𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞) in the codomain is not in the range of ℎ. 

5. Hence ℎ is not surjective. 

 
  

Inverse function 
Let 𝑓: 𝑋 → 𝑌. Then 𝑔: 𝑌 → 𝑋 is an inverse of 𝑓 iff 

∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑦 = 𝑓(𝑥) ⇔ 𝑥 = 𝑔(𝑦)) . 
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(d) 
1. We first show that if 𝑥 is an even integer, then 𝑘(𝑥) is even. 

1.1. Let 𝑥 be an even integer. 
1.2. Then 𝑘(𝑥) = 𝑥 by the definition of 𝑘. 
1.3. So 𝑘(𝑥) is even. 

2. Next we show that if 𝑥 is an odd integer, then 𝑘(𝑥) is odd. 
2.1. Let 𝑥 be an odd integer. 
2.2. Then 𝑘(𝑥) = 2𝑥 − 1 = 2(𝑥 − 1) + 1,  where 𝑥 − 1 is an integer. 
2.3. So 𝑘(𝑥) is odd. 

3. Since every integer is either even or odd but not both, lines 1 and 2 tell us that, for every 𝑥 ∈ ℤ, 
3.1. 𝑥 is even if and only if 𝑘(𝑥) is even; and  
3.2. 𝑥 is odd if and only if 𝑘(𝑥) is odd. 

4. Now we show that 𝑘 is injective. 
4.1. Let 𝑥1, 𝑥2 ∈ ℤ such that 𝑘(𝑥1) = 𝑘(𝑥2). 
4.2. Case 1: 𝑘(𝑥1) is even. 

4.2.1. Then both 𝑥1 and 𝑥2 are even by line 3.1. 
4.2.2. So 𝑥1 = 𝑘(𝑥1) = 𝑘(𝑥2) = 𝑥2 by the definition of 𝑘. 

4.3. Case 2: 𝑘(𝑥1) is odd. 
4.3.1. Then both 𝑥1 and 𝑥2 are odd by line 3.2. 
4.3.2. So 2𝑥1 − 1 = 𝑘(𝑥1) = 𝑘(𝑥2) = 2𝑥2 − 1 by the definition of 𝑘. 
4.3.3. So 𝑥1 = 𝑥2. 

4.4. Since 𝑘(𝑥1) is either even or odd, we conclude that 𝑥1 = 𝑥2 in any case. 
4.5. Therefore 𝑘 is injective. 

5. Finally, we prove by contradiction that 𝑘 is not surjective. 
5.1. Suppose 𝑘 is surjective. 
5.2. Note that 3 is in the codomain ℤ. 
5.3. Use the surjectivity of 𝑘 to find 𝑥 ∈ ℤ such that 𝑘(𝑥) = 3. 
5.4. Note that 𝑘(𝑥) = 3 is odd and so 𝑥 is odd by line 3.2. 
5.5. Thus 3 = 𝑘(𝑥) = 2𝑥 − 1 by the choice of 𝑥 and the definition of 𝑘. 

5.6. Solving gives 𝑥 =
3+1

2
= 2 which is even. 

5.7. This contradicts line 5.4 that 𝑥 is odd. 
5.8. Therefore 𝑘 is not surjective. 
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5. [AY2022/23 Semester 2 Exam Questions] 
The following definitions are given. 

Given a function 𝑓: 𝐴 → 𝐵, we say that 

 ▪ 𝑔: 𝐵 → 𝐴 is a left inverse of 𝑓 if and only if 𝑔(𝑓(𝑎)) = 𝑎 for all 𝑎 ∈ 𝐴. 

 ▪ ℎ: 𝐵 → 𝐴 is a right inverse of 𝑓 if and only if 𝑓(ℎ(𝑏)) = 𝑏 for all 𝑏 ∈ 𝐵. 

You do not need to provide proofs for the following parts. 

(a) Which of the 4 functions given in question 5 have a left inverse? 

(b) Which of the 4 functions given in question 5 have a right inverse?  

(c) Which of the following statements are true? 

 (i) If a function has a left inverse, then it has a right inverse. 
 (ii) If a function has a right inverse, then it has a left inverse. 

Answers: 
(a) Only 𝑓 and 𝑘. (b) Only 𝑓 and 𝑔.  (c) Neither is true. 

 Note that 
▪ a function is injective if and only if it has a left inverse; 
▪ a function is surjective if and only if it has a right inverse. 

 

6. We have shown in Theorem 7.3.3 that if 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 are both injective, then 𝑔 ∘ 𝑓 is injective. 

 Now, let 𝑓: 𝐵 → 𝐶. Suppose we have a function 𝑔 with domain 𝐶 such that 𝑔 ∘ 𝑓 is injective. Show that 
𝑓 is injective. 

Answer: 
1. Suppose 𝑔 is a function with domain 𝐶 such that 𝑔 ∘ 𝑓 is injective. 

2. Let 𝑥1, 𝑥2 ∈ 𝐵 such that 𝑓(𝑥1) = 𝑓(𝑥2). 

3. Then (𝑔 ∘ 𝑓)(𝑥1) = 𝑔(𝑓(𝑥1)) = 𝑔(𝑓(𝑥2)) = (𝑔 ∘ 𝑓)(𝑥2) by the definition of 𝑔 ∘ 𝑓. 

4. So 𝑥1 = 𝑥2 as 𝑔 ∘ 𝑓 is injective by the choice of 𝑔. 

5. Therefore 𝑓 is injective. 
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7. Let 𝐴 = {1,2,3}. The order of a bijection 𝑓: 𝐴 → 𝐴 is defined to be the smallest 𝑛 ∈ ℤ+ such that 

𝑓 ∘ 𝑓 ∘ ⋯ ∘ 𝑓 = 𝑖𝑑𝐴. 

𝑛-many 𝑓’s 

 Define functions 𝑔, ℎ: 𝐴 → 𝐴 by setting, for all 𝑥 ∈ 𝐴, 

𝑔(𝑥) = {
1,   if 𝑥 = 2;
2,   if 𝑥 = 1;

     𝑥,   otherwise,
                        ℎ(𝑥) = {

2,   if 𝑥 = 3;
3,   if 𝑥 = 2;

     𝑥,   otherwise.
 

 Find the orders of 𝑔, ℎ, 𝑔 ∘ ℎ, and ℎ ∘ 𝑔. 

Answers: The orders for 𝑔, ℎ, 𝑔 ∘ ℎ, and ℎ ∘ 𝑔 are 2, 2, 3 and 3 respectively. 

(𝑔 ∘ 𝑔)(1) = 𝑔(𝑔(1)) = 𝑔(2) = 1 

(𝑔 ∘ 𝑔)(2) = 𝑔(𝑔(2)) = 𝑔(1) = 2 

(𝑔 ∘ 𝑔)(3) = 𝑔(𝑔(3)) = 𝑔(3) = 3 

Therefore 𝑔 ∘ 𝑔 is an identity function on 𝐴. Hence 𝑔 ∘ 𝑔 has an order of 2. 

Similar working for ℎ. 

Let 𝑠 = 𝑔 ∘ ℎ.  

𝑠(1) = (𝑔 ∘ ℎ)(1) = 𝑔(ℎ(1)) = 𝑔(1) = 2 

𝑠(2) = (𝑔 ∘ ℎ)(2) = 𝑔(ℎ(2)) = 𝑔(3) = 3 

𝑠(3) = (𝑔 ∘ ℎ)(3) = 𝑔(ℎ(3)) = 𝑔(2) = 1 

(𝑠 ∘ 𝑠 ∘ 𝑠)(1) = 𝑠 (𝑠(𝑠(1))) = 𝑠(𝑠(2)) = 𝑠(3) = 1 

(𝑠 ∘ 𝑠 ∘ 𝑠)(2) = 𝑠 (𝑠(𝑠(2))) = 𝑠(𝑠(3)) = 𝑠(1) = 2 

(𝑠 ∘ 𝑠 ∘ 𝑠)(3) = 𝑠 (𝑠(𝑠(3))) = 𝑠(𝑠(1)) = 𝑠(2) = 3 

Therefore (𝑔 ∘ ℎ)  ∘ (𝑔 ∘ ℎ) ∘ (𝑔 ∘ ℎ)  is an identity function on 𝐴. Hence 𝑔 ∘ ℎ has an order of 3. 

Similar working for ℎ ∘ 𝑔. 
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8. [AY2023/24 Semester 2 Exam Questions] 
Recall Theorem 4.4.1 (The Quotient-Remainder Theorem): 

“Given any integer 𝑛 and positive integer 𝑑, there exist unique integers 𝑞 
and 𝑟 such that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑑.” 

Definitions: 

Let 𝑛 ∈ ℤ and 𝑑 ∈ ℤ+. Suppose 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑑, we define 𝑛 % 𝑑 = 𝑟. 
 

Given a function 𝑓(𝑥), we define the function 𝒇(𝒏)(𝒙) to be the result of 𝑛 applications of 𝑓 to 𝑥, 

where 𝑛 ∈ ℤ+. For example, 𝑓(3)(𝑥) = 𝑓 (𝑓(𝑓(𝑥))). We also define the order of an input 𝑥 with 

respect to 𝑓 to be the smallest positive integer 𝑚 such that 𝑓(𝑚)(𝑥) = 𝑥. 
 
 Define a function 𝑔 ∶  𝐴 → 𝐴 by setting, for each 𝑥 ∈ 𝐴, 𝑔(𝑥) = 3𝑥 % 5. 

(a) What is 𝑔(3)(21)? 

(b) What is the order of 3 with respect to the function 𝑔?  

(c) Let 𝐴 = {0,1,2,3,4}. Define the relation 𝑅 on 𝐴 as follows: 

  𝑥 𝑅 𝑦 iff the order of 𝑥 is equal to the order of 𝑦 with respect to the function 𝑔.  

 𝑅 is an equivalence relation. Write out all the distinct equivalence classes of 𝑅 using set-roster 
notation. Do not use the [ ] notation. 

 
Answers: 

(a) 𝑔(3)(21) = 𝑔(2)(3) = 𝑔(4) = 𝟐 

(b) 𝑔(4)(3) = 𝑔(3)(4) = 𝑔(2)(2) = 𝑔(1) = 3. Therefore, order of 3 is 4. 

(c) 2 equivalence classes: {𝟎} and {𝟏, 𝟐, 𝟑, 𝟒}. 
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9. Let 𝑓: 𝐴 → 𝐵 be a function. Let 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵. Justify your answers for the following: 

(a) Is it always the case that 𝑋 ⊆ 𝒇−1(𝒇(𝑋))? Is it always the case that 𝒇−𝟏(𝒇(𝑋)) ⊆ 𝑋?  

(b) Is it always the case that 𝑌 ⊆ 𝒇 (𝒇−𝟏(𝑌))? Is it always the case that 𝒇 (𝒇−𝟏(𝑌)) ⊆ 𝑌?  

Note that 𝒇(𝑋) is the (setwise) image of 𝑋, and 𝒇−𝟏(𝑌) the (setwise) preimage of 𝑌 under 𝑓,  where 

 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵. Without the colored font to disambiguate the two kinds of functions, it should also 
be clear what 𝑓(𝑈) denotes, depending on whether 𝑈 ∈ 𝐴   or  𝑈 ∈ 𝑃(𝐴). 
 
 
 
 

 

 

Answers: 

 (a) First, we show it is always the case that 𝑋 ⊆ 𝑓−1(𝑓(𝑋)). 

1. Let 𝑥 ∈ 𝑋. 
2. Then 𝑓(𝑥) ∈ 𝑓(𝑋) by the definition of 𝑓(𝑋). 

3. So 𝑥 ∈ 𝑓−1(𝑓(𝑋)) by the definition of 𝑓−1(𝑓(𝑋)). 

 Next, we show it is possible that 𝑓−1(𝑓(𝑋)) ⊈ 𝑋. 

1. Consider 𝑓: {−1,1} → {0} where 𝑓(−1) = 0 = 𝑓(1), and 𝑋 = {1}. 
2. Note that 𝑓(𝑋) = {𝑓(1)} = {0}. 

3. Since 𝑓(−1) = 0, we know −1 ∈ 𝑓−1({0}) = 𝑓−1(𝑓(𝑋)). 

4. As −1 ∉ {1} = 𝑋, we deduce that 𝑓−1(𝑓(𝑋)) ⊈ 𝑋. 

(Other counterexamples are possible.) 

(b) First, we show it is always the case that 𝑓(𝑓−1(𝑌)) ⊆ 𝑌. 

1. Take any 𝑦 ∈ 𝑓(𝑓−1(𝑌)). 

2. Then we have some 𝑥 ∈ 𝑓−1(𝑌) such that 𝑦 = 𝑓(𝑥), by the definition of 𝑓(𝑓−1(𝑌)). 

3. Now, as 𝑥 ∈ 𝑓−1(𝑌), we get 𝑦′ ∈ 𝑌 which makes 𝑦′ = 𝑓(𝑥). 
4. Since 𝑓 is a function, this implies 𝑦 = 𝑓(𝑥) = 𝑦’ ∈ 𝑌 as required. 

 Next, we show it is possible that 𝑌 ⊈ 𝑓(𝑓−1(𝑌))? . 

1. Consider 𝑓: {0} → {−1,1} where 𝑓(0) = 1, and 𝑌 = {−1}. 
2. Note that no 𝑥 ∈ {0} makes 𝑓(𝑥) = −1. 
3. So 𝑓−1(𝑌) = ∅ by the definition of 𝑓−1(𝑌). 

4. This entails 𝑓(𝑓−1(𝑌)) = ∅ ⊉ {−1} = 𝑌. 

(Other counterexamples are possible.) 

 

  

Let 𝑓: 𝑋 → 𝑌 be a function from set 𝑋 to set 𝑌. 
▪ If 𝐴 ⊆ 𝑋, then let 𝒇(𝐴) = {𝑓(𝑥) : 𝑥 ∈ 𝐴}. 

▪ If 𝐵 ⊆ 𝑌, then let 𝒇−𝟏(𝐵) = {𝑥 ∈ 𝑋 : 𝑓(𝑥) ∈ 𝐵} 

We call 𝒇(𝐴) the (setwise) image of 𝐴, and 𝒇−𝟏(𝐵) the (setwise) preimage of 𝐵 under 𝑓. 
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10. Consider the equivalence relation ~ on ℚ defined by setting, for all 𝑥, 𝑦 ∈ ℚ, 
𝑥 ~ 𝑦 ⇔ 𝑥 − 𝑦 ∈ ℤ. 

 Define addition and multiplication on ℚ/~ as follows: whenever [𝑥], [𝑦] ∈ ℚ/~, 

[𝑥] + [𝑦] = [𝑥 + 𝑦]    and    [𝑥] ∙ [𝑦] = [𝑥 ∙ 𝑦].     

(a) Is + well defined on ℚ/~? 

(b) Is ∙ well defined on ℚ/~? 

Prove that your answers are correct. 

Answers:  
(a) We claim that + is well defined on ℚ/~. 

1. Let [𝑥1], [𝑦1], [𝑥2], [𝑦2], ∈ ℚ/~ such that [𝑥1] = [𝑥2] and [𝑦1] = [𝑦2]. 

2. So  𝑥1 ~ 𝑥2 and 𝑦1 ~ 𝑦2 by Lemma Rel.1. 

3. Use the definition of ~ to find 𝑘, 𝑙 ∈ ℤ such that 𝑥1 − 𝑥2 = 𝑘 and 𝑦1 − 𝑦2 = 𝑙. 

4. Note that (𝑥1 + 𝑦1) − (𝑥2 + 𝑦2) = (𝑥1 − 𝑥2) + (𝑦1 − 𝑦2) = 𝑘 + 𝑙 ∈ ℤ. 

5. So 𝑥1 + 𝑦1 ~ 𝑥2 + 𝑦2 by the definition of ~. 

6. Hence [𝑥1] + [𝑦1] = [𝑥1 + 𝑦1] = [𝑥2 + 𝑦2] = [𝑥2] + [𝑦2] by Lemma Rel.1. 

 

(b) We claim that ∙ is not well defined on ℚ/~. 

1. Note that 
1

2
−

−1

2
= 1 ∈ ℤ. 

2. This implies  
1

2
 ~ 

−1

2
 and so [

1

2
] = [

−1

2
] by Lemma Rel.1. 

3. Note that 
1

4
−

−1

4
=

1

2
∉ ℤ. 

4. This implies  
1

4
 ≁  

−1

4
 and so [

1

4
] ≠ [

−1

4
] by Lemma Rel.1. 

5. Therefore, according to the definition of ∙ on ℚ/~, 

  [
1

2
] ∙ [

1

2
] = [

1

2
∙

1

2
] = [

1

4
] ≠ [

−1

4
] = [

1

2
∙

−1

2
] = [

1

2
] ∙ [

−1

2
]. 

 

 

Lemma Rel.1 Equivalence Classes 
Let ~ be an equivalence relation on a set 𝐴. The following 
are equivalent for all 𝑥, 𝑦 ∈ 𝐴.  
 (i) 𝑥~𝑦;   (ii) [𝑥] = [𝑦]; (iii) [𝑥] ∩ [𝑦] ≠ ∅. 
 


